1
|
Ravishankar R, Hildebrandt ER, Greenway G, Asad N, Gore S, Dore TM, Schmidt WK. Specific Disruption of Ras2 CAAX Proteolysis Alters Its Localization and Function. Microbiol Spectr 2023; 11:e0269222. [PMID: 36602340 PMCID: PMC9927470 DOI: 10.1128/spectrum.02692-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Many CAAX proteins, such as Ras GTPase, undergo a series of posttranslational modifications at their carboxyl terminus (i.e., cysteine prenylation, endoproteolysis of AAX, and carboxylmethylation). Some CAAX proteins, however, undergo prenylation-only modification, such as Saccharomyces cerevisiae Hsp40 Ydj1. We previously observed that altering the CAAX motif of Ydj1 from prenylation-only to canonical resulted in altered Ydj1 function and localization. Here, we investigated the effects of a reciprocal change that altered the well-characterized canonical CAAX motif of S. cerevisiae Ras2 to prenylation-only. We observed that the type of CAAX motif impacted Ras2 protein levels, localization, and function. Moreover, we observed that using a prenylation-only sequence to stage hyperactive Ras2-G19V as a farnesylated and nonproteolyzed intermediate resulted in a different phenotype relative to staging by a genetic RCE1 deletion strategy that simultaneously affected many CAAX proteins. These findings suggested that a prenylation-only CAAX motif is useful for probing the specific impact of CAAX proteolysis on Ras2 under conditions where other CAAX proteins are normally modified. We propose that our strategy could be easily applied to a wide range of CAAX proteins for examining the specific impact of CAAX proteolysis on their functions. IMPORTANCE CAAX proteins are subject to multiple posttranslational modifications: cysteine prenylation, CAAX proteolysis, and carboxylmethylation. For investigations of CAAX proteolysis, this study took the novel approach of using a proteolysis-resistant CAAX sequence to stage Saccharomyces cerevisiae Ras2 GTPase in a farnesylated and nonproteolyzed state. Our approach specifically limited the effects of disrupting CAAX proteolysis to Ras2. This represented an improvement over previous methods where CAAX proteolysis was inhibited by gene knockout, small interfering RNA knockdown, or biochemical inhibition of the Rce1 CAAX protease, which can lead to pleiotropic and unclear attribution of effects due to the action of Rce1 on multiple CAAX proteins. Our approach yielded results that demonstrated specific impacts of CAAX proteolysis on the function, localization, and other properties of Ras2, highlighting the utility of this approach for investigating the impact of CAAX proteolysis in other protein contexts.
Collapse
Affiliation(s)
- Rajani Ravishankar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Emily R. Hildebrandt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Grace Greenway
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Nadeem Asad
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sangram Gore
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Timothy M. Dore
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Walter K. Schmidt
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
2
|
Bonomelli B, Busti S, Martegani E, Colombo S. Active Ras2 in mitochondria promotes regulated cell death in a cAMP/PKA pathway-dependent manner in budding yeast. FEBS Lett 2023; 597:298-308. [PMID: 36527174 DOI: 10.1002/1873-3468.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Previously, we showed that an aberrant accumulation of activated Ras in mitochondria correlates with an increase in apoptosis. In this article, we show that lack of trehalose-6P-synthase, known to trigger apoptosis in Saccharomyces cerevisiae, induces localization of active Ras proteins in mitochondria, confirming the above-mentioned correlation. Next, by characterizing the ras1Δ and ras2Δ mutants, we show that active Ras2 proteins, which accumulate in the mitochondria following addition of acetic acid (a pro-apoptotic stimulus), are likely the GTPases involved in regulated cell death, while active Ras1 proteins, constitutively localized in mitochondria, might be involved in a pro-survival molecular machinery. Finally, by characterizing the gpa2Δ and cyr1Δ mutants, in which the cAMP/PKA pathway is compromised, we show that active mitochondrial Ras proteins promote apoptosis through the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Barbara Bonomelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Enzo Martegani
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sonia Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
3
|
Lupish B, Hall J, Schwartz C, Ramesh A, Morrison C, Wheeldon I. Genome-wide CRISPR-Cas9 screen reveals a persistent null-hyphal phenotype that maintains high carotenoid production in Yarrowia lipolytica. Biotechnol Bioeng 2022; 119:3623-3631. [PMID: 36042688 PMCID: PMC9825908 DOI: 10.1002/bit.28219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
Yarrowia lipolytica is a metabolic engineering host of growing industrial interest due to its ability to metabolize hydrocarbons, fatty acids, glycerol, and other renewable carbon sources. This dimorphic yeast undergoes a stress-induced transition to a multicellular hyphal state, which can negatively impact biosynthetic activity, reduce oxygen and nutrient mass transfer in cell cultures, and increase culture viscosity. Identifying mutations that prevent the formation of hyphae would help alleviate the bioprocess challenges that they create. To this end, we conducted a genome-wide CRISPR screen to identify genetic knockouts that prevent the transition to hyphal morphology. The screen identified five mutants with a null-hyphal phenotype-ΔRAS2, ΔRHO5, ΔSFL1, ΔSNF2, and ΔPAXIP1. Of these hits, only ΔRAS2 suppressed hyphal formation in an engineered lycopene production strain over a multiday culture. The RAS2 knockout was also the only genetic disruption characterized that did not affect lycopene production, producing more than 5 mg L-1 OD-1 from a heterologous pathway with enhanced carbon flux through the mevalonate pathway. These data suggest that a ΔRAS2 mutant of Y. lipolytica could prove useful in engineering a metabolic engineering host of the production of carotenoids and other biochemicals.
Collapse
Affiliation(s)
- Brian Lupish
- Department of BioengineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Jordan Hall
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Cory Schwartz
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Present address:
iBio Inc.San DiegoCaliforniaUSA
| | - Adithya Ramesh
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Clifford Morrison
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA
| | - Ian Wheeldon
- Department of Chemical and Environmental EngineeringUniversity of CaliforniaRiversideCaliforniaUSA,Center for Industrial BiotechnologyUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
4
|
Decline in biological resilience as key manifestation of aging: Potential mechanisms and role in health and longevity. Mech Ageing Dev 2020; 194:111418. [PMID: 33340523 DOI: 10.1016/j.mad.2020.111418] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Decline in biological resilience (ability to recover) is a key manifestation of aging that contributes to increase in vulnerability to death with age eventually limiting longevity even in people without major chronic diseases. Understanding the mechanisms of this decline is essential for developing efficient anti-aging and pro-longevity interventions. In this paper we discuss: a) mechanisms of the decline in resilience with age, and aging components that contribute to this decline, including depletion of body reserves, imperfect repair mechanisms, and slowdown of physiological processes and responses with age; b) anti-aging interventions that may improve resilience or attenuate its decline; c) biomarkers of resilience available in human and experimental studies; and d) genetic factors that could influence resilience. There are open questions about optimal anti-aging interventions that would oppose the decline in resilience along with extending longevity limits. However, the area develops quickly, and prospects are exciting.
Collapse
|
5
|
Musa M, Perić M, Bou Dib P, Sobočanec S, Šarić A, Lovrić A, Rudan M, Nikolić A, Milosević I, Vlahoviček K, Raimundo N, Kriško A. Heat-induced longevity in budding yeast requires respiratory metabolism and glutathione recycling. Aging (Albany NY) 2019; 10:2407-2427. [PMID: 30227387 PMCID: PMC6188503 DOI: 10.18632/aging.101560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/13/2018] [Indexed: 01/04/2023]
Abstract
Heat-induced hormesis is a well-known conserved phenomenon in aging, traditionally attributed to the benefits conferred by increased amounts of heat shock (HS) proteins. Here we find that the key event for the HS-induced lifespan extension in budding yeast is the switch from glycolysis to respiratory metabolism. The resulting increase in reactive oxygen species activates the antioxidant response, supported by the redirection of glucose from glycolysis to the pentose phosphate pathway, increasing the production of NADPH. This sequence of events culminates in replicative lifespan (RLS) extension, implying decreased mortality per generation that persists even after the HS has finished. We found that switching to respiratory metabolism, and particularly the consequent increase in glutathione levels, were essential for the observed RLS extension. These results draw the focus away solely from the HS response and demonstrate that the antioxidant response has a key role in heat-induced hormesis. Our findings underscore the importance of the changes in cellular metabolic activity for heat-induced longevity in budding yeast.
Collapse
Affiliation(s)
- Marina Musa
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Matea Perić
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Peter Bou Dib
- University Medical Center Göttingen, Institute of Cellular Biochemistry, Göttingen, Germany
| | - Sandra Sobočanec
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Ana Šarić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Anita Lovrić
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Marina Rudan
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Andrea Nikolić
- Mediterranean Institute for Life Sciences, Split, Croatia
| | - Ira Milosević
- European Neuroscience Institute, University Medical Center Göttingen, Göttingen, Germany
| | - Kristian Vlahoviček
- University of Zagreb, Faculty of Natural Sciences and Mathematics, Zagreb, Croatia
| | - Nuno Raimundo
- University Medical Center Göttingen, Institute of Cellular Biochemistry, Göttingen, Germany
| | - Anita Kriško
- Mediterranean Institute for Life Sciences, Split, Croatia
| |
Collapse
|
6
|
Identification and Functional Testing of Novel Interacting Protein Partners for the Stress Sensors Wsc1p and Mid2p of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:1085-1102. [PMID: 30733383 PMCID: PMC6469404 DOI: 10.1534/g3.118.200985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Wsc1p and Mid2p are transmembrane signaling proteins of cell wall stress in the budding yeast Saccharomyces cerevisiae. When an environmental stress compromises cell wall integrity, they activate a cell response through the Cell Wall Integrity (CWI) pathway. Studies have shown that the cytoplasmic domain of Wsc1p initiates the CWI signaling cascade by interacting with Rom2p, a Rho1-GDP-GTP exchange factor. Binding of Rom2p to the cytoplasmic tail of Wsc1p requires dephosphorylation of specific serine residues but the mechanism by which the sensor is dephosphorylated and how it subsequently interacts with Rom2p remains unclear. We hypothesize that Wsc1p and Mid2p must be physically associated with interacting proteins other than Rom2p that facilitate its interaction and regulate the activation of CWI pathway. To address this, a cDNA plasmid library of yeast proteins was expressed in bait strains bearing membrane yeast two-hybrid (MYTH) reporter modules of Wsc1p and Mid2p, and their interacting preys were recovered and sequenced. 14 previously unreported interactors were confirmed for Wsc1p and 29 for Mid2p. The interactors’ functionality were assessed by cell growth assays and CWI pathway activation by western blot analysis of Slt2p/Mpk1p phosphorylation in null mutants of each interactor under defined stress conditions. The susceptibility of these strains to different stresses were tested against antifungal agents and chemicals. This study reports important novel protein interactions of Wsc1p and Mid2p that are associated with the cellular response to oxidative stress induced by Hydrogen Peroxide and cell wall stress induced by Caspofungin.
Collapse
|
7
|
Eleutherio E, Brasil ADA, França MB, de Almeida DSG, Rona GB, Magalhães RSS. Oxidative stress and aging: Learning from yeast lessons. Fungal Biol 2018; 122:514-525. [DOI: 10.1016/j.funbio.2017.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
8
|
Baldi S, Bolognesi A, Meinema AC, Barral Y. Heat stress promotes longevity in budding yeast by relaxing the confinement of age-promoting factors in the mother cell. eLife 2017; 6:28329. [PMID: 29283340 PMCID: PMC5771669 DOI: 10.7554/elife.28329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Although individuals of many species inexorably age, a number of observations established that the rate of aging is modulated in response to a variety of mild stresses. Here, we investigated how heat stress promotes longevity in yeast. We show that upon growth at higher temperature, yeast cells relax the retention of DNA circles, which act as aging factors in the mother cell. The enhanced frequency at which circles redistribute to daughter cells was not due to changes of anaphase duration or nuclear shape but solely to the downregulation of the diffusion barrier in the nuclear envelope. This effect depended on the PKA and Tor1 pathways, downstream of stress-response kinase Pkc1. Inhibition of these responses restored barrier function and circle retention and abrogated the effect of heat stress on longevity. Our data indicate that redistribution of aging factors from aged cells to their progeny can be a mechanism for modulating longevity.
Collapse
Affiliation(s)
- Sandro Baldi
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Alessio Bolognesi
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
9
|
Affiliation(s)
- S Michal Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido Street, Box P7-2, New Orleans, Louisiana 70112 USA
| |
Collapse
|
10
|
Yi DG, Huh WK. UDP-glucose pyrophosphorylase Ugp1 is involved in oxidative stress response and long-term survival during stationary phase in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2015; 467:657-63. [PMID: 26498530 DOI: 10.1016/j.bbrc.2015.10.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/18/2015] [Indexed: 11/17/2022]
Abstract
Ugp1, UDP-glucose pyrophosphorylase, plays an important role in carbohydrate metabolism because it provides UDP-glucose that is a pivotal metabolite in several metabolic pathways in Saccharomyces cerevisiae. In this study, we show that a considerable reduction of glycogen and trehalose content in ugp1 knockdown cells is rescued by complementing the expression of Ugp1, indicating that Ugp1 is required for the production of storage carbohydrates. Because of the specific function of trehalose as a stress protectant, Ugp1 expression contributed to oxidative stress response and long-term cell survival during stationary phase. Furthermore, the modulation of Ugp1 level readjusted glycogen and trehalose accumulation in the protein kinase A (PKA)-related gene mutants. The PKA-dependent phenotypes of oxidative stress resistance and long-term cell survival were also alleviated via adjustment of Ugp1 level. Collectively, our data suggest that the regulation of UPG1 influences several PKA-dependent processes by adjusting the levels of various carbohydrates.
Collapse
Affiliation(s)
- Dae-Gwan Yi
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Won-Ki Huh
- Department of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea; Institute of Microbiology, Seoul National University, Seoul 151-747, Republic of Korea.
| |
Collapse
|
11
|
Gutin J, Sadeh A, Rahat A, Aharoni A, Friedman N. Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response. Mol Syst Biol 2015; 11:829. [PMID: 26446933 PMCID: PMC4631200 DOI: 10.15252/msb.20156451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cells must quickly respond and efficiently adapt to environmental changes. The yeast Saccharomyces cerevisiae has multiple pathways that respond to specific environmental insults, as well as a generic stress response program. The later is regulated by two transcription factors, Msn2 and Msn4, that integrate information from upstream pathways to produce fast, tunable, and robust response to different environmental changes. To understand this integration, we employed a systematic approach to genetically dissect the contribution of various cellular pathways to Msn2/4 regulation under a range of stress and growth conditions. We established a high-throughput liquid handling and automated flow cytometry system and measured GFP levels in 68 single-knockout and 1,566 double-knockout strains that carry an HSP12-GFP allele as a reporter for Msn2/4 activity. Based on the expression of this Msn2/4 reporter in five different conditions, we identified numerous genetic and epistatic interactions between different components in the network upstream to Msn2/4. Our analysis gains new insights into the functional specialization of the RAS paralogs in the repression of stress response and identifies a three-way crosstalk between the Mediator complex, the HOG MAPK pathway, and the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Jenia Gutin
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amit Sadeh
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Ayelet Rahat
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amir Aharoni
- Department of Life Science, National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nir Friedman
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| |
Collapse
|
12
|
Jazwinski SM. The retrograde response: a conserved compensatory reaction to damage from within and from without. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 127:133-54. [PMID: 25149216 DOI: 10.1016/b978-0-12-394625-6.00005-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The retrograde response was discovered in Saccharomyces cerevisiae as a signaling pathway from the mitochondrion to the nucleus that triggers an array of gene regulatory changes in the latter. The activation of the retrograde response compensates for the deficits associated with aging, and thus it extends yeast replicative life span. The retrograde response is activated by the progressive decline in mitochondrial membrane potential during aging that is the result of increasing mitochondrial dysfunction. The ensuing metabolic adaptations and stress resistance can only delay the inevitable demise of the yeast cell. The retrograde response is embedded in a network of signal transduction pathways that impinge upon virtually every aspect of cell physiology. Thus, its manifestations are complicated. Many of these pathways have been implicated in life span regulation quite independently of the retrograde response. Together, they operate in a delicate balance in promoting longevity. The retrograde response is closely aligned with cell quality control, often performing when quality control is not sufficient to assure longevity. Among the key pathways related to this aspect of retrograde signaling are target of rapamycin and ceramide signaling. The retrograde response can also be found in other organisms, including Caenorhabditis elegans, Drosophila melanogaster, mouse, and human, where it exhibits an ever-increasing complexity that may be corralled by the transcription factor NFκB. The retrograde response may have evolved as a cytoprotective mechanism that senses and defends the organism from pathogens and environmental toxins.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Tulane Center for Aging and Department of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Kriete A. Robustness and aging--a systems-level perspective. Biosystems 2013; 112:37-48. [PMID: 23562399 DOI: 10.1016/j.biosystems.2013.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/11/2013] [Accepted: 03/15/2013] [Indexed: 12/24/2022]
Abstract
The theory of robustness describes a system level property of evolutionary systems, which predicts tradeoffs of great interest for the systems biology of aging, such as accumulation of non-heritable damage, occurrence of fragilities and limitations in performance, optimized allocation of restricted resources and confined redundancies. According to the robustness paradigm cells and organisms evolved into a state of highly optimized tolerance (HOT), which provides robustness to common perturbations, but causes tradeoffs generally characterized as "robust yet fragile". This raises the question whether the ultimate cause of aging is more than a lack of adaptation, but an inherent fragility of complex evolutionary systems. Since robustness connects to evolutionary designs, consideration of this theory provides a deeper connection between evolutionary aspects of aging, mathematical models and experimental data. In this review several mechanisms influential for aging are re-evaluated in support of robustness tradeoffs. This includes asymmetric cell division improving performance and specialization with limited capacities to prevent and repair age-related damage, as well as feedback control mechanisms optimized to respond to acute stressors, but unable to halt nor revert aging. Improvement in robustness by increasing efficiencies through cellular redundancies in larger organisms alleviates some of the damaging effects of cellular specialization, which can be expressed in allometric relationships. The introduction of the robustness paradigm offers unique insights for aging research and provides novel opportunities for systems biology endeavors.
Collapse
Affiliation(s)
- Andres Kriete
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Bossone Research Center, 3141 Chestnut St., Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Lagisz M, Hector KL, Nakagawa S. Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis. Ageing Res Rev 2013; 12:653-60. [PMID: 23570942 DOI: 10.1016/j.arr.2013.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 01/17/2023]
Abstract
Hormesis is the response of organisms to a mild stressor resulting in improved health and longevity. Mild heat shocks have been thought to induce hormetic response because they promote increased activity of heat shock proteins (HSPs), which may extend lifespan. Using data from 27 studies on 12 animal species, we performed a comparative meta-analysis to quantify the effect of heat shock exposure on longevity. Contrary to our expectations, heat shock did not measurably increase longevity in the overall meta-analysis, although we observed much heterogeneity among studies. Thus, we explored the relative contributions of different experimental variables (i.e. moderators). Higher temperatures, longer durations of heat shock exposure, increased shock repeat and less time between repeat shocks, all decreased the likelihood of a life-extending effect, as would be expected when a hormetic response crosses the threshold to being a damaging exposure. We conclude that there is limited evidence that mild heat stress is a universal way of promoting longevity at the whole-organism level. Life extension via heat-induced hormesis is likely to be constrained to a narrow parameter window of experimental conditions.
Collapse
Affiliation(s)
- Malgorzata Lagisz
- Gravida, National Centre for Growth and Development, Department of Zoology, University of Otago, P.O. Box 56, New Zealand.
| | | | | |
Collapse
|
15
|
Srinivasan V, Kriete A, Sacan A, Jazwinski SM. Comparing the yeast retrograde response and NF-κB stress responses: implications for aging. Aging Cell 2010; 9:933-41. [PMID: 20961379 DOI: 10.1111/j.1474-9726.2010.00622.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mitochondrial retrograde response has been extensively described in Saccharomyces cerevisiae, where it has been found to extend life span during times of mitochondrial dysfunction, damage or low nutrient levels. In yeast, the retrograde response genes (RTG) convey these stress responses to the nucleus to change the gene expression adaptively. Similarly, most classes of higher organisms have been shown to have some version of a central stress-mediating transcription factor, NF-κB. There have been several modifications along the phylogenetic tree as NF-κB has taken a larger role in managing cellular stresses. Here, we review similarities and differences in mechanisms and pathways between RTG genes in yeast and NF-κB as seen in more complex organisms. We perform a structural homology search and reveal similarities of Rtg proteins with eukaryotic transcription factors involved in development and metabolism. NF-κB shows more sophisticated functions when compared to RTG genes including participation in immune responses and induction of apoptosis under high levels of ROS-induced mitochondrial and nuclear DNA damage. Involvement of NF-κB in chromosomal stability, coregulation of mitochondrial respiration, and cross talk with the TOR (target of rapamycin) pathway points to a conserved mechanism also found in yeast.
Collapse
Affiliation(s)
- Visish Srinivasan
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
16
|
Barros MH, da Cunha FM, Oliveira GA, Tahara EB, Kowaltowski AJ. Yeast as a model to study mitochondrial mechanisms in ageing. Mech Ageing Dev 2010; 131:494-502. [DOI: 10.1016/j.mad.2010.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 04/19/2010] [Accepted: 04/27/2010] [Indexed: 01/08/2023]
|
17
|
Chen Q, Ding Q, Keller JN. The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration. Biogerontology 2006; 6:1-13. [PMID: 15834659 DOI: 10.1007/s10522-004-7379-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Accepted: 09/11/2004] [Indexed: 01/24/2023]
Abstract
Understanding the biochemical and genetic alterations that occur during the aging of post-mitotic cells is critical for understanding the etiology of abnormalities observed during the aging of the central nervous system (CNS). While many theories for cellular aging exist, the free radical theory of aging has proved useful in explaining multiple aspects of post-mitotic cell aging, including the aging of neuronal cells. It is well established that Saccharomyces cerevisiae are an invaluable model system for exploring the regulation of aging in actively dividing cells, but increasing evidence suggests that the chronological lifespan or stationary phase model of aging in S. cerevisiae may also be useful for understanding the aging process in post-mitotic cells. Interestingly, the stationary phase model of aging in S. cerevisiae recapitulates many pathological alterations observed during neuronal aging, including evidence for increased oxidative stress and proteasome inhibition. Studies using proteins relevant to multiple neurodegenerative conditions (prion, alpha-synuclein, huntingtin) have demonstrated the utility of S. cerevisiae as a model system for understanding the genetic regulation of protein aggregation and cell death. Taken together, these data highlight the potential importance of using S. cerevisiae as a model system with which to explore the molecular basis for neuronal alterations observed in normal brain aging as well as multiple age-related diseases of the CNS.
Collapse
Affiliation(s)
- Quinghua Chen
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, 40536-0230, USA
| | | | | |
Collapse
|
18
|
Swiegers JH, Pretorius IS, Bauer FF. Regulation of respiratory growth by Ras: the glyoxylate cycle mutant, cit2Delta, is suppressed by RAS2. Curr Genet 2006; 50:161-71. [PMID: 16832579 DOI: 10.1007/s00294-006-0084-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 05/17/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
In Saccharomyces cerevisiae the Ras/cAMP/PKA signalling pathway controls multiple metabolic pathways, and alterations in the intracellular concentrations of cAMP through modification of signalling pathway factors can be lethal or result in severe growth defects. In this work, the important role of Ras2p in metabolic regulation during growth on the non-fermentable carbon source glycerol is further investigated. The data show that the overexpression of RAS2 suppresses the growth defect of the glyoxylate cycle citrate synthase mutant, cit2Delta. The overexpression results in enhanced proliferation and biomass yield when cells are grown on glycerol as sole carbon source, and increases citrate synthase activity and intracellular citrate concentration. Interestingly, the suppression of cit2Delta and the enhanced proliferation and biomass yield are only observed when RAS2 is overexpressed and not in strains containing the constitutively active allele RAS2(val19). However, both RAS2 and RAS2(val19)upregulated citrate synthase activity. We propose that the RAS2 overexpression results in a combination of general upregulation of respiratory growth capacity and an increase in mitochondrial citrate/citrate synthases, which together, complement the metabolic requirements of the cit2Delta mutant. The data therefore provide new evidence for the role of Ras2p as a powerful modulator of metabolism during growth on a non-fermentable carbon source.
Collapse
Affiliation(s)
- Jan H Swiegers
- The Australian Wine Research Institute, Glen Osmond, Adelaide, SA, Australia.
| | | | | |
Collapse
|
19
|
Guyot S, Ferret E, Gervais P. Responses of Saccharomyces cerevisiae to thermal stress. Biotechnol Bioeng 2005; 92:403-9. [PMID: 16028292 DOI: 10.1002/bit.20600] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We studied the mechanisms involved in heat gradient-induced thermotolerance of Saccharomyces cerevisiae. Yeasts were slowly heated in a nutrient medium from 25 to 50 degrees C at 0.5 degrees C/min or immediately heat shocked at 50 degrees C, and both sets of cultures were maintained at this temperature for 1 h. Cells that had been slowly heated showed a 50-fold higher survival rate than the rapidly heated cells. Such thermotolerance was found not to be related to protein synthesis. Indeed Hsp104 a known protein involved in yeast thermal resistance induced by a preconditioning mild heat treatment, was not synthesized and cycloheximide addition, a protein synthesis inhibitor, did not affect the thermoprotective effect. Moreover, a rapid cooling from 50 to 25 degrees C applied immediately after the heat slope treatment inhibited the mechanisms involved in thermotolerance. Such observations lead us to conclude that heat gradient-induced thermal resistance is not directly linked to mechanisms involving intracellular molecules synthesis or activity such as proteins (Hsps, enzymes) or osmolytes (trehalose). Other factors such as plasma membrane phospholipid denaturation could be involved in this phenomenon.
Collapse
Affiliation(s)
- Stéphane Guyot
- Laboratoire de Génie des Procédés Alimentaires et Biotechnologiques, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, Dijon, France
| | | | | |
Collapse
|
20
|
Jazwinski SM. The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging. Gene 2005; 354:22-7. [PMID: 15890475 DOI: 10.1016/j.gene.2005.03.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 03/25/2005] [Indexed: 10/25/2022]
Abstract
Yeast can be used as a model to understand the impact mitochondria have on aging in higher organisms. Mitochondrial dysfunction increases with replicative age in yeast, and this is associated with the induction of the retrograde response. This intracellular signaling pathway from the mitochondrion to the nucleus results in changes in the expression of metabolic and stress genes, which adapt the yeast cell to the loss of tricarboxylic acid cycle activity by providing alternate anaplerotic sources of biosynthetic precursors. The induction of the retrograde response increases longevity. Paradoxically, it also leads to the production of extrachromosomal ribosomal DNA circles, which cause yeast demise. The deleterious effects of these circles are mitigated by the retrograde response, which increases longevity in part due to this effect and partly due to other activities. Rtg2p is the retrograde signal transducer proximal to the mitochondrion, and it interacts with several proteins in relaying the retrograde signal to the transcription factor Rtg1p-Rtg3p. Rtg2p also suppresses ribosomal DNA circle production. When it is engaged in retrograde signaling, it cannot fulfill the latter role. The SAGA-like SLIK complex is one of the protein complexes in which Rtg2p has been found. This histone acetyltransferase, transcriptional co-activator complex contains Gcn5p, and it potentiates the activation of retrograde responsive genes. SLIK complex integrity, and in particular Gcn5p, are needed for retrograde response extension of life span. Thus, the retrograde response through SLIK links metabolism, stress responses, chromatin-dependent gene regulation, and genome stability in yeast aging. Gene regulatory phenomena akin to the retrograde response also operate in human cells, which display both common and cell-type specific changes in gene expression on loss of mitochondrial function.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido St., Box P7-2, New Orleans, LA 70112, USA.
| |
Collapse
|
21
|
Jazwinski SM. Yeast replicative life span--the mitochondrial connection. FEMS Yeast Res 2005; 5:119-25. [PMID: 15489194 DOI: 10.1016/j.femsyr.2004.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Revised: 04/16/2004] [Accepted: 04/20/2004] [Indexed: 11/27/2022] Open
Abstract
Mitochondria have been associated with aging in many experimental systems through the damaging action of reactive oxygen species. There is more, however, to the connection between mitochondria and Saccharomyces cerevisiae longevity and aging. Induction of the retrograde response, a pathway signaling mitochondrial dysfunction, results in the extension of life span and postponement of the manifestations of aging, changing the metabolic and stress resistance status of the cell. A paradox associated with the retrograde response is the simultaneous triggering of extrachromosomal ribosomal DNA circle (ERC) production, because of the deleterious effect these circles have on yeast longevity. The retrograde response gene RTG2 appears to play a pivotal role in ERC production, linking metabolism and genome stability. In addition to mother cell aging, mitochondria are important in establishment of age asymmetry between mother and daughter cells. The results more generally point to the existence of a mechanism to "filter" damaged components from daughter cells, a form of checkpoint control. Mitochondrial integrity is affected by the PHB1 and PHB2 genes, which encode inner mitochondrial membrane chaperones called prohibitins. The Phb1/2 proteins protect the cell from imbalances in the production of mitochondrial proteins. Such imbalances appear to cause a stochastic stratification of the yeast population with the appearance of short-lived cells. Ras2p impacts this process. Maintenance of mitochondrial membrane potential and the provision of Krebs cycle intermediates for biosyntheses appear to be crucial elements in yeast longevity. In sum, it is clear that mitochondria lie at the nexus of yeast longevity and aging.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido Street, Box P7-2, New Orleans, LA 70112, USA
| |
Collapse
|
22
|
Abstract
The metabolic characteristics of a yeast cell determine its life span. Depending on conditions, stress resistance can have either a salutary or a deleterious effect on longevity. Gene dysregulation increases with age, and countering it increases life span. These three determinants of yeast longevity may be interrelated, and they are joined by a potential fourth, genetic stability. These factors can also operate in phylogenetically diverse species. Adult longevity seems to borrow features from the genetic programs of dormancy to provide the metabolic and stress resistance resources necessary for extended survival. Both compensatory and preventive mechanisms determine life span, while epigenetic factors and the element of chance contribute to the role that genes and environment play in aging.
Collapse
Affiliation(s)
- S Michal Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans 70112, USA.
| |
Collapse
|
23
|
Piper PW, Jones GW, Bringloe D, Harris N, MacLean M, Mollapour M. The shortened replicative life span of prohibitin mutants of yeast appears to be due to defective mitochondrial segregation in old mother cells. Aging Cell 2002; 1:149-57. [PMID: 12882345 DOI: 10.1046/j.1474-9728.2002.00018.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prohibitin proteins have been implicated in cell proliferation, aging, respiratory chain assembly and the maintenance of mitochondrial integrity. The prohibitins of Saccharomyces cerevisiae, Phb1 and Phb2, have strong sequence similarity with their human counterparts prohibitin and BAP37, making yeast a good model organism in which to study prohibitin function. Both yeast and mammalian prohibitins form high-molecular-weight complexes (Phb1/2 or prohibitin/BAP37, respectively) in the inner mitochondrial membrane. Expression of prohibitins declines with senescence, both in mammalian fibroblasts and in yeast. With a total loss of prohibitins, the replicative (budding) life span of yeast is reduced, whilst the chronological life span (the survival of stationary cells over time) is relatively unaffected. This effect of prohibitin loss on the replicative life span is still apparent in the absence of an assembled respiratory chain. It also does not reflect the production of extrachromosomal ribosomal DNA circles (ERCs), a genetic instability thought to be a major cause of replicative senescence in yeast. Examination of cells containing a mitochondrially targeted green fluorescent protein indicates this shortened life span is a reflection of defective mitochondrial segregation from the mother to the daughter in the old mother cells of phb mutant strains. Old mother phb mutant cells display highly aberrant mitochondrial morphology and, frequently, a delayed segregation of mitochondria to the daughter. They often arrest growth with their last bud strongly attached and with the mitochondria adjacent to the septum between the mother and the daughter cell.
Collapse
Affiliation(s)
- Peter W Piper
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Jazwinski SM, Wawryn J. Profiles of random change during aging contain hidden information about longevity and the aging process. J Theor Biol 2001; 213:599-608. [PMID: 11742528 DOI: 10.1006/jtbi.2001.2434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many different morphological and physiological changes occur during the yeast replicative lifespan. It has been proposed that change is a cause rather than an effect of aging. It is difficult to ascribe causality to processes that manifest themselves at the level of the entire organism, because of their global nature. Although causal connections can be established for processes that occur at the molecular level, their exact contributions are obscured, because they are immersed in a highly interactive network of processes. A top-down approach that can isolate crucial features of aging processes for further study may be a productive avenue. We have mathematically depicted the complicated and random changes that occur in cellular spatial organization during the lifespan of individual yeast cells. We call them budding profiles. This has allowed us to demonstrate that budding profiles are a highly individual characteristic, and that they are correlated with an individual cell's longevity. Additional information can be extracted from our model, indicating that random budding is associated with longevity. This expectation was confirmed, providing new avenues for exploring causal factors in yeast aging. The methodology described here can be readily applied to other aspects of aging in yeast and in higher organisms.
Collapse
Affiliation(s)
- S M Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA.
| | | |
Collapse
|
25
|
Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM. An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 2000; 14:2135-7. [PMID: 11024000 DOI: 10.1096/fj.00-0242fje] [Citation(s) in RCA: 270] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The yeast Saccharomyces cerevisiae has a finite life span that is measured by the number of daughter cells an individual produces. The 20 genes known to determine yeast life span appear to function in more than one pathway, implicating a variety of physiological processes in yeast longevity. Less attention has been focused on environmental effects on yeast aging. We have examined the role that nutritional status plays in determining yeast life span. Reduction of the glucose concentration in the medium led to an increase in life span and to a delay in appearance of an aging phenotype. The increase in life span was the more extensive the lower the glucose levels. Life extension was also elicited by decreasing the amino acids content of the medium. This suggests that it is the decline in calories and not a particular nutrient that is responsible, in striking similarity to the effect on aging of caloric restriction in mammals. The caloric restriction effect did not require the induction of the retrograde response pathway, which signals the functional status of the mitochondrion and determines longevity. Furthermore, deletion of RTG3, a downstream mediator in this pathway, and caloric restriction had an additive effect, resulting in the largest increase (123%) in longevity described thus far in yeast. Thus, retrograde response and caloric restriction operate along distinct pathways in determining yeast longevity. These pathways may be exclusive, at least in part. This provides evidence for multiple mechanisms of metabolic control in yeast aging. Inasmuch as caloric restriction lowers blood glucose levels, this study raises the possibility that reduced glucose alters aging at the cellular level in mammals.
Collapse
Affiliation(s)
- J C Jiang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
26
|
Jazwinski SM. Coordination of metabolic activity and stress resistance in yeast longevity. Results Probl Cell Differ 2000; 29:21-44. [PMID: 10838693 DOI: 10.1007/978-3-540-48003-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The genetic analysis of longevity in yeast has revealed the importance of metabolic control and resistance to stress in aging. It has also shown that these two physiological processes are interwoven. Molecular mechanisms underlying the longevity effects of metabolic control and stress resistance, as well as genetic stability, are emerging. The yeast RAS genes play a substantial role in coordinating at least the first two of these processes. Numerous correlates can be found between the physiological processes involved in yeast aging and aging in Caenorhabditis elegans and in Drosophila, and the dietary restriction paradigm in mammals.
Collapse
Affiliation(s)
- S M Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA
| |
Collapse
|
27
|
Franceschi C, Valensin S, Bonafè M, Paolisso G, Yashin AI, Monti D, De Benedictis G. The network and the remodeling theories of aging: historical background and new perspectives. Exp Gerontol 2000; 35:879-96. [PMID: 11053678 DOI: 10.1016/s0531-5565(00)00172-8] [Citation(s) in RCA: 246] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two general theories, i.e. "the network theory of aging" (1989) and "the remodeling theory of aging" (1995), as well as their implications, new developments, and perspectives are reviewed and discussed. Particular attention has been paid to illustrate: (i) how the network theory of aging fits with recent data on aging and longevity in unicellular organisms (yeast), multicellular organisms (worms), and mammals (mice and humans); (ii) the evolutionary and experimental basis of the remodeling theory of aging (immunological, genetic, and metabolic data in healthy centenarians, and studies on the evolution of the immune response, stress and inflammation) and its recent development (the concepts of "immunological space" and "inflamm-aging"); (iii) the profound relationship between these two theories and the data which suggest that aging and longevity are related, in a complex way, to the capability to cope with a variety of stressors.
Collapse
Affiliation(s)
- C Franceschi
- Department of Experimental Pathology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Life span in the yeast Saccharomyces cerevisiae is usually measured by the number of divisions individual cells complete. Four broad physiologic processes that determine yeast life span have been identified: metabolic control, resistance to stress, chromatin-dependent gene regulation, and genetic stability. A pathway of interorganelle communication involving mitochondria, the nucleus, and peroxisomes has provided a molecular mechanism of aging based on metabolic control. This pathway functions continuously, rather than as an on-off switch, in determining life span. The longevity gene RAS2 modulates this pathway. RAS2 also modulates a variety of other cellular processes, including stress responses and chromatin-dependent gene regulation. An optimal level of Ras2p activity is required for maximum longevity. This may be due to the integration of life maintenance processes by RAS2, which functions as a homeostatic device in yeast longevity. Loss of transcriptional silencing of heterochromatic regions of the genome is a mark of yeast aging. It is now clear that the functional status of chromatin plays an important role in aging. Changes in this functional status result in gene dysregulation, which can be altered by manipulation of the histone deacetylase genes. Silencing of ribosomal DNA appears to be of particular importance. Extrachromosomal ribosomal DNA circles are neither sufficient nor necessary for yeast aging.
Collapse
Affiliation(s)
- S M Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans 70112, USA.
| |
Collapse
|
29
|
Abstract
The genetic analysis of the yeast replicative life span has revealed the importance of metabolic control and resistance to stress. It has also illuminated the pivotal role in determining longevity that the RAS genes play by the maintenance of homeostasis. This role appears to be performed by the coordination of a variety of cellular processes. Metabolic control seems to occupy a central position among these cellular processes that include stress resistance. Some of the features of metabolic control in yeast resemble the effects of the daf pathway for adult longevity in Caenorhabditis elegans and the metabolic consequences of selection for extended longevity in Drosophila melanogaster, as well as some of the features of caloric restriction in mammals. The distinction between dividing and nondividing cells is proposed to be less important for the aging process than generally believed because these cell types are part of a metabolic continuum in which the total metabolic capacity determines life span. As a consequence, the study of yeast aging may be helpful in understanding processes occurring in the aging brain.
Collapse
Affiliation(s)
- S M Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA.
| |
Collapse
|
30
|
Abstract
The genetic analysis of aging in the yeast Saccharomyces cerevisiae has revealed the importance of metabolic capacity, resistance to stress, integrity of gene regulation, and genetic stability for longevity. A balance between these life maintenance processes is sustained by the RAS2 gene, which channels cellular resources among them. This gene cooperates with mitochondria and PHB1 in metabolic adjustments important for longevity. It also modulates stress responses. Transcriptional silencing of heterochromatic regions of the genome is lost during aging, suggesting that gene dysregulation accompanies the aging process. There is evidence that this age change plays a causal role. Aging possesses features of a nonlinear process, and it is likely that application of nonlinear system methodology to aging will be productive.
Collapse
Affiliation(s)
- S M Jazwinski
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans 70112, USA
| |
Collapse
|
31
|
Shama S, Lai CY, Antoniazzi JM, Jiang JC, Jazwinski SM. Heat stress-induced life span extension in yeast. Exp Cell Res 1998; 245:379-88. [PMID: 9851879 DOI: 10.1006/excr.1998.4279] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The yeast Saccharomyces cerevisiae has a limited life span that can be measured by the number of times individual cells divide. Several genetic manipulations have been shown to prolong the yeast life span. However, environmental effects that extend longevity have been largely ignored. We have found that mild, nonlethal heat stress extended yeast life span when it was administered transiently early in life. The increased longevity was due to a reduction in the mortality rate that persisted over many cell divisions (generations) but was not permanent. The genes RAS1 and RAS2 were necessary to observe this effect of heat stress. The RAS2 gene is consistently required for maintenance of life span when heat stress is chronic or in its extension when heat stress is transient or absent altogether. RAS1, on the other hand, appears to have a role in signaling life extension induced by transient, mild heat stress, which is distinct from its life-span-curtailing effect in the absence of stress and its lack of involvement in the response to chronic heat stress. This distinction between the RAS genes may be partially related to their different effects on growth-promoting genes and stress-responsive genes. The ras2 mutation clearly hindered resumption of growth and recovery from stress, while the ras1 mutation did not. The HSP104 gene, which is largely responsible for induced thermotolerance in yeast, was necessary for life extension induced by transient heat stress. An interaction between mitochondrial petite mutations and heat stress was found, suggesting that mitochondria may be necessary for life extension by transient heat stress. The results raise the possibility that the RAS genes and mitochondria may play a role in the epigenetic inheritance of reduced mortality rate afforded by transient, mild heat stress.
Collapse
Affiliation(s)
- S Shama
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Louisiana, 70112, USA
| | | | | | | | | |
Collapse
|
32
|
Jiang JC, Kirchman PA, Zagulski M, Hunt J, Jazwinski SM. Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res 1998; 8:1259-72. [PMID: 9872981 DOI: 10.1101/gr.8.12.1259] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
LAG1 is a longevity gene, the first such gene to be identified and cloned from the yeast Saccharomyces cerevisiae. A close homolog of this gene, which we call LAC1, has been found in the yeast genome. We have cloned the human homolog of LAG1 with the ultimate goal of examining its possible function in human aging. In the process, we have also cloned a homolog from the nematode worm Caenorhabditis elegans. Both of these homologs, LAG1Hs and LAG1Ce-1, functionally complemented the lethality of a lag1delta lac1delta double deletion, despite low overall sequence similarity to the yeast proteins. The proteins shared a short sequence, the Lag1 motif, and a similar transmembrane domain profile. Another, more distant human homolog, TRAM, which lacks this motif, did not complement. LAG1Hs also restored the life span of the double deletion, demonstrating that it functions in establishing the longevity phenotype in yeast. LAG1Hs mapped to 19p12, and it was expressed in only three tissues: brain, skeletal muscle, and testis. This gene possesses a trinucleotide (CTG) repeat within exon 1. This and its expression profile raise the possibility that it may be involved in neurodegenerative disease. This possibility suggests at least one way in which LAG1Hs might be involved in human aging.
Collapse
Affiliation(s)
- J C Jiang
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, New Orleans, Lousiana 70112, USA
| | | | | | | | | |
Collapse
|