1
|
Ma T, Wang X, He W, Zhang G, Shan T, Song X, Yang X, Ma J, Chen L, Niu P, Chen T. Expose to volatile organic compounds is associated with increased risk of depression: A cross-sectional study. J Affect Disord 2024; 363:239-248. [PMID: 39038625 DOI: 10.1016/j.jad.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/06/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
With increasing prevalence rate of depression by years, more attention has been paid to the influence of environmental pollutants on depression, but relationship between exposure to volatile organic compounds (VOCs) and depression is rarely studied. Therefore, this cross-sectional study use the National Center for Health Statistics (NHANES) database (2013-2016 years) to explore association between exposure to multiple VOCs and depression in general population. Multiple linear and logistic regression models were used to analyze the association between urinary VOC metabolism (mVOCs) and depression. To further analyze effect of multiple mVOCs mixed exposure, Bayesian kernel machine regression (BKMR) models were performed. A total of 3240 participants and 16 mVOCs were included in the analysis. Results showed that 10 mVOCs exposure were positively correlated with depression by multiple linear and logistic regression models, especially CYMA and MHBMA3, which also showed significant positive association with depression in BKMR model. Mixed exposure of multiple mVOCs was significantly positively correlated with depression. Gender differences were existed in effects of some VOCs concentrations on depression. AAMA, CYMA and MA had significant positive correlations with depression by women, and DHBMA had significant positive correlations with depression by men. Hence, this study showed that exposing to VOCs might have negative impacts on depression, and impact of CYMA and MHBMA3 on depression may be more evident, which provide new ideas for prevention and control of depression. But further research and exploration are needed to clarify the mechanism and influence factors of this relationship, to demonstrate the reliability of these relationship.
Collapse
Affiliation(s)
- Teng Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Gaoman Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tianzi Shan
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Song M, Qiang Y, Wang S, Shan S, Zhang L, Liu C, Song F, Zhao X. High-fat diet exacerbates 1-Bromopropane-induced loss of dopaminergic neurons in the substantia nigra of mice through mitochondrial damage associated necroptotic pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116280. [PMID: 38574648 DOI: 10.1016/j.ecoenv.2024.116280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
In recent years, accumulating evidence supports that occupational exposure to solvents is associated with an increased incidence of Parkinson's disease (PD) among workers. The neurotoxic effects of 1-bromopropane (1-BP), a widely used new-type solvent, are well-established, yet data on its relationship with the etiology of PD remain limited. Simultaneously, high-fat consumption in modern society is recognized as a significant risk factor for PD. However, whether there is a synergistic effect between a high-fat diet and 1-BP exposure remains unclear. In this study, adult C57BL/6 mice were fed either a chow or a high-fat diet for 18 weeks prior to 12-week 1-BP treatment. Subsequent neurobehavioral and neuropathological examinations were conducted to assess the effects of 1-BP exposure on parkinsonian pathology. The results demonstrated that 1-BP exposure produced obvious neurobehavioral abnormalities and dopaminergic degeneration in the nigral region of mice. Importantly, a high-fat diet further exacerbated the impact of 1-BP on motor and cognitive abnormalities in mice. Mechanistic investigation revealed that mitochondrial damage and mtDNA release induced by 1-BP and high-fat diet activate NLRP3 and cGAS-STING pathway- mediated neuroinflammatory response, and ultimately lead to necroptosis of dopaminergic neurons. In summary, our study unveils a potential link between chronic 1-BP exposure and PD-like pathology with motor and no-motor defects in experimental animals, and long-term high-fat diet can further promote 1-BP neurotoxicity, which underscores the pivotal role of environmental factors in the etiology of PD.
Collapse
Affiliation(s)
- Mingxue Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yalong Qiang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shuai Wang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Shan Shan
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Liwen Zhang
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Caipei Liu
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fuyong Song
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiulan Zhao
- Department of Health Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Suo J, Zhang C, Wang P, Hou L, Wang Q, Zhao X. Allyl Sulfide Counteracts 1-Bromopropane-Induced Neurotoxicity by Inhibiting Neuroinflammation and Oxidative Stress. Toxicol Sci 2020; 167:397-407. [PMID: 30247689 DOI: 10.1093/toxsci/kfy240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chronic exposure to 1-bromopropane (1-BP), an alternative to ozone-depleting solvents, produces potential neurotoxicity in occupational populations. However, no therapeutic strategy is available currently. Accumulating evidence suggests that cytochrome P4502E1 (CYP2E1) is critical for the active metabolism of 1-BP. The purpose of this study is aimed to test whether inhibition of CYP2E1 by allyl sulfide, a specific inhibitor of CYP2E1, could be able to protect against 1-BP-induced neurotoxicity. Male Wistar rats were intoxicated with 1-BP for 9 continuous weeks with or without allyl sulfide pretreatment. Results clearly demonstrated that 1-BP exposure induced decrease in NeuN+ cells and increase in cleaved caspase-3 expression and TUNEL+ cells in motor cortex of rats, which was significantly ameliorated by allyl sulfide. Allyl sulfide treatment also recovered the motor performance of rats treated with 1-BP. Mechanistically, allyl sulfide-inhibited 1-BP-induced expression of CYP2E1 in microglia, which was associated with suppression of microglial activation and M1 polarization in motor cortex of rats. Reduced oxidative stress was also observed in rats treated with combined allyl sulfide and 1-BP compared with 1-BP alone group. Furthermore, we found that allyl sulfide abrogated 1-BP-induced activation of Nuclear factor(NF)-κB and GSH/Thioredoxin/ASK1 pathways, the key factor for the maintenance of M1 microglial inflammatory response and oxidative stress-related neuronal apoptosis, respectively. Thus, our results showed that allyl sulfide exerted neuroprotective effects in combating 1-BP-induced neurotoxicity through inhibition of neuroinflammation and oxidative stress. Blocking CYP2E1 activity by allyl sulfide might be a promising avenue for the treatment of neurotoxicity elicited by 1-BP and other related neurotoxicants.
Collapse
Affiliation(s)
- Jinning Suo
- Institute of Toxicology, School of Public Health, Shandong University, 250012 Jinan, Shandong Province, China
| | - Cuili Zhang
- Institute of Toxicology, School of Public Health, Shandong University, 250012 Jinan, Shandong Province, China
| | - Pin Wang
- Department of Neurology, the Second Hospital of Shandong University, Jinan 250012, China
| | - Liyan Hou
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Qingshan Wang
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian 116044, China
| | - Xiulan Zhao
- Institute of Toxicology, School of Public Health, Shandong University, 250012 Jinan, Shandong Province, China
| |
Collapse
|
4
|
Abstract
Toxic peripheral neuropathies are an important form of acquired polyneuropathy produced by a variety of xenobiotics and different exposure scenarios. Delineating the mechanisms of neurotoxicants and determining the degenerative biological pathways triggered by peripheral neurotoxicants will facilitate the development of sensitive and specific biochemical-based methods for identifying neurotoxicants, designing therapeutic interventions, and developing structure-activity relationships for predicting potential neurotoxicants. This review presents an overview of the general concepts of toxic peripheral neuropathies with the goal of providing insight into why certain agents target the peripheral nervous system and produce their associated lesions. Experimental data and the main hypotheses for the mechanisms of selected agents that produce neuronopathies, axonopathies, or myelinopathies including covalent or noncovalent modifications, compromised energy or protein biosynthesis, and oxidative injury and disruption of ionic gradients across membranes are presented. The relevance of signaling between the main components of peripheral nerve, that is, glia, neuronal perikaryon, and axon, as a target for neurotoxicants and the contribution of active programmed degenerative pathways to the lesions observed in toxic peripheral neuropathies is also discussed.
Collapse
|
5
|
Xu L, Qiu X, Wang S, Wang Q, Zhao XL. NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction. Neurosci Bull 2018; 35:347-361. [PMID: 30569431 DOI: 10.1007/s12264-018-0321-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/27/2018] [Indexed: 12/22/2022] Open
Abstract
Occupational exposure to 1-bromopropane (1-BP) induces learning and memory deficits. However, no therapeutic strategies are currently available. Accumulating evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) and neuroinflammation are involved in the cognitive impairments in neurodegenerative diseases. In this study we aimed to investigate whether the noncompetitive NMDAR antagonist MK801 protects against 1-BP-induced cognitive dysfunction. Male Wistar rats were administered with MK801 (0.1 mg/kg) prior to 1-BP intoxication (800 mg/kg). Their cognitive performance was evaluated by the Morris water maze test. The brains of rats were dissected for biochemical, neuropathological, and immunological analyses. We found that the spatial learning and memory were significantly impaired in the 1-BP group, and this was associated with neurodegeneration in both the hippocampus (especially CA1 and CA3) and cortex. Besides, the protein levels of phosphorylated NMDARs were increased after 1-BP exposure. MK801 ameliorated the 1-BP-induced cognitive impairments and degeneration of neurons in the hippocampus and cortex. Mechanistically, MK801 abrogated the 1-BP-induced disruption of excitatory and inhibitory amino-acid balance and NMDAR abnormalities. Subsequently, MK801 inhibited the microglial activation and release of pro-inflammatory cytokines in 1-BP-treated rats. Our findings, for the first time, revealed that MK801 protected against 1-BP-induced cognitive dysfunction by ameliorating NMDAR function and blocking microglial activation, which might provide a potential target for the treatment of 1-BP poisoning.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Xiaofei Qiu
- School of Public Health, Shandong University, Jinan, 250012, China
| | - Shuo Wang
- School of Pharmacy, Liaocheng University, Liaocheng, 252000, China
| | - Qingshan Wang
- School of Public Health, Dalian Medical University, Dalian, 116044, China.
| | - Xiu-Lan Zhao
- School of Public Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
6
|
Thapa P, Kim EK, Nepal MR, Jeong KS, Kang MJ, Noh K, Lee S, Jeong HG, Lee JH, Jeong TC, Lee ES. Identification of a N 7-guanine adduct of 1-bromopropane in calf thymus DNA by mass spectrometry. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0002-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Garner CE, Liang S, Yin L, Yu X. Physiologically based pharmacokinetic modeling for 1-bromopropane in F344 rats using gas uptake inhalation experiments. Toxicol Sci 2015; 145:23-36. [PMID: 25634537 DOI: 10.1093/toxsci/kfv018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
1-Bromopropane (1-BP) was introduced into the workplace as an alternative to ozone-depleting solvents and increasingly used in manufacturing industry. The potential exposure to 1-BP and the current reports of adverse effects associated with occupational exposure to high levels of 1-BP have increased the need to understand the mechanism of 1-BP toxicity in animal models as a mean of understanding risk in workers. Physiologically based pharmacokinetic (PBPK) model for 1-BP has been developed to examine 2 metabolic pathway assumptions for gas-uptake inhalation study. Based on previous gas-uptake experiments in the Fischer 344 rat, the PBPK model was developed by simulating the 1-BP concentration in a closed chamber. In the model, we tested the hypothesis that metabolism responsibilities were shared by the p450 CYP2E1 and glutathione (GSH) conjugation. The results showed that 2 metabolic pathways adequately simulated 1-BP closed chamber concentration. Furthermore, the above model was tested by simulating the gas-uptake data of the female rats pretreated with 1-aminobenzotrizole, a general P450 suicide inhibitor, or d,l-buthionine (S,R)-sulfoximine, an inhibitor of GSH synthesis, prior to exposure to 800 ppm 1-BP. The comparative investigation on the metabolic pathway of 1-BP through the PBPK modeling in both sexes provides critical information for understanding the role of p450 and GSH in the metabolism of 1-BP and eventually helps to quantitatively extrapolate current animal studies to human.
Collapse
Affiliation(s)
- C Edwin Garner
- *Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Shenxuan Liang
- *Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Lei Yin
- *Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| | - Xiaozhong Yu
- *Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108 and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
8
|
Garner CE, Yu X. Species and sex-dependent toxicokinetics of 1-bromopropane: the role of hepatic cytochrome P450 oxidation and glutathione (GSH). Xenobiotica 2014; 44:644-56. [PMID: 24438363 DOI: 10.3109/00498254.2013.879624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The objectives of the current studies were to evaluate the factors influencing the toxicokinetics of 1-bromopropane (1-BP) in rodents after intravenous (IV) and inhalation exposure. 2. F-344 rats were administered 1-BP via IV bolus injection at 5 and 20 mg/kg and blood concentration determined versus time. F-344 rats and B6C3F1 mice were also exposed to starting inhalation concentrations 70, 240, 800 and 2700 ppm 1-BP in a closed gas uptake system and chamber 1-BP levels were monitored for 6 h. Plasma bromide concentrations were determined to estimate total metabolized dose. Rats were pretreated with chemical inhibitors of cytochrome P450 and glutathione (GSH) synthesis, prior to exposure to 1-BP at 800 ppm within inhalation chambers. 3. Systemic clearance of 1-BP in rat was rapid and decreased with increasing dose. As inhalation chamber concentration of 1-BP increased, the terminal elimination rates decreased. Half-life of 1-BP in rats following inhibition of P450 (9.6 h) or depletion of GSH (4.1 h) increased relative to controls (2.0 h) at 800 ppm. The percentage of 1-BP metabolized decreased with increasing inhalation exposure. Hepatic levels of GSH were significantly lowered regardless of the exposure level in both rats and mice. Chamber concentration-time curves were fit to a two compartment model which was used to estimate metabolic rate constants. 4. These data suggest that in rat, 1-BP clearance is saturable and that elimination is highly dependent on both P450 and GSH-dependent metabolism. This investigation in rodents may provide an understanding of interspecies differences in toxicokinetics and eventually aid translation of animal studies to human risk assessment.
Collapse
Affiliation(s)
- C Edwin Garner
- RTI International, Research Triangle Park , NC , USA and
| | | |
Collapse
|
9
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Subramanian K, Mohideen SS, Ichihara G. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure. Toxicol Appl Pharmacol 2012; 263:44-52. [DOI: 10.1016/j.taap.2012.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/18/2012] [Accepted: 05/26/2012] [Indexed: 01/05/2023]
|
10
|
Ichihara G, Kitoh J, Li W, Ding X, Ichihara S, Takeuchi Y. Neurotoxicity of 1-bromopropane: Evidence from animal experiments and human studies. J Adv Res 2012. [DOI: 10.1016/j.jare.2011.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Meyer-Baron M, Kim EA, Nuwayhid I, Ichihara G, Kang SK. Occupational exposure to neurotoxic substances in Asian countries - challenges and approaches. Neurotoxicology 2011; 33:853-61. [PMID: 22202747 DOI: 10.1016/j.neuro.2011.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 12/07/2011] [Accepted: 12/12/2011] [Indexed: 10/14/2022]
Abstract
The fact that a conference on neurotoxicity was held in China triggered the idea to provide an insight into occupational diseases, their development and the approaches to investigate them in Asian countries. A historical review, a meta-analysis, and studies on humans and animals provide impressions on past and current problems. The Korean example showed that each newly introduced industry is accompanied by its own problems as regards occupational diseases. Mercury and carbon disulfide were of importance in the beginning, whereas solvents and manganese became important later. Outbreaks of diseases were important reasons to guide both the public and the governmental attention to prevention and allowed within a relatively short time considerable progress. As the example on the replacement of 2-bromopropane by 1-bromopropane showed, also the introduction of chemicals that are more beneficial for the environment may result in additional occupational risks. A lower mutagenicity of 1-bromopopane was shown to be associated with a greater neurotoxicity in Japanese studies. Although occupational health and diseases are commonly related to adults, child workers exposed to solvents were examined in a Lebanese study. The study started outlining the health hazards in young workers because they might be at a much greater risk due to the not yet completed maturation of their nervous system. That some occupational diseases are not yet a focus of prevention was shown by the study on pesticides. If at all, the serious health consequences resulting from excessive exposure were investigated. Research enabling precautionary actions was not available from the international literature. Despite globalization the knowledge on occupational diseases is not yet "globalized" and each country obviously undergoes its own development triggered by local experiences. Economic development that requires a healthy workforce, but also public interest that challenges governmental regulations further efforts on the prevention of occupational diseases. The paper reflects a summary of the talks presented at the symposium "Occupational Neurotoxicities in Asian Countries" as part of the 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health.
Collapse
Affiliation(s)
- Monika Meyer-Baron
- Leibniz Research Centre for Working Environment and Human Factors, Germany.
| | | | | | | | | |
Collapse
|
12
|
Huang Z, Ichihara S, Oikawa S, Chang J, Zhang L, Takahashi M, Subramanian K, Mohideen SS, Wang Y, Ichihara G. Proteomic analysis of hippocampal proteins of F344 rats exposed to 1-bromopropane. Toxicol Appl Pharmacol 2011; 257:93-101. [PMID: 21925529 DOI: 10.1016/j.taap.2011.08.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 08/23/2011] [Accepted: 08/26/2011] [Indexed: 12/28/2022]
Abstract
1-Bromopropane (1-BP) is a compound used as an alternative to ozone-depleting solvents and is neurotoxic both in experimental animals and human. However, the molecular mechanisms of the neurotoxic effects of 1-BP are not well known. To identify the molecular mechanisms of 1-BP-induced neurotoxicity, we analyzed quantitatively changes in protein expression in the hippocampus of rats exposed to 1-BP. Male F344 rats were exposed to 1-BP at 0, 400, or 1000 ppm for 8h/day for 1 or 4 weeks by inhalation. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) were conducted to detect and identify protein modification. Changes in selected proteins were further confirmed by western blot. 2D-DIGE identified 26 proteins with consistently altered model (increase or decrease after both 1- and 4-week 1-BP exposures) and significant changes in their levels (p<0.05; fold change ≥ ± 1.2) at least at one exposure level or more compared with the corresponding controls. Of these proteins, 19 were identified by MALDI-TOF-TOF/MS. Linear regression analysis of 1-BP exposure level identified 8 differentially expressed proteins altered in a dose-dependent manner both in 1- and 4-week exposure experiments. The identified proteins could be categorized into diverse functional classes such as nucleocytoplasmic transport, immunity and defense, energy metabolism, ubiquitination-proteasome pathway, neurotransmitter and purine metabolism. Overall, the results suggest that 1-BP-induced hippocampal damage involves oxidative stress, loss of ATP production, neurotransmitter dysfunction and inhibition of ubiquitination-proteasome system.
Collapse
Affiliation(s)
- Zhenlie Huang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Hanley KW, Petersen MR, Cheever KL, Luo L. N-acetyl-S-(n-propyl)-l-cysteine in urine from workers exposed to 1-bromopropane in foam cushion spray adhesives. ANNALS OF OCCUPATIONAL HYGIENE 2009; 53:759-69. [PMID: 19706636 DOI: 10.1093/annhyg/mep051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1-Bromopropane (1-BP) has been marketed as an alternative for ozone depleting and other solvents; it is used in aerosol products, adhesives, metal, precision, and electronics cleaning solvents. Mechanisms of toxicity of 1-BP are not fully understood, but it may be a neurological and reproductive toxicant. Sparse exposure information prompted this study using 1-BP air sampling and urinary metabolites. Mercapturic acid conjugates are excreted in urine from 1-BP metabolism involving debromination. Research objectives were to evaluate the utility of urinary N-acetyl-S-(n-propyl)-L-cysteine (AcPrCys) for assessing exposure to 1-BP and compare it to urinary bromide [Br((-))] previously reported for these workers. Forty-eight-hour urine specimens were obtained from 30 workers at two factories where 1-BP spray adhesives were used to construct polyurethane foam seat cushions. Urine specimens were also obtained from 21 unexposed control subjects. All the workers' urine was collected into composite samples representing three time intervals: at work, after work but before bedtime, and upon awakening. Time-weighted average (TWA) geometric mean breathing zone concentrations were 92.4 and 10.5 p.p.m. for spraying and non-spraying jobs, respectively. Urinary AcPrCys showed the same trend as TWA exposures to 1-BP: higher levels were observed for sprayers. Associations of AcPrCys concentrations, adjusted for creatinine, with 1-BP TWA exposure were statistically significant for both sprayers (P < 0.05) and non-sprayers (P < 0.01). Spearman correlation coefficients for AcPrCys and Br((-)) analyses determined from the same urine specimens were highly correlated (P < 0.0001). This study confirms that urinary AcPrCys is an important 1-BP metabolite and an effective biomarker for highly exposed foam cushion workers.
Collapse
Affiliation(s)
- Kevin W Hanley
- Division of Surveillance, Hazard Evaluations and Field Studies, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, Ohio, USA.
| | | | | | | |
Collapse
|
15
|
Yoshida Y, Nakano Y, Ueno S, Liu J, Fueta Y, Ishidao T, Kunugita N, Yanagihara N, Sugiura T, Hori H, Yamashita U. Effects of 1-bromopropane, a substitute for chlorofluorocarbons, on BDNF expression. Int Immunopharmacol 2009; 9:433-8. [PMID: 19189864 DOI: 10.1016/j.intimp.2009.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 12/31/2008] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
Abstract
1-Bromopropane (1-BP) has been widely used as an alternative to ozone-depleting chlorofluorocarbons in various industries. Although the neurotoxicity of 1-BP has been recently reported, there is little information about the effect of 1-BP on the cells in brain by experimental approach. Here we studied the effect of 1-BP on brain-derived neurotrophic factor (BDNF) expression in astrocytes in vitro. The BDNF mRNA level was remarkably decreased by 1-BP in a human astrocytoma cell line, U251, and in mouse primary astrocytes. The DNA-binding and specific reporter activity of cAMP response element-binding transcription factor (CREB), which is one of the key molecules regulating BDNF expression, were reduced by 1-BP in U251 and/or mouse primary astrocytes. Additionally, protein kinase A (PKA) activity was suppressed by 1-BP in U251. These results suggest that BDNF expression was affected by 1-BP through at least PKA.
Collapse
Affiliation(s)
- Yasuhiro Yoshida
- Department of Immunology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Majersik JJ, Caravati EM, Steffens JD. Severe neurotoxicity associated with exposure to the solvent 1-bromopropane (n-propyl bromide). Clin Toxicol (Phila) 2008; 45:270-6. [PMID: 17453879 DOI: 10.1080/15563650701226218] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND 1-bromopropane was recently substituted for traditional ozone-depleting solvents in the industrial setting. CASE SERIES We report a cohort of six cases of 1-bromopropane neurotoxicity occurring in foam cushion gluers exposed to 1-bromopropane vapors from spray adhesives. Patients 1-5 were exposed 30-40 hours per week over three years; patient 6 had been employed for the previous three months. Exposure had peaked over the previous month when ventilatory fans were turned off. All patients complained of subacute onset of lower extremity pain or paresthesias. Five of six complained of difficulty walking and on examination had spastic paraparesis, distal sensory loss, and hyperreflexia. Three patients initially had nausea and headache. Serum bromide concentrations ranged from 44 to 170 mg/dL (reference 0-40 mg/dL). Apparent hyperchloremia was present with serum chloride concentrations of 105 to 139 mmol/L (reference 98-107 mmol/L). Air samples taken at the workplace during gluing operations revealed the mean air concentration of 1-bromopropane to be 130 ppm (range 91-176 ppm) with a seven hour time-weighted average of 108 ppm (range 92-127 ppm), well above the EPA-proposed limit of 25 ppm. Two years after exposure, the two most severely affected patients had minimal improvement of function and they, with a third patient, continued to experience chronic neuropathic pain. CONCLUSION This report supports the growing recognition of 1-bromopropane neurotoxicity in humans consisting most commonly of headache, nausea, and subacute spastic paraparesis with distal sensory loss. The pathogenesis of 1-BP neurotoxicity in humans has yet to be fully elucidated but may reflect a central distal axonopathy syndrome.
Collapse
|
17
|
Han EH, Hwang YP, Lee KJ, Jeong TC, Jeong HG. 1-Bromopropane induces macrophage activation via extracellular signal-regulated kinase 1/2 MAPK and NF-κB pathways. Cancer Lett 2008; 262:28-36. [DOI: 10.1016/j.canlet.2007.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 11/28/2022]
|
18
|
Raymond LW, Ford MD. Severe Illness in Furniture Makers Using a New Glue: 1-Bromopropane Toxicity Confounded by Arsenic. J Occup Environ Med 2007; 49:1009-19. [PMID: 17848857 DOI: 10.1097/jom.0b013e318145b616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To describe the illnesses of four workers with high concentrations of serum bromide after exposure to glue containing 1-bromopropane (1-BP). METHODS We reviewed all available clinical records, examined the workers, and obtained additional urinary arsenic values. We used standard autoanalyzer and other routine methods for blood and urinalysis. RESULTS All four workers had symptoms and abnormal physical findings when hospitalized, remaining symptomatic with abnormal examinations 3 months later. Milder symptoms persisted in two workers, 8 years after their initial illnesses. Both have returned to work. Follow-up was unavailable for the other two workers. CONCLUSIONS Severe illness occurred in four gluers after 1-BP exposures associated with elevated levels of serum bromide. All had elevated urinary arsenic concentrations, the source of which remains unknown, but which confound interpretation of the abnormal bromide levels and clinical findings present during the acute illnesses.
Collapse
Affiliation(s)
- Lawrence W Raymond
- Carolinas Poison Center and Department of Family Medicine, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | |
Collapse
|
19
|
Furuhashi K, Kitoh J, Tsukamura H, Maeda KI, Wang H, Li W, Ichihara S, Nakajima T, Ichihara G. Effects of exposure of rat dams to 1-bromopropane during pregnancy and lactation on growth and sexual maturation of their offspring. Toxicology 2006; 224:219-28. [PMID: 16777312 DOI: 10.1016/j.tox.2006.04.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Revised: 04/27/2006] [Accepted: 04/28/2006] [Indexed: 11/20/2022]
Abstract
1-Bromopropane (1-BP) exhibits neuroreproductive toxicities in adult rats and humans. Here, we determined the effects of exposure of rat dams to 1-BP during pregnancy and lactation on the growth and sexual maturation of their offspring. In Experiment 1, 40 rats were exposed to 0, 100, 400 and 800ppm 1-BP during pregnancy and lactation for 8h/day. Ten rats that were not placed in chambers throughout the experiment served to observe the effect of separation of dams from offspring. In Experiment 2, three groups of 10 pregnant rats each were exposed to fresh air in three chambers and 10 other rats were exposed to 800ppm 1-BP during pregnancy and lactation for 8h/day. After delivery, offspring of the exposed and non-exposed dams were swapped so that they were nursed by the opposite dams. In Experiment 1, the survival rate and body weight of offspring were lower than the non-exposed in 1-BP dose-dependent manner. In Experiment 2, the survival rate and body weight of offspring (Group A) nursed by exposed dams and those (Group B) of exposed dams were significantly lower than non-exposed groups. The body weight of Group A was lower than that of Group B, although the two groups showed a significant equal decrease in the survival rate. The number of dead offspring from Group A was significantly higher. Our results indicate that exposure to 1-BP during pregnancy and lactation has comparable effects on survival rate, but exposure during lactation has a more adverse effect on growth of offspring than that during pregnancy. Moreover, exposure during lactation is associated with reduced early survival of third generation (F2) rats.
Collapse
Affiliation(s)
- Koichi Furuhashi
- Department of Occupational and Environmental Health, Field of Social Life Science, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yoshida Y, Liu JQ, Nakano Y, Ueno S, Ohmori S, Fueta Y, Ishidao T, Kunugita N, Yamashita U, Hori H. 1-BP inhibits NF-kappaB activity and Bcl-xL expression in astrocytes in vitro and reduces Bcl-xL expression in the brains of rats in vivo. Neurotoxicology 2006; 28:381-6. [PMID: 16815550 DOI: 10.1016/j.neuro.2006.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 04/04/2006] [Accepted: 05/23/2006] [Indexed: 01/15/2023]
Abstract
1-Bromopropane (1-BP) has been widely used as a substitute for chlorofluorocarbon that destroys the ozone layer. Although the central neurotoxicity of 1-BP has been recently reported, a molecular mechanism is not clear. In particular, the effects on cells in brain have not been fully analyzed. Here, we studied the effects of 1-BP on the activation of transcription factors involved in anti-apoptotic function or cell survival in astrocytes. Astrocytoma cell lines, U251, U373 and VM, or murine primary astrocytes were used for in vitro assay. DNA binding activities of NF-kappaB in these cells induced by interleukin (IL)-1 or LPS were inhibited by 1-BP. Consequently, the treatment of U251 cells with 1-BP resulted in suppression of NF-kappaB reporter activity. Furthermore, 1-BP blocked IkappaBalpha degradation, which is important for NF-kappaB activation. In addition, the level of Bcl-xL mRNA, which is known as an anti-apoptotic gene, were reduced in U251 treated with 1-BP or in the brain from rat exposed to 1-BP (400 ppm, 12 weeks). These results suggest that subchronic inhalation exposure to 1-BP vapor may affect the Bcl-xL expression in astrocytes.
Collapse
Affiliation(s)
- Y Yoshida
- Department of Immunology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Kitakyushu 807-8555, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Toraason M, Lynch DW, DeBord DG, Singh N, Krieg E, Butler MA, Toennis CA, Nemhauser JB. DNA damage in leukocytes of workers occupationally exposed to 1-bromopropane. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 603:1-14. [PMID: 16412685 DOI: 10.1016/j.mrgentox.2005.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 08/30/2005] [Accepted: 08/31/2005] [Indexed: 11/23/2022]
Abstract
1-bromopropane (1-BP; n-propyl bromide) (CAS No. 106-94-5) is an alternative to ozone-depleting chlorofluorocarbons that has a variety of potential applications as a degreasing agent for metals and electronics, and as a solvent vehicle for spray adhesives. Its isomer, 2-brompropane (2-BP; isopropyl bromide) (CAS No. 75-26-3) impairs antioxidant cellular defenses, enhances lipid peroxidation, and causes DNA damage in vitro. The present study had two aims. The first was to assess DNA damage in human leukocytes exposed in vitro to 1- or 2-BP. DNA damage was also assessed in peripheral leukocytes from workers with occupational exposure to 1-BP. In the latter assessment, start-of- and end-of-work week blood and urine samples were collected from 41 and 22 workers at two facilities where 1-BP was used as a solvent for spray adhesives in foam cushion fabrication. Exposure to 1-BP was assessed from personal-breathing zone samples collected for 1-3 days up to 8h per day for calculation of 8h time weighted average (TWA) 1-BP concentrations. Bromide (Br) was measured in blood and urine as a biomarker of exposure. Overall, 1-BP TWA concentrations ranged from 0.2 to 271 parts per million (ppm) at facility A, and from 4 to 27 ppm at facility B. The highest exposures were to workers classified as sprayers. 1-BP TWA concentrations were statistically significantly correlated with blood and urine Br concentrations. The comet assay was used to estimate DNA damage. In vitro, 1- or 2-BP induced a statistically significant increase in DNA damage at 1mM. In 1-BP exposed workers, start-of- and end-of-workweek comet endpoints were stratified based on job classification. There were no significant differences in DNA damage in leukocytes between workers classified as sprayers (high 1-BP exposure) and those classified as non-sprayers (low 1-BP exposure). At the facility with the high exposures, comparison of end-of-week values with start-of-week values using paired analysis revealed non-sprayers had significantly increased comet tail moments, and sprayers had significantly increased comet tail moment dispersion coefficients. A multivariate analysis included combining the data sets from both facilities, log transformation of 1-BP exposure indices, and the use of multiple linear regression models for each combination of DNA damage and exposure indices including exposure quartiles. The covariates were gender, age, smoking status, facility, and glutathione S-transferase M1 and T1 (GSTM1, GSTT1) polymorphisms. In the regression models, start-of-week comet tail moment in leukocytes was significantly associated with serum Br quartiles. End-of-week comet tail moment was significantly associated with 1-BP TWA quartiles, and serum Br quartiles. Gender, facility, and GSTM1 had a significant effect in one or more models. Additional associations were not identified from assessment of dispersion coefficients. In vitro and in vivo results provide limited evidence that 1-BP exposure may pose a small risk for increasing DNA damage.
Collapse
Affiliation(s)
- Mark Toraason
- National Institute for Occupational Safety and Health, 4676 Columbia Parkway, Cincinnati, OH 45226, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ichihara G. Neuro-reproductive toxicities of 1-bromopropane and 2-bromopropane. Int Arch Occup Environ Health 2004; 78:79-96. [PMID: 15812677 DOI: 10.1007/s00420-004-0547-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 06/25/2004] [Indexed: 10/26/2022]
Abstract
2-Bromopropane was used as an alternative to chlorofluorocarbons in a Korean electronics factory and caused reproductive and hematopoietic disorders in male and female workers. This causality was revealed by animal studies, and target cells were identified in subsequent studies. After identification of 2-bromopropane toxicity, 1-bromopropane was introduced to the workplace as a new alternative to ozone-depleting solvents. 1-Bromopropane was considered less mutagenic than 2-bromopropane, but, in contrast, animal experiments revealed that 1-bromopropane is a potent neurotoxic compound compared with 2-bromopropane. It was also revealed that 1-bromopropane has reproductive toxicity, but the target cells are different from those of 2-bromopropane. Exposure to 1-bromopropane inhibits spermiation in male rats and disrupts the development of follicles in female rats, in contrast to 2-bromopropane, which targets spermatogonia and oocytes in primordial follicles. After the first animal study describing the neurotoxicity of 1-bromopropane, human cases were reported. Those cases showed decreased sensation of vibration and perception, paresthesia in the lower extremities, decreased sensation in the ventral aspects of the thighs and gluteal regions, stumbling and headache, as well as mucosal irritation, as the initial symptoms. The dose-response of bromopropanes in humans and mechanism(s) underlying the differences in the toxic effects of the two bromopropanes remain to be determined.
Collapse
Affiliation(s)
- Gaku Ichihara
- Occupational and Environmental Health, Social Life Science, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
23
|
Luderer U, Bushley A, Stover BD, Bremner WJ, Faustman EM, Takaro TK, Checkoway H, Brodkin CA. Effects of occupational solvent exposure on reproductive hormone concentrations and fecundability in men. Am J Ind Med 2004; 46:614-26. [PMID: 15551391 DOI: 10.1002/ajim.20100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Little is known about the effects of organic solvents on male reproductive health. To assess fertility and reproductive endocrine function in solvent-exposed men, we investigated time-to-pregnancy using a retrospective cohort design and cross-sectionally measured reproductive hormone concentrations in painters and millwrights compared to a reference group of carpenters. METHODS Detailed occupational, exposure, medical, and time-to-pregnancy histories were obtained by telephone interview. Plasma luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone concentrations were determined by immunoassay. Exposure indices, which summarized working life exposure to total solvents, chlorinated solvents, aromatic solvents, and thinners, degreasers, varnishes, and adhesives as a category were calculated from exposure histories. RESULTS FSH concentrations increased significantly with increasing exposure indices for all solvents and for chlorinated solvents. There were no significant associations of solvent exposure indices with LH or testosterone levels. LH, FSH, and testosterone concentrations also did not differ by job title. Using Cox regression, time-to-pregnancy was non-significantly longer in the painters and millwrights than the carpenters. There was no significant association between time-to-pregnancy and any of the solvent exposure indices; however, it should be noted that some of the pregnancies occurred more than 20 years previously, potentially reducing the reliability of the retrospectively collected pregnancy and exposure data. CONCLUSIONS The significant associations between FSH levels and solvent exposure indices suggest the potential for adverse effects of solvent exposures on reproductive function in men.
Collapse
Affiliation(s)
- Ulrike Luderer
- Division of Occupational and Environmental Medicine, Department of Medicine, University of California, Irvine, California 92617, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Boekelheide K, Darney SP, Daston GP, David RM, Luderer U, Olshan AF, Sanderson WT, Willhite CC, Woskie S. NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of 2-bromopropane. Reprod Toxicol 2004; 18:189-217. [PMID: 15019719 DOI: 10.1016/j.reprotox.2003.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Ichihara G, Li W, Shibata E, Ding X, Wang H, Liang Y, Peng S, Itohara S, Kamijima M, Fan Q, Zhang Y, Zhong E, Wu X, Valentine WM, Takeuchi Y. Neurologic abnormalities in workers of a 1-bromopropane factory. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:1319-25. [PMID: 15345346 PMCID: PMC1247523 DOI: 10.1289/ehp.6995] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Accepted: 06/30/2004] [Indexed: 05/24/2023]
Abstract
We reported recently that 1-bromopropane (1-BP; n-propylbromide, CAS Registry no. 106-94-5), an alternative to ozone-depleting solvents, is neurotoxic and exhibits reproductive toxicity in rats. The four most recent case reports suggested possible neurotoxicity of 1-BP in workers. The aim of the present study was to establish the neurologic effects of 1-BP in workers and examine the relationship with exposure levels. We surveyed 27 female workers in a 1-BP production factory and compared 23 of them with 23 age-matched workers in a beer factory as controls. The workers were interviewed and examined by neurologic, electrophysiologic, hematologic, biochemical, neurobehavioral, and postural sway tests. 1-BP exposure levels were estimated with passive samplers. Tests with a tuning fork showed diminished vibration sensation of the foot in 15 workers exposed to 1-BP but in none of the controls. 1-BP factory workers showed significantly longer distal latency in the tibial nerve than did the controls but no significant changes in motor nerve conduction velocity. Workers also displayed lower values in sensory nerve conduction velocity in the sural nerve, backward recalled digits, Benton visual memory test scores, pursuit aiming test scores, and five items of the Profile of Mood States (POMS) test (tension, depression, anxiety, fatigue, and confusion) compared with controls matched for age and education. Workers hired after May 1999, who were exposed to 1-BP only (workers hired before 1999 could have also been exposed to 2-BP), showed similar changes in vibration sense, distal latency, Benton test scores, and depression and fatigue in the POMS test. Time-weighted average exposure levels in the workers were 0.34-49.19 ppm. Exposure to 1-BP could adversely affect peripheral nerves or/and the central nervous system.
Collapse
Affiliation(s)
- Gaku Ichihara
- Field of Social Life Science, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ichihara G, Li W, Ding X, Peng S, Yu X, Shibata E, Yamada T, Wang H, Itohara S, Kanno S, Sakai K, Ito H, Kanefusa K, Takeuchi Y. A survey on exposure level, health status, and biomarkers in workers exposed to 1-bromopropane. Am J Ind Med 2004; 45:63-75. [PMID: 14691970 DOI: 10.1002/ajim.10320] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The aim of this study was to evaluate the health effects of exposure mainly to 1-bromopropane, which is an alternative to ozone-depleting solvents, and to establish biomarkers for assessing 1-bromopropane exposure. METHODS Twenty-four female and 13 male workers of a 1-bromopropane-factory were interviewed, and their urine and blood samples were collected. Measured parameters included 1-bromopropane levels in the factory, as well as individual exposure levels, urinary 1-bromopropane levels, enzymatic activity and M subunit's concentration of serum creatine kinase (CK). RESULTS Frequent symptoms reported by workers exposed to 1-bromopropane were nose, throat, and eyes irritation or malaise and/or headache. Urinary 1-bromopropane levels correlated significantly with individual exposure levels, but enzymatic activity or CK-M subunit did not. CONCLUSIONS The symptoms suggested irritation of the mucous membrane and possible adverse effects on the central nervous system. There were no severe chronic symptoms suggestive of neurological damage in workers exposed to less than 170 ppm. Urinary 1-bromopropane level may be a good indicator of exposure. Am. J. Ind. Med. 45:63-75, 2004.
Collapse
Affiliation(s)
- Gaku Ichihara
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim NH, Hyun SH, Jin CH, Lee SK, Lee DW, Jeon TW, Choi CB, Lee ES, Chae W, Jeong TC. Acute effects of 2-bromopropane and 1,2-dibromopropane on hepatotoxic and immunotoxic parameters in female BALB/c mice. Arch Pharm Res 2003; 26:943-50. [PMID: 14661861 DOI: 10.1007/bf02980204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the present studies, the acute toxic effects of 2-bromopropane (2-BP) and its analog, 1,2-dibromopropane (1,2-DBP), were investigated in female BALB/c mice. The mice were treated orally with either 2-BP at 2000 and 4000 mg/kg or 1,2-DBP at 300 and 600 mg/kg. Four days before necropsy, the mice were immunized intraperitoneally with sheep red blood cells (SRBCs). 1,2-DBP reduced the weights of the spleen and thymus weights and decreased the number of splenic cells. In addition, treatment with 1,2-DBP suppressed the antibody response to SRBCs. Meanwhile, only the antibody response was significantly suppressed by treatment with 2-BP. In the subsequent studies, the time course effects of 2-BP and 1,2-DBP on the hepatotoxic parameters were compared in female BALB/c mice. When mice were treated orally with either one of these chemicals for 6, 12, 24 and 48 h, the activities of serum alanine aminotransferase and aspartate aminotransferase elevated significantly only with 1,2-DBP 24 h after the treatment. The hepatic content of glutathione was reduced by 1,2-DBP. Meanwhile, these parameters were increased by 2-BP. The present results suggest that 1,2-DBP in the Solvent 5200 also contributes to the immnunotoxicity, although 2-BP is a major component.
Collapse
Affiliation(s)
- Nam Hee Kim
- College of Pharmacy, Yeungnam University, Kyungsan 712-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Honma T, Suda M, Miyagawa M. Inhalation of 1-bromopropane causes excitation in the central nervous system of male F344 rats. Neurotoxicology 2003; 24:563-75. [PMID: 12900070 DOI: 10.1016/s0161-813x(03)00049-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study investigates the effects of 1-bromopropane (1BP) on animal behavior to determine the extent of toxicity to the central nervous system (CNS). We measured the spontaneous locomotor activity (SLA) of rats before and after 3 weeks of exposure to 1BP for 8 h per day. In control and 10 ppm groups, the SLA values were similar to pre-exposure levels on post-exposure Day 1 and thereafter. However, the SLA values in the 50 and 200 ppm groups were higher than pre-exposure levels. Open-field behavior was evaluated after exposure and freezing time decreased with exposure to increasing concentrations of 1BP. Ambulation and rearing scores in the exposed groups were higher than control values, particularly in the 50 and 200 ppm groups. The frequency of defecation and urination decreased almost dose-dependently. Exposure to 50-1000 ppm of 1BP did not affect passive avoidance behavior examined using a step-through type apparatus. The amount of time swimming in the water maze test was not affected in the controls, or groups exposed to 50 and 200 ppm 1BP, but that in the 1000 ppm group was increased compared with control. Exposure at 50-1000 ppm dose-dependently decreased the traction performance of rats, indicating decreased muscle strength. We found that 10-200 ppm of 1BP exposure did not affect motor coordination determined by rota-rod performance. The increased SLA values and open-field activity support the notion that 1BP has excitatory effects on the CNS of F344 male rats. In addition, 1BP reduced the grip or muscle strength of the rats. Memory function was not disordered and the motor coordination of all four limbs remained normal.
Collapse
Affiliation(s)
- Takeshi Honma
- Department of Health Effects Research, National Institute of Industrial Health, Nagao 6-21-1, Tama-ku, Kawasaki 214-8585, Japan.
| | | | | |
Collapse
|
30
|
Fueta Y, Fukunaga K, Ishidao T, Hori H. Hyperexcitability and changes in activities of Ca2+/calmodulin-dependent kinase II and mitogen-activated protein kinase in the hippocampus of rats exposed to 1-bromopropane. Life Sci 2002; 72:521-9. [PMID: 12467892 DOI: 10.1016/s0024-3205(02)02247-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chronic inhalation of 1-bromopropane (1-BP), a substitute of ozone-depleting chlorofluorocarbons, has been suspected of having central neurotoxicity (Clinical Neurology and Neurosurgery 101 (1999) 199; Journal of Occupational Health 44 (2002) 1) for humans. In animal experiments, 1-BP inhalation (1500 ppm) caused hyperexcitability in the CA1 and the dentate gyrus (DG) [Journal of Occupational Health 42 (2000) 149, Journal of Occupational Health 44 (2002) 156]. We studied whether the hyperexcitability is associated with changes of Ca2+/calmodulin-dependent kinase II (CaMKII), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC). Male Wistar rats were exposed to 1-BP for 6 hours in a day in an exposure chamber with a concentration of 700 ppm for 8 weeks. After the inhalation, paired-pulse ratios of field excitatory postsynaptic potentials and population spikes (PSs) were analyzed in the CA1 and DG of hippocampal slices. Control rats were then given fresh air in the inhalation chamber. Semiquantitative immunoblotting analyses of protein kinases using antibodies against active and conventional protein kinases were done using the whole hippocampus. A paired-pulse ratio of PS was increased at the 5 ms interpulse interval in the CA1 and at the 10-20 ms interpulse intervals in the DG. The amount of active MAPK and total amount of CaMKIIalpha and beta were significantly increased by 28, 29, and 46% compared to control, respectively, without any change in PKC activity. In contrast, the amount of active CaMKIIbeta was decreased to 78%. These results suggest that modifications of intracellular signaling cascades are associated with hyperexcitability that occurred in the hippocampal formation of rats exposed to the chronic inhalation of 1-BP.
Collapse
Affiliation(s)
- Yukiko Fueta
- The First Department of Medical Technology, School of Health Sciences, University of Occupational and Environmental Health, Iseigaoka 1-1, Yahatanishi-ku, 807-8555, Kitakyushu, Japan.
| | | | | | | |
Collapse
|
31
|
Fueta Y, Ishidao T, Arashidani K, Endo YT, Hori H. Hyperexcitability of the Hippocampal CA1 and the Dentate Gyrus in Rats Subchronically Exposed to a Substitute for Chlorofluorocarbons, 1‐Bromopropane Vapor. J Occup Health 2002. [DOI: 10.1539/joh.44.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Keiichi Arashidani
- The Second Department of Environment ManagementSchool of Health Sciences
| | - Yu taka Endo
- Department of PhysiologySchool of Medicine, University of Occupational and Environmental HealthJapan
| | | |
Collapse
|
32
|
Ichihara G, Miller JK, Ziolkokwska A, Itohara S, Takeuchi Y. Neurological Disorders in Three Workers Exposed to 1‐Bromopropane. J Occup Health 2002. [DOI: 10.1539/joh.44.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Gaku Ichihara
- Department of Occupational and Environmental HealthNagoya University Graduate School of Medicine
| | | | | | - Seiichiro Itohara
- Department of Occupational and Environmental HealthNagoya University Graduate School of Medicine
| | - Yasuhiro Takeuchi
- Department of Occupational and Environmental HealthNagoya University Graduate School of Medicine
| |
Collapse
|
33
|
Jeong TC, Lee ES, Chae W, Koh WS, Kang BH, Han SS. Immunotoxic effects of 2-bromopropane in male Sprague-Dawley rats: a 28-day exposure study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2002; 65:383-394. [PMID: 11936219 DOI: 10.1080/15287390252808055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Immunotoxic effects of 2-bromopropane were investigated in male Sprague-Dawley rats. The rats were treated orally daily with 2-bromopropane at 100, 330, or 1000 mg/kg for 28 consecutive days. Four days before necropsy, the rats were immunized intravenously with sheep red blood cells (SRBCs). The body and thymus weights were significantly reduced by treatment with 2-bromopropane at the highest dose. In addition, the numbers of splenic and thymic cells were decreased by 2-bromopropane. In hematology, the numbers of white blood cells, red blood cells, and platelets were significantly reduced. Among the serum clinical parameters, the levels of chloride ion were significantly increased by 2-bromopropane. The antibody response to SRBCs was significantly suppressed at the highest dose. With immunized animals, immunophenotyping of splenic and thymic cells was performed to investigate the changes of the number of macrophages, B cells, and T cells in spleen and the number of CD4+ and CD8+ cells in thymus. The numbers of most cell types were significantly decreased in the spleen when animals were treated with 2-bromopropane at 1,000 mg/kg. Likewise, all cell types of thymus were significantly decreased by 2-bromopropane. The present results suggest that 2-bromopropane may have an immunotoxic potential in male Sprague-Dawley rats when the rats are exposed for 28 d.
Collapse
Affiliation(s)
- Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Kyungbuk, South Korea.
| | | | | | | | | | | |
Collapse
|
34
|
Zhao LX, Kim EK, Lim HT, Moon YS, Kim NH, Kim TH, Choi H, Chae W, Jeong TC, Lee ES. Synthesis, characterization and in vtro identification of N7-guanine adduct of 2-bromopropane. Arch Pharm Res 2002; 25:39-44. [PMID: 11885689 DOI: 10.1007/bf02975258] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Recently, we have reported that 2-bromopropane might have an immunotoxic potential in rats when exposed for 28 days. In the present studies, the possibility of 2i-deoxyguanosine adduct formation by 2-bromopropane was investigated in vitro to elucidate molecular mechanism of 2-bromopropane-induced immunosuppression. N7-Guanine adduct of 2'-bromopropane (i.e., N7-isopropyl guanine) was chemically synthesized and structurally characterized by analysis of UV, 1H-NMR, '3C-NMR, COSY and fast atom bombardment mass spectrometry to use as a reference material. Incubation of 2'-deoxyguanosine with an excess amount of 2-bromopropane in PBS buffer solution, pH 7.4, at 37 degrees C for 16 h, followed by a thermal hydrolysis, produced a detectable amount of N7-isopropyl guanine by an HPLC and UV analysis. The present results suggest that 2-bromopropane might form a DNA adduct in N7 position of 2'-deoxyguanosine at a physiological condition.
Collapse
Affiliation(s)
- Long-Xuan Zhao
- College of Pharmacy, Yeungnam University, Kyongsan, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|