1
|
Long T, Wu W, Wang X, Chen M. TPR is a prognostic biomarker and potential therapeutic target associated with immune infiltration in hepatocellular carcinoma. Mol Clin Oncol 2024; 20:27. [PMID: 38414509 PMCID: PMC10895467 DOI: 10.3892/mco.2024.2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 02/29/2024] Open
Abstract
Liver cancer is the fourth leading cause of cancer-related mortality worldwide and hepatocellular carcinoma (HCC) is the most common primary liver cancer. In the present study, it was demonstrated that translocated promoter region (TPR) was upregulated in tumor tissues and associated with prognosis and immune infiltration in HCC. The clinical outcome of patients with HCC with aberrant expression of TPR was examined using multiple databases, including Gene Expression Omnibus, The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression, Kaplan-Meier (KM) Plotter and Xiantao tool. The clinicopathologic characteristics of patients from TCGA database that were associated with overall survival were assessed using Cox regression and KM analysis. The potential hallmarks associated with TPR expression were further predicted by Metascape and Gene Set Enrichment Analysis, and the relationship between TPR and immune infiltration was explored using the Tumor-Immune System Interactions Database and the Tumor Immune Estimation Resource. The results demonstrated that TPR expression was higher in HCC and its overexpression was associated with a worse prognosis, alongside a correlation with several clinical features. Furthermore, cell differentiation, a prospective new hallmark of cancer, was differentially enriched in the high TPR expression phenotype pathway. Moreover, TPR may also modulate the tumor immune microenvironment as it was significantly associated with immunoregulators and chemokines, as well as different tumor infiltration immune cells. According to the in vitro experiments, TPR silencing inhibited the phosphorylation of AKT and the proliferation of HCC cells. In summary, TPR may be a new marker and target for HCC therapy.
Collapse
Affiliation(s)
- Teng Long
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Weijie Wu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Xin Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Minshan Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
2
|
Boumendil C, Hari P, Olsen KCF, Acosta JC, Bickmore WA. Nuclear pore density controls heterochromatin reorganization during senescence. Genes Dev 2019; 33:144-149. [PMID: 30692205 PMCID: PMC6362808 DOI: 10.1101/gad.321117.118] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
During oncogene-induced senescence (OIS), heterochromatin is lost from the nuclear periphery and forms internal senescence-associated heterochromatin foci (SAHFs). We show that an increased nuclear pore density during OIS is responsible for SAHF formation. In particular, the nucleoporin TPR is necessary for both formation and maintenance of SAHFs. Loss of SAHFs does not affect cell cycle arrest but abrogates the senescence-associated secretory phenotype-a program of inflammatory cytokine gene activation. Our results uncover a previously unknown role of nuclear pores in heterochromatin reorganization in mammalian nuclei and demonstrate the importance of heterochromatin organization for a specific gene activation program.
Collapse
Affiliation(s)
- Charlene Boumendil
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Priya Hari
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Karl C F Olsen
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Juan Carlos Acosta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Wendy A Bickmore
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
3
|
McCloskey A, Ibarra A, Hetzer MW. Tpr regulates the total number of nuclear pore complexes per cell nucleus. Genes Dev 2018; 32:1321-1331. [PMID: 30228202 PMCID: PMC6169833 DOI: 10.1101/gad.315523.118] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/23/2018] [Indexed: 01/16/2023]
Abstract
In this study, McCloskey et al. investigated the underlying mechanisms that control how many nuclear transport channels are assembled into a given nuclear envelope. Their results show that depletion of the NPC basket protein Tpr, but not Nup153, dramatically increases the total NPC number in various cell types and provide insight into a critical role of the nucleoporin Tpr in coordinating signal transduction pathways during cell proliferation and the dynamic organization of the nucleus. The total number of nuclear pore complexes (NPCs) per nucleus varies greatly between different cell types and is known to change during cell differentiation and cell transformation. However, the underlying mechanisms that control how many nuclear transport channels are assembled into a given nuclear envelope remain unclear. Here, we report that depletion of the NPC basket protein Tpr, but not Nup153, dramatically increases the total NPC number in various cell types. This negative regulation of Tpr occurs via a phosphorylation cascade of extracellular signal-regulated kinase (ERK), the central kinase of the mitogen-activated protein kinase (MAPK) pathway. Tpr serves as a scaffold for ERK to phosphorylate the nucleoporin (Nup) Nup153, which is critical for early stages of NPC biogenesis. Our results reveal a critical role of the Nup Tpr in coordinating signal transduction pathways during cell proliferation and the dynamic organization of the nucleus.
Collapse
Affiliation(s)
- Asako McCloskey
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92130, USA
| | - Arkaitz Ibarra
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92130, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92130, USA
| |
Collapse
|
4
|
Qiu XH, Li F, Cao HQ, Shao JJ, Mei JG, Li HQ, Zhai YP. Activity of fibroblast growth factor receptor inhibitors TKI258, ponatinib and AZD4547 against TPR‑FGFR1 fusion. Mol Med Rep 2017; 15:1024-1030. [PMID: 28138694 PMCID: PMC5367333 DOI: 10.3892/mmr.2017.6140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
8p11 myeloproliferative syndrome (EMS) is a rare disease characterized by the constitutive activation of fibroblast growth factor receptor 1 (FGFR1). To date, four cases of EMS with the chromosomal translocation, t(1;8)(q25;p11.2), have been reported. In the present study, TPR-FGFR1-expressing Baf3 cells were established and confirmed by polymerase chain reaction. To identify the most promising drug for EMS, the activities and associated mechanism of three tyrosine kinase inhibitors (TKIs), TKI258, ponatinib and AZD4547, against TPR-FGFR1 were tested by MTT assay, flow cytometry and western blot. The data demonstrated that TPR-FGFR1 was localized in the cytoplasm, and was able to transform interleukin-3-dependent hematopoietic Baf3 cells into growth factor-independent cells. All of the three TKIs markedly inhibited the proliferation of TPR-FGFR1-expressing Baf3 cells, and the activation of FGFR1 and the downstream signaling molecules, extracellular signal-regulated kinase 1/2, phospholipiase Cγ and signal transducer and activator of transcription 5. AZD4547 was the most efficient drug, and TKI258 was the least. By contrast, no significant difference was found among the three drugs on their effect on cell apoptosis. Taken together, the data obtained in the present study suggested that AZD4547 had increased potency, compared with TKI258 and ponatinib, for the treatment of EMS.
Collapse
Affiliation(s)
- Xu-Hua Qiu
- Department of Hematology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Feng Li
- Department of Hematology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Hong-Qin Cao
- Department of Hematology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Jing-Jing Shao
- Department of Hematology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Jian-Gang Mei
- Department of Hematology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Han-Qing Li
- Department of Hematology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| | - Yong-Ping Zhai
- Department of Hematology, Jinling Hospital, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
5
|
Castillo P, Cetina AF, Méndez-Tenorio A, Espinoza-Fonseca LM, Barrón BL. Papillomavirus binding factor (PBF) is an intrinsically disordered protein with potential participation in osteosarcoma genesis, in silico evidence. Theor Biol Med Model 2014; 11:51. [PMID: 25471943 PMCID: PMC4265421 DOI: 10.1186/1742-4682-11-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/21/2014] [Indexed: 11/17/2022] Open
Abstract
Background Papillomavirus binding factor (PBF) or zinc finger protein 395 is a transcription factor associated to a poor prognosis in patients with osteosarcoma, an aggressive bone cancer that predominantly affects adolescents. To investigate the role of the PBF protein in the osteosarcoma genesis, in this paper we present the bioinformatics analysis of physicochemical properties of PBF and its probable interactions with several key cellular targets. Results The physicochemical characteristics determined to PBF, disorder-promoting amino acids, flexibility, hydrophobicity, prediction of secondary and tertiary structures and probability to be crystallized, supported that this protein can be considered as an intrinsically disordered protein (IDP), with a zinc finger-like domain. The in silico analysis to find out PBF interactions with cellular factors, confirmed the experimentally demonstrated interaction of PBF with two key cellular proteins involved in regulation of cellular apoptosis, 14-3-3β and Scythe/BAT3 proteins. Furthermore, other interactions were found with proteins like HDAC1 and TPR which are known to be deregulated in several cancers. Experimental confirmation of specific interactions will contribute to understand the osteosarcoma process and might lead to the identification of new targets for diagnosis and treatments. Conclusions According to the in silico PBF analyses, this protein can be considered as an IDP capable to bind several key cellular factors, and these interactions might play an important role in the osteosarcoma process.
Collapse
Affiliation(s)
| | | | | | | | - Blanca L Barrón
- Department of Microbiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Carpio y Plan de Ayala S/N, Casco de Santo Tomás, México, DF 11340, México.
| |
Collapse
|
6
|
Roles of the Nucleoporin Tpr in Cancer and Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 773:309-22. [DOI: 10.1007/978-1-4899-8032-8_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Snow CJ, Dar A, Dutta A, Kehlenbach RH, Paschal BM. Defective nuclear import of Tpr in Progeria reflects the Ran sensitivity of large cargo transport. ACTA ACUST UNITED AC 2013; 201:541-57. [PMID: 23649804 PMCID: PMC3653351 DOI: 10.1083/jcb.201212117] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nuclear transport of large protein cargoes such as Tpr is more sensitive to the alteration of the ratio of nuclear to cytoplasmic Ran that occurs in Progeria. The RanGTPase acts as a master regulator of nucleocytoplasmic transport by controlling assembly and disassembly of nuclear transport complexes. RanGTP is required in the nucleus to release nuclear localization signal (NLS)–containing cargo from import receptors, and, under steady-state conditions, Ran is highly concentrated in the nucleus. We previously showed the nuclear/cytoplasmic Ran distribution is disrupted in Hutchinson-Gilford Progeria syndrome (HGPS) fibroblasts that express the Progerin form of lamin A, causing a major defect in nuclear import of the protein, translocated promoter region (Tpr). In this paper, we show that Tpr import was mediated by the most abundant import receptor, KPNA2, which binds the bipartite NLS in Tpr with nanomolar affinity. Analyses including NLS swapping revealed Progerin did not cause global inhibition of nuclear import. Rather, Progerin inhibited Tpr import because transport of large protein cargoes was sensitive to changes in the Ran nuclear/cytoplasmic distribution that occurred in HGPS. We propose that defective import of large protein complexes with important roles in nuclear function may contribute to disease-associated phenotypes in Progeria.
Collapse
Affiliation(s)
- Chelsi J Snow
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | | | |
Collapse
|
8
|
David-Watine B. Silencing nuclear pore protein Tpr elicits a senescent-like phenotype in cancer cells. PLoS One 2011; 6:e22423. [PMID: 21811608 PMCID: PMC3139644 DOI: 10.1371/journal.pone.0022423] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tpr is a large coiled-coil protein located in the nuclear basket of the nuclear pore complex for which many different functions were proposed from yeast to human. METHODOLOGY/PRINCIPAL FINDINGS Here we show that depletion of Tpr by RNA interference triggers G0-G1 arrest and ultimately induces a senescent-like phenotype dependent on the presence of p53. We also found that Tpr depletion impairs the NES [nuclear export sequence]-dependent nuclear export of proteins and causes partial co-depletion of Nup153. In addition Tpr depletion impacts on level and function of the SUMO-protease SENP2 thus affecting SUMOylation regulation at the nuclear pore and overall SUMOylation in the cell. CONCLUSIONS Our data for the first time provide evidence that a nuclear pore component plays a role in controlling cellular senescence. Our findings also point to new roles for Tpr in the regulation of SUMO-1 conjugation at the nuclear pore and directly confirm Tpr involvement in the nuclear export of NES-proteins.
Collapse
Affiliation(s)
- Brigitte David-Watine
- Institut Pasteur, CNRS URA2582, Groupe E3 Biologie Cellulaire du Noyau, Paris, France.
| |
Collapse
|
9
|
The defective nuclear lamina in Hutchinson-gilford progeria syndrome disrupts the nucleocytoplasmic Ran gradient and inhibits nuclear localization of Ubc9. Mol Cell Biol 2011; 31:3378-95. [PMID: 21670151 DOI: 10.1128/mcb.05087-11] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mutant form of lamin A responsible for the premature aging disease Hutchinson-Gilford progeria syndrome (termed progerin) acts as a dominant negative protein that changes the structure of the nuclear lamina. How the perturbation of the nuclear lamina in progeria is transduced into cellular changes is undefined. Using patient fibroblasts and a variety of cell-based assays, we determined that progerin expression in Hutchinson-Gilford progeria syndrome inhibits the nucleocytoplasmic transport of several factors with key roles in nuclear function. We found that progerin reduces the nuclear/cytoplasmic concentration of the Ran GTPase and inhibits the nuclear localization of Ubc9, the sole E2 for SUMOylation, and of TPR, the nucleoporin that forms the basket on the nuclear side of the nuclear pore complex. Forcing the nuclear localization of Ubc9 in progerin-expressing cells rescues the Ran gradient and TPR import, indicating that these pathways are linked. Reducing nuclear SUMOylation decreases the nuclear mobility of the Ran nucleotide exchange factor RCC1 in vivo, and the addition of SUMO E1 and E2 promotes the dissociation of RCC1 and Ran from chromatin in vitro. Our data suggest that the cellular effects of progerin are transduced, at least in part, through reduced function of the Ran GTPase and SUMOylation pathways.
Collapse
|
10
|
Meyer AJ, Almendrala DK, Go MM, Krauss SW. Structural protein 4.1R is integrally involved in nuclear envelope protein localization, centrosome-nucleus association and transcriptional signaling. J Cell Sci 2011; 124:1433-44. [PMID: 21486941 DOI: 10.1242/jcs.077883] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that 4.1R-specific depletion in human cells by RNA interference produces nuclear dysmorphology and selective mislocalization of proteins from several nuclear subcompartments. Such 4.1R-deficiency causes emerin to partially redistribute into the cytoplasm, whereas lamin A/C is disorganized at nuclear rims and displaced from nucleoplasmic foci. The nuclear envelope protein MAN1, nuclear pore proteins Tpr and Nup62, and nucleoplasmic proteins NuMA and LAP2α also have aberrant distributions, but lamin B and LAP2β have normal localizations. 4.1R-deficient mouse embryonic fibroblasts show a similar phenotype. We determined the functional effects of 4.1R-deficiency that reflect disruption of the association of 4.1R with emerin and A-type lamin: increased nucleus-centrosome distances, increased β-catenin signaling, and relocalization of β-catenin from the plasma membrane to the nucleus. Furthermore, emerin- and lamin-A/C-null cells have decreased nuclear 4.1R. Our data provide evidence that 4.1R has important functional interactions with emerin and A-type lamin that impact upon nuclear architecture, centrosome-nuclear envelope association and the regulation of β-catenin transcriptional co-activator activity that is dependent on β-catenin nuclear export.
Collapse
Affiliation(s)
- Adam J Meyer
- Department of Genome Dynamics, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
11
|
Agarwal S, Yadav SK, Dixit A. Heterologous expression of Translocated promoter region protein, Tpr, identified as a transcription factor from Rattus norvegicus. Protein Expr Purif 2011; 77:112-7. [PMID: 21216290 DOI: 10.1016/j.pep.2011.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 11/18/2022]
Abstract
Our earlier studies have demonstrated that the 35 kDa isoform of Translocated promoter region protein (Tpr) of Rattus norvegicus was able to augment c-jun transcription efficiently. Identification of direct targets that may in part downregulate c-jun transcription might prove to be an ideal target to curtail the proliferation of normal cells under pathophysiological conditions. In order to evaluate its potential as a pharmaceutical target, the protein must be produced and purified in sufficiently high yields. In the present study, we report the high level expression of Tpr protein of R. norvegicus employing heterologous host, Escherichia coli, to permit its structural characterization in great detail. We here demonstrate that the Tpr protein was expressed in soluble form and approximately 90 mg/L of the purified protein at the shake flask level could be achieved to near homogeneity using single step-metal chelate affinity chromatography. The amino acid sequence of the protein was confirmed by mass spectroscopic analysis. The highly unstable and disordered Tpr protein was imparted structural and functional stability by the addition of glycerol and it has been shown that the natively unfolded Tpr protein retains DNA binding ability under these conditions only. Thus, the present study emphasizes the significance of an efficient prokaryotic system, which results in a high level soluble expression of a DNA binding protein of eukaryotic origin. Thus, the present strategy employed for purification of the R. norvegicus Tpr protein bypasses the need for the tedious expression strategies associated with the eukaryotic expression systems.
Collapse
Affiliation(s)
- Shivani Agarwal
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
12
|
Krull S, Dörries J, Boysen B, Reidenbach S, Magnius L, Norder H, Thyberg J, Cordes VC. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 2010; 29:1659-73. [PMID: 20407419 PMCID: PMC2876962 DOI: 10.1038/emboj.2010.54] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/09/2010] [Indexed: 12/21/2022] Open
Abstract
Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel- and cone-like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC-associated protein Tpr and its large coiled coil-forming domain. RNAi-mediated loss of Tpr allowed condensing chromatin to occur all along the NE's nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub-compartment and delimiting heterochromatin distribution.
Collapse
Affiliation(s)
- Sandra Krull
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Julia Dörries
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
| | - Björn Boysen
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Sonja Reidenbach
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Lars Magnius
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Helene Norder
- Department of Virology, Swedish Institute for Infectious Disease Control, Solna, Sweden
| | - Johan Thyberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker C Cordes
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Nakano H, Funasaka T, Hashizume C, Wong RW. Nucleoporin translocated promoter region (Tpr) associates with dynein complex, preventing chromosome lagging formation during mitosis. J Biol Chem 2010; 285:10841-9. [PMID: 20133940 DOI: 10.1074/jbc.m110.105890] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Gain or loss of whole chromosomes is often observed in cancer cells and is thought to be due to aberrant chromosome segregation during mitosis. Proper chromosome segregation depends on a faithful interaction between spindle microtubules and kinetochores. Several components of the nuclear pore complex/nucleoporins play critical roles in orchestrating the rapid remodeling events that occur during mitosis. Our recent studies revealed that the nucleoporin, Rae1, plays critical roles in maintaining spindle bipolarity. Here, we show association of another nucleoporin, termed Tpr (translocated promoter region), with the molecular motors dynein and dynactin, which both orchestrate with the spindle checkpoints Mad1 and Mad2 during cell division. Overexpression of Tpr enhanced multinucleated cell formation. RNA interference-mediated knockdown of Tpr caused a severe lagging chromosome phenotype and disrupted spindle checkpoint proteins expression and localization. Next, we performed a series of rescue and dominant negative experiments to confirm that Tpr orchestrates proper chromosome segregation through interaction with dynein light chain. Our data indicate that Tpr functions as a spatial and temporal regulator of spindle checkpoints, ensuring the efficient recruitment of checkpoint proteins to the molecular motor dynein to promote proper anaphase formation.
Collapse
Affiliation(s)
- Hiroshi Nakano
- Frontier Science Organization and Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | | | | | | |
Collapse
|
14
|
Ben-Efraim I, Frosst PD, Gerace L. Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr. BMC Cell Biol 2009; 10:74. [PMID: 19835572 PMCID: PMC2770460 DOI: 10.1186/1471-2121-10-74] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/16/2009] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Tpr is a large protein with an extended coiled-coil domain that is localized within the nuclear basket of the nuclear pore complex. Previous studies 1 involving antibody microinjection into mammalian cells suggested a role for Tpr in nuclear export of proteins via the CRM1 export receptor. In addition, Tpr was found to co-immunoprecipitate with importins alpha and beta from Xenopus laevis egg extracts 2, although the function of this is unresolved. Yeast Mlp1p and Mlp2p, which are homologous to vertebrate Tpr, have been implicated in mRNA surveillance to retain unspliced mRNAs in the nucleus34. To augment an understanding of the role of Tpr in nucleocytoplasmic trafficking, we explored the interactions of recombinant Tpr with the karyopherins CRM1, importin beta and importin alpha by solid phase binding assays. We also investigated the conditions required for nuclear import of Tpr using an in vitro assay. RESULTS We found that Tpr binds strongly and specifically to importin alpha, importin beta, and a CRM1 containing trimeric export complex, and that the binding sites for importins alpha and beta are distinct. We also determined that the nuclear import of Tpr is dependent on cytosolic factors and energy and is efficiently mediated by the importin alpha/beta import pathway. CONCLUSION Based on the binding and nuclear import assays, we propose that Tpr is imported into the nucleus by the importin alpha/beta heterodimer. In addition, we suggest that Tpr can serve as a nucleoporin binding site for importin beta during import of importin beta cargo complexes and/or importin beta recycling. Our finding that Tpr bound preferentially to CRM1 in an export complex strengthens the notion that Tpr is involved in protein export.
Collapse
Affiliation(s)
- Iris Ben-Efraim
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Phyllis D Frosst
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- National Human Genome Research Institute, National Institutes of Health Bethesda, Maryland 20892, USA
| | - Larry Gerace
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 2006; 21:811-23. [PMID: 16543150 DOI: 10.1016/j.molcel.2006.02.007] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/19/2005] [Accepted: 02/02/2006] [Indexed: 11/22/2022]
Abstract
Dosage compensation in Drosophila is dependent on MSL proteins and involves hypertranscription of the male X chromosome, which ensures equal X-linked gene expression in both sexes. Here, we report the purification of enzymatically active MSL complexes from Drosophila embryos, Schneider cells, and human HeLa cells. We find a stable association of the histone H4 lysine 16-specific acetyltransferase MOF with the RNA/protein containing MSL complex as well as with an evolutionary conserved complex. We show that the MSL complex interacts with several components of the nuclear pore, in particular Mtor/TPR and Nup153. Strikingly, knockdown of Mtor or Nup153 results in loss of the typical MSL X-chromosomal staining and dosage compensation in Drosophila male cells but not in female cells. These results reveal an unexpected physical and functional connection between nuclear pore components and chromatin regulation through MSL proteins, highlighting the role of nucleoporins in gene regulation in higher eukaryotes.
Collapse
Affiliation(s)
- Sascha Mendjan
- European Molecular Biology Laboratory, Gene Expression Programme, Meyerhofstrasse 169117, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J 2005; 24:813-23. [PMID: 15692572 PMCID: PMC549612 DOI: 10.1038/sj.emboj.7600527] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 11/26/2004] [Indexed: 11/09/2022] Open
Abstract
The mRNA export adaptor Yra1p/REF contributes to nascent mRNP assembly and recruitment of the export receptor Mex67p. yra1 mutants exhibit mRNA export defects and a decrease in LacZ reporter and certain endogenous transcripts. The loss of Mlp1p/Mlp2p, two TPR-like proteins attached to nuclear pores, rescues LacZ mRNA levels and increases their appearance in the cytoplasm, without restoring bulk poly(A)+ RNA export. Chromatin immunoprecipitation, FISH and pulse-chase experiments indicate that Mlps downregulate LacZ mRNA synthesis in a yra1 mutant strain. Microarray analyses reveal that Mlp2p also reduces a subset of cellular transcripts in the yra1 mutant. Finally, we show that Yra1p genetically interacts with the shuttling mRNA-binding protein Nab2p and that loss of Mlps rescues the growth defect of yra1 and nab2 but not other mRNA export mutants. We propose that Nab2p and Yra1p are required for proper mRNP docking to the Mlp platform. Defects in Yra1p prevent mRNPs from crossing the Mlp gate and this block negatively feeds back on the transcription of a subset of genes, suggesting that Mlps link mRNA transcription and export.
Collapse
Affiliation(s)
- Patrizia Vinciguerra
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Nahid Iglesias
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Jurgi Camblong
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Daniel Zenklusen
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Françoise Stutz
- Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland
- Department of Cell Biology, Sciences III, University of Geneva, 30 Quai E Ansermet, 1211 Geneva 4, Switzerland. Tel.: +41 22 379 67 29; Fax: +41 22 379 64 42; E-mail:
| |
Collapse
|
17
|
Hase ME, Cordes VC. Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol Biol Cell 2003; 14:1923-40. [PMID: 12802065 PMCID: PMC165087 DOI: 10.1091/mbc.e02-09-0620] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2002] [Revised: 12/13/2002] [Accepted: 01/23/2003] [Indexed: 11/11/2022] Open
Abstract
Tpr is a 267-kDa protein forming coiled coil-dominated homodimers that locate at the nucleoplasmic side of the nuclear pore complex (NPC). The proteins that tether Tpr to this location are unknown. Moreover, the question whether Tpr itself might act as a scaffold onto which other NPC components need to be assembled has not been answered to date. To assess Tpr's role as an architectural element of the NPC, we have studied the sequential disassembly and reassembly of NPCs in mitotic cells, paralleled by studies of cells depleted of Tpr as a result of posttranscriptional tpr gene silencing by RNA interference (RNAi). NPC assembly and recruitment of several nucleoporins, including Nup50, Nup93, Nup96, Nup98, Nup107, and Nup153, in anaphase/early telophase is shown to precede NPC association of Tpr in late telophase. In accordance, cellular depletion of Tpr by RNAi does not forestall binding of these nucleoporins to the NPC. In a search for proteins that moor Tpr to the NPC, we have combined the RNAi approach with affinity-chromatography and yeast two-hybrid interaction studies, leading to the identification of nucleoporin Nup153 as the binding partner for Tpr. The specificity of this interaction is demonstrated by its sensitivity to Tpr amino acid substitution mutations that abolish Tpr's ability to adhere to the NPC and affect the direct binding of Tpr to Nup153. Accordingly, cellular depletion of Nup153 by RNAi is shown to result in mislocalization of Tpr to the nuclear interior. Nup153 deficiency also causes mislocalization of Nup50 but has no direct effect on NPC localization of the other nucleoporins studied in this investigation. In summary, these results render Tpr a protein only peripherally attached to the NPC that does not act as an essential scaffold for other nucleoporins.
Collapse
Affiliation(s)
- Manuela E Hase
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | |
Collapse
|
18
|
Ignacak J, Stachurska MB. The dual activity of pyruvate kinase type M2 from chromatin extracts of neoplastic cells. Comp Biochem Physiol B Biochem Mol Biol 2003; 134:425-33. [PMID: 12628374 DOI: 10.1016/s1096-4959(02)00283-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pyruvate kinase type M(2) from Morris hepatoma 7777 tumour cell nuclei and cytosol, in contrast to types L and M(2) from nuclei and cytosol of normal rat liver, shows the histone H(1) kinase activity. Moreover, in the presence of L-cysteine and without ADP it converts 2-phosphoenolpyruvate (PEP) to pyruvate while in the presence of L-arginine or L-histidine does not. L-Cysteine markedly stimulates the activity of histone H(1) kinase transferring a phosphate group from PEP to, as results suggested, the epsilon -amino group of L-lysine of histone H(1). This, L-cysteine which is known to inhibit the activity of pyruvate kinase type M(2) from neoplastic cells transfering a phosphate from PEP to ADP, can act as a control factor champing the direction of enzymatic reaction in cancer cells.
Collapse
Affiliation(s)
- Jan Ignacak
- Department of General Biochemistry, Institute of Medical Biochemistry, Collegium Medicum, Jagiellonian University, 7 Kopernika Street, 31-034 Cracow, Poland.
| | | |
Collapse
|
19
|
De Andrea M, Zannetti C, Noris E, Gariglio M, Azzimonti B, Landolfo S. The mouse interferon-inducible gene Ifi204 product interacts with the Tpr protein, a component of the nuclear pore complex. J Interferon Cytokine Res 2002; 22:1113-21. [PMID: 12513910 DOI: 10.1089/10799900260442539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have used yeast two-hybrid screening to isolate cDNA-encoding proteins interacting with the protein encoded by the interferon (IFN)-inducible gene Ifi204. Four independent overlapping clones were isolated from an NIH3T3 cDNA library. The largest clone encoded a protein (1203 amino acids in length) sharing 94% identity with the C-terminal portion of the human translocated promoter region (Tpr) protein. Northern blot analysis revealed a 7.5-kilobase mRNA present in both mouse and human cell lines. In addition, in vivo interaction was demonstrated by coimmunoprecipitation experiments. Anti-Tpr polyclonal monospecific antibodies (Ab) used for immunofluorescence staining labeled the nuclear envelope (NE) in a punctate pattern characteristic of nucleoporins and also yielded staining throughout the nuclear interior. The intranuclear Tpr occurred in apparently discrete foci. When superimposed on optical sections obtained with anti-p204 Abs, these colocalized, with the sole exception of the nucleolar compartment stained by the anti-p204 Abs only. Although the specific function of Tpr is not defined, it appears to mediate p204 translocation from the cytoplasmic to the nuclear compartment following IFN treatment.
Collapse
Affiliation(s)
- Marco De Andrea
- Department of Medical Sciences, Medical School, 28100-Novara, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Fahrenkrog B, Aebi U. The vertebrate nuclear pore complex: from structure to function. Results Probl Cell Differ 2002; 35:25-48. [PMID: 11791407 DOI: 10.1007/978-3-540-44603-3_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Birthe Fahrenkrog
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | |
Collapse
|
21
|
Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 2002; 158:63-77. [PMID: 12105182 PMCID: PMC2173022 DOI: 10.1083/jcb.200202088] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nuclear pore complex (NPC) mediates bidirectional macromolecular traffic between the nucleus and cytoplasm in eukaryotic cells. Eight filaments project from the NPC into the cytoplasm and are proposed to function in nuclear import. We investigated the localization and function of two nucleoporins on the cytoplasmic face of the NPC, CAN/Nup214 and RanBP2/Nup358. Consistent with previous data, RanBP2 was localized at the cytoplasmic filaments. In contrast, CAN was localized near the cytoplasmic coaxial ring. Unexpectedly, extensive blocking of RanBP2 with gold-conjugated antibodies failed to inhibit nuclear import. Therefore, RanBP2-deficient NPCs were generated by in vitro nuclear assembly in RanBP2-depleted Xenopus egg extracts. NPCs were formed that lacked cytoplasmic filaments, but that retained CAN. These nuclei efficiently imported nuclear localization sequence (NLS) or M9 substrates. NPCs lacking CAN retained RanBP2 and cytoplasmic filaments, and showed a minor NLS import defect. NPCs deficient in both CAN and RanBP2 displayed no cytoplasmic filaments and had a strikingly immature cytoplasmic appearance. However, they showed only a slight reduction in NLS-mediated import, no change in M9-mediated import, and were normal in growth and DNA replication. We conclude that RanBP2 is the major nucleoporin component of the cytoplasmic filaments of the NPC, and that these filaments do not have an essential role in importin alpha/beta- or transportin-dependent import.
Collapse
|
22
|
Shibata S, Matsuoka Y, Yoneda Y. Nucleocytoplasmic transport of proteins and poly(A)+ RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells 2002; 7:421-34. [PMID: 11952838 DOI: 10.1046/j.1365-2443.2002.00525.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND It is known that Tpr is a component of an intranuclear long filament which extends from the nuclear pore complex (NPC) into the nucleoplasm. Since the over-expression of the full-length of or some fragments of Tpr in living cells leads to the accumulation of poly(A)+ RNA within the nuclei, it is generally thought that a relationship exists between Tpr and the nuclear export of mRNA in mammalian cells. In contrast, the nuclear export of poly(A)+ RNA was not inhibited in a double deletion mutant of yeast Tpr homologues (Mlp1p and Mlp2p). Therefore, the precise function of Tpr remains unknown. RESULTS By microinjecting two types of polyclonal antibodies which are specific to Tpr into the cytoplasm of living mammalian interphase cells, we succeeded in reconstituting the Tpr-less nuclei. In the Tpr-less nuclei, the localization of the major components of the NPC, the nuclear import of SV40 T-NLS substrates and the nuclear export of HIV Rev NES-substrates were not affected. However poly(A)+ RNA accumulated in the non-snRNP splicing factor SC35-positive clusters, which became larger in size and fewer in number, compared with normal nuclei. CONCLUSION These results indicate that Tpr plays a critical role in the intranuclear dynamics of RNA pol II transcripts, including the processing, intranuclear transport and targeting, as well as their translocation through the NPC in mammalian cells.
Collapse
Affiliation(s)
- Satoshi Shibata
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
23
|
Frosst P, Guan T, Subauste C, Hahn K, Gerace L. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 2002; 156:617-30. [PMID: 11839768 PMCID: PMC2174070 DOI: 10.1083/jcb.200106046] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tpr is a coiled-coil protein found near the nucleoplasmic side of the pore complex. Since neither the precise localization of Tpr nor its functions are well defined, we generated antibodies to three regions of Tpr to clarify these issues. Using light and EM immunolocalization, we determined that mammalian Tpr is concentrated within the nuclear basket of the pore complex in a distribution similar to Nup153 and Nup98. Antibody localization together with imaging of GFP-Tpr in living cells revealed that Tpr is in discrete foci inside the nucleus similar to several other nucleoporins but is not present in intranuclear filamentous networks (Zimowska et al., 1997) or in long filaments extending from the pore complex (Cordes et al., 1997) as proposed. Injection of anti-Tpr antibodies into mitotic cells resulted in depletion of Tpr from the nuclear envelope without loss of other pore complex basket proteins. Whereas nuclear import mediated by a basic amino acid signal was unaffected, nuclear export mediated by a leucine-rich signal was retarded significantly. Nuclear injection of anti-Tpr antibodies in interphase cells similarly yielded inhibition of protein export but not import. These results indicate that Tpr is a nucleoporin of the nuclear basket with a role in nuclear protein export.
Collapse
Affiliation(s)
- Phyllis Frosst
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
24
|
Hase ME, Kuznetsov NV, Cordes VC. Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol Biol Cell 2001; 12:2433-52. [PMID: 11514627 PMCID: PMC58605 DOI: 10.1091/mbc.12.8.2433] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tpr is a protein component of nuclear pore complex (NPC)-attached intranuclear filaments. Secondary structure predictions suggest a bipartite structure, with a large N-terminal domain dominated by heptad repeats (HRs) typical for coiled-coil--forming proteins. Proposed functions for Tpr have included roles as a homo- or heteropolymeric architectural element of the nuclear interior. To gain insight into Tpr's ultrastructural properties, we have studied recombinant Tpr segments by circular dichroism spectroscopy, chemical cross-linking, and rotary shadowing electron microscopy. We show that polypeptides of the N-terminal domain homodimerize in vitro and represent alpha-helical molecules of extended rod-like shape. With the use of a yeast two-hybrid approach, arrangement of the coiled-coil is found to be in parallel and in register. To clarify whether Tpr can self-assemble further into homopolymeric filaments, the full-length protein and deletion mutants were overexpressed in human cells and then analyzed by confocal immunofluorescence microscopy, cell fractionation, and immuno-electron microscopy. Surplus Tpr, which does not bind to the NPC, remains in a soluble state of approximately 7.5 S and occasionally forms aggregates of entangled molecules but neither self-assembles into extended linear filaments nor stably binds to other intranuclear structures. Binding to the NPC is shown to depend on the integrity of individual HRs; amino acid substitutions within these HRs abrogate NPC binding and render the protein soluble but do not abolish Tpr's general ability to homodimerize. Possible contributions of Tpr to the structural organization of the nuclear periphery in somatic cells are discussed.
Collapse
Affiliation(s)
- M E Hase
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Fahrenkrog B, Stoffler D, Aebi U. Nuclear pore complex architecture and functional dynamics. Curr Top Microbiol Immunol 2001; 259:95-117. [PMID: 11417129 DOI: 10.1007/978-3-642-56597-7_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- B Fahrenkrog
- Biozentrum, M.E. Müller Institute for Structural Biology, University of Basel, 4056 Basel, Switzerland
| | | | | |
Collapse
|
26
|
Ferrando-May E, Cordes V, Biller-Ckovric I, Mirkovic J, Görlich D, Nicotera P. Caspases mediate nucleoporin cleavage, but not early redistribution of nuclear transport factors and modulation of nuclear permeability in apoptosis. Cell Death Differ 2001; 8:495-505. [PMID: 11423910 DOI: 10.1038/sj.cdd.4400837] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2000] [Revised: 12/22/2000] [Accepted: 12/29/2000] [Indexed: 11/08/2022] Open
Abstract
In eukaryotic cells, both soluble transport factors and components of the nuclear pore complex mediate protein and RNA trafficking between the nucleus and the cytoplasm. Here, we investigated whether caspases, the major execution system in apoptosis, target the nuclear pore or components of the nuclear transport machinery. Four nucleoporins, Nup153, RanBP2, Nup214 and Tpr are cleaved by caspases during apoptosis. In contrast, the nuclear transport factors, Ran, importin alpha and importin beta are not proteolytically processed, but redistribute across the nuclear envelope independently and prior to caspase activation. Also, mRNA accumulates into the nucleus before caspases become active. Microinjection experiments further revealed that early in apoptosis, the nucleus becomes permeable to dextran molecules of 70 kD molecular weight. Redistribution of import factors and mRNA, as well as nuclear permeabilisation, occur prior to caspase-mediated nucleoporin cleavage. Our findings suggest that the apoptotic programme includes modifications in the machinery responsible for nucleocytoplasmic transport, which are independent from caspase-mediated degradation of nuclear proteins.
Collapse
Affiliation(s)
- E Ferrando-May
- Chair of Molecular Toxicology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Kosova B, Panté N, Rollenhagen C, Podtelejnikov A, Mann M, Aebi U, Hurt E. Mlp2p, a component of nuclear pore attached intranuclear filaments, associates with nic96p. J Biol Chem 2000; 275:343-50. [PMID: 10617624 DOI: 10.1074/jbc.275.1.343] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fraction of the yeast nucleoporin Nic96p is localized at the terminal ring of the nuclear basket. When Nic96p was affinity purified from glutaraldehyde-treated spheroplasts, it was found to be associated with Mlp2p. Mlp2p, together with Mlp1p, are the yeast Tpr homologues, which form the nuclear pore-attached intranuclear filaments (Strambio-de-Castillia, C., Blobel, G., and Rout, M. P. (1999) J. Cell Biol. 144, 839-855). Double disruption mutants of MLP1 and MLP2 are viable and apparently not impaired in nucleocytoplasmic transport. However, overproduction of MLP1 causes nuclear accumulation of poly(A)(+) RNA in a chromatin-free area of the nucleus.
Collapse
Affiliation(s)
- B Kosova
- BZH, Biochemie-Zentrum Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Strambio-de-Castillia C, Blobel G, Rout MP. Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 1999; 144:839-55. [PMID: 10085285 PMCID: PMC2148185 DOI: 10.1083/jcb.144.5.839] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
While much has been learned in recent years about the movement of soluble transport factors across the nuclear pore complex (NPC), comparatively little is known about intranuclear trafficking. We isolated the previously identified Saccharomyces protein Mlp1p (myosin-like protein) by an assay designed to find nuclear envelope (NE) associated proteins that are not nucleoporins. We localized both Mlp1p and a closely related protein that we termed Mlp2p to filamentous structures stretching from the nucleoplasmic face of the NE into the nucleoplasm, similar to the homologous vertebrate and Drosophila Tpr proteins. Mlp1p can be imported into the nucleus by virtue of a nuclear localization sequence (NLS) within its COOH-terminal domain. Overexpression experiments indicate that Mlp1p can form large structures within the nucleus which exclude chromatin but appear highly permeable to proteins. Remarkably, cells harboring a double deletion of MLP1 and MLP2 were viable, although they showed a slower net rate of active nuclear import and faster passive efflux of a reporter protein. Our data indicate that the Tpr homologues are not merely NPC-associated proteins but that they can be part of NPC-independent, peripheral intranuclear structures. In addition, we suggest that the Tpr filaments could provide chromatin-free conduits or tracks to guide the efficient translocation of macromolecules between the nucleoplasm and the NPC.
Collapse
Affiliation(s)
- C Strambio-de-Castillia
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|