1
|
González-Velasco Ó, De Las Rivas J, Lacal J. Proteomic and Transcriptomic Profiling Identifies Early Developmentally Regulated Proteins in Dictyostelium Discoideum. Cells 2019; 8:cells8101187. [PMID: 31581556 PMCID: PMC6830349 DOI: 10.3390/cells8101187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP acts as a secondary messenger involving different cellular functions in eukaryotes. Here, proteomic and transcriptomic profiling has been combined to identify novel early developmentally regulated proteins in eukaryote cells. These proteomic and transcriptomic experiments were performed in Dictyostelium discoideum given the unique advantages that this organism offers as a eukaryotic model for cell motility and as a nonmammalian model of human disease. By comparing whole-cell proteome analysis of developed (cAMP-pulsed) wild-type AX2 cells and an independent transcriptomic analysis of developed wild-type AX4 cells, our results show that up to 70% of the identified proteins overlap in the two independent studies. Among them, we have found 26 proteins previously related to cAMP signaling and identified 110 novel proteins involved in calcium signaling, adhesion, actin cytoskeleton, the ubiquitin-proteasome pathway, metabolism, and proteins that previously lacked any annotation. Our study validates previous findings, mostly for the canonical cAMP-pathway, and also generates further insight into the complexity of the transcriptomic changes during early development. This article also compares proteomic data between parental and cells lacking glkA, a GSK-3 kinase implicated in substrate adhesion and chemotaxis in Dictyostelium. This analysis reveals a set of proteins that show differences in expression in the two strains as well as overlapping protein level changes independent of GlkA.
Collapse
Affiliation(s)
- Óscar González-Velasco
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group. Cancer Research Center (CIC-IBMCC, CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Jesus Lacal
- Department of Microbiology and Genetics, Faculty of Biology, University of Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Proteins of the Nucleolus of Dictyostelium discoideum: Nucleolar Compartmentalization, Targeting Sequences, Protein Translocations and Binding Partners. Cells 2019; 8:cells8020167. [PMID: 30781559 PMCID: PMC6406644 DOI: 10.3390/cells8020167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
The nucleoli of Dictyostelium discoideum have a comparatively unique, non-canonical, localization adjacent to the inner nuclear membrane. The verified nucleolar proteins of this eukaryotic microbe are detailed while other potential proteins are introduced. Heat shock protein 32 (Hsp32), eukaryotic translation initiation factor 6 (eIF6), and tumour necrosis factor receptor-associated protein 1 (TRAP1) are essential for cell survival. NumA1, a breast cancer type 1 susceptibility protein-C Terminus domain-containing protein linked to cell cycle, functions in the regulation of nuclear number. The cell cycle checkpoint kinase 2 homologue forkhead-associated kinase A (FhkA) and BRG1-associated factor 60a homologue Snf12 are also discussed. While nucleoli appear homogeneous ultrastructurally, evidence for nucleolar subcompartments exists. Nucleolar localization sequences (NoLS) have been defined that target proteins to either the general nucleolar area or to a specific intranucleolar domain. Protein translocations during mitosis are protein-specific and support the multiple functions of the Dictyostelium nucleolus. To enrich the picture, binding partners of NumA1, the most well-characterized nucleolar protein, are examined: nucleolar Ca2+-binding protein 4a (CBP4a), nuclear puromycin-sensitive aminopeptidase A (PsaA) and Snf12. The role of Dictyostelium as a model for understanding the contribution of nucleolar proteins to various diseases and cellular stress is discussed throughout the review.
Collapse
|
3
|
Park B, Shin DY, Jeon TJ. CBP7 Interferes with the Multicellular Development of Dictyostelium Cells by Inhibiting Chemoattractant-Mediated Cell Aggregation. Mol Cells 2018; 41:103-109. [PMID: 29385672 PMCID: PMC5824019 DOI: 10.14348/molcells.2018.2170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/11/2017] [Accepted: 11/06/2017] [Indexed: 01/29/2023] Open
Abstract
Calcium ions are involved in the regulation of diverse cellular processes. Fourteen genes encoding calcium binding proteins have been identified in Dictyostelium. CBP7, one of the 14 CBPs, is composed of 169 amino acids and contains four EF-hand motifs. Here, we investigated the roles of CBP7 in the development and cell migration of Dictyostelium cells and found that high levels of CBP7 exerted a negative effect on cells aggregation during development, possibly by inhibiting chemoattractant-directed cell migration. While cells lacking CBP7 exhibited normal development and chemotaxis similar that of wild-type cells, CBP7 overexpressing cells completely lost their chemotactic abilities to move toward increasing cAMP concentrations. This resulted in inhibition of cellular aggregation, a process required for forming multicellular organisms during development. Low levels of cytosolic free calcium were observed in CBP7 overexpressing cells, which was likely the underlying cause of their lack of chemotaxis. Our results demonstrate that CBP7 plays an important role in cell spreading and cell-substrate adhesion. cbp7 null cells showed decreased cell size and cell-substrate adhesion. The present study contributes to further understanding the role of calcium signaling in regulation of cell migration and development.
Collapse
Affiliation(s)
- Byeonggyu Park
- Department of Biology & BK21- Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 61452,
Korea
| | - Dong-Yeop Shin
- Department of Biology & BK21- Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 61452,
Korea
| | - Taeck Joong Jeon
- Department of Biology & BK21- Plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Gwangju 61452,
Korea
| |
Collapse
|
4
|
In vitro efficacies of clinically available drugs against growth and viability of an Acanthamoeba castellanii keratitis isolate belonging to the T4 genotype. Antimicrob Agents Chemother 2013; 57:3561-7. [PMID: 23669391 DOI: 10.1128/aac.00299-13] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of clinically available drugs targeting muscarinic cholinergic, adrenergic, dopaminergic, and serotonergic receptors; intracellular calcium levels and/or the function of calcium-dependent biochemical pathways; ion channels; and cellular pumps were tested against a keratitis isolate of Acanthamoeba castellanii belonging to the T4 genotype. In vitro growth inhibition (amoebistatic) assays were performed by incubating A. castellanii with various concentrations of drugs in the growth medium for 48 h at 30°C. To determine amoebicidal effects, amoebae were incubated with drugs in phosphate-buffered saline for 24 h, and viability was determined using trypan blue exclusion staining. For controls, amoebae were incubated with the solvent alone. Of the eight drugs tested, amlodipine, prochlorperazine, and loperamide showed potent amoebicidal effects, as no viable trophozoites were observed (>95% kill rate), while amiodarone, procyclidine, digoxin, and apomorphine exhibited up to 50% amoebicidal effects. In contrast, haloperidol did not affect viability, but all the drugs tested inhibited A. castellanii growth. Importantly, amlodipine, prochlorperazine, and loperamide showed compelling cysticidal effects. The cysticidal effects were irreversible, as cysts treated with the aforementioned drugs did not reemerge as viable amoebae upon inoculation in the growth medium. Except for apomorphine and haloperidol, all the tested drugs blocked trophozoite differentiation into cysts in encystation assays. Given the limited availability of effective drugs to treat amoebal infections, the clinically available drugs tested in this study represent potential agents for managing keratitis and granulomatous amoebic encephalitis caused by Acanthamoeba spp. and possibly against other meningoencephalitis-causing amoebae, such as Balamuthia mandrillaris and Naegleria fowleri.
Collapse
|
5
|
Catalano A, O'Day DH. Rad53 homologue forkhead-associated kinase A (FhkA) and Ca2+-binding protein 4a (CBP4a) are nucleolar proteins that differentially redistribute during mitosis in Dictyostelium. Cell Div 2013; 8:4. [PMID: 23587254 PMCID: PMC3637376 DOI: 10.1186/1747-1028-8-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND During mitosis most nucleolar proteins redistribute to other locales providing an opportunity to study the relationship between nucleolar protein localization and function. Dictyostelium is a model organism for the study of several fundamental biological processes and human diseases but only two nucleolar proteins have been studied during mitosis: NumA1 and Snf12. Both of them are linked to the cell cycle. To acquire a better understanding of nucleolar protein localization and dynamics in Dictyostelium we studied the nucleolar localization of two additional proteins during mitosis: Snf12-linked forkhead-associated kinase A (FhkA), which is involved in the cell cycle, and Ca2+-binding protein 4a (CBP4a), which is a binding partner of NumA1. METHODS Polyclonal antibodies were produced in-house. Cells were fixed and probed with either anti-FhkA or anti-CBP4a in order to determine cellular localization during interphase and throughout the stages of mitosis. Colocalization with DAPI nuclear stain allowed us to determine the location of the nucleus and nucleolus while colocalization with anti-α-tubulin allowed us to determine the cell cycle stage. RESULTS Here we verify two novel nucleolar proteins, Rad53 homologue FhkA which localized around the edge of the nucleolus and CBP4a which was detected throughout the entire nucleolus. Treatment with the Ca2+ chelator BAPTA (5 mM) showed that the nucleolar localization of CBP4a is Ca2+-dependent. In response to actinomycin D (0.05 mg/mL) CBP4a disappeared from the nucleolus while FhkA protruded from the nucleus, eventually pinching off as cytoplasmic circles. FhkA and CBP4a redistributed differently during mitosis. FhkA redistributed throughout the entire cell and at the nuclear envelope region from prometaphase through telophase. In contrast, during prometaphase CBP4a relocated to many large, discrete "CBP4a islands" throughout the nucleoplasm. Two larger "CBP4a islands" were also detected specifically at the metaphase plate region. CONCLUSIONS FhkA and CBP4a represent the sixth and seventh nucleolar proteins that have been verified to date in Dictyostelium and the third and fourth studied during mitosis. The protein-specific distributions of all of these nucleolar proteins during interphase and mitosis provide unique insight into nucleolar protein dynamics in this model organism setting the stage for future work.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord st,, Toronto, ON M5S 3G5, Canada.
| | | |
Collapse
|
6
|
The Calmodulin-like calcium binding protein EhCaBP3 of Entamoeba histolytica regulates phagocytosis and is involved in actin dynamics. PLoS Pathog 2012; 8:e1003055. [PMID: 23300437 PMCID: PMC3531509 DOI: 10.1371/journal.ppat.1003055] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/11/2012] [Indexed: 11/20/2022] Open
Abstract
Phagocytosis is required for proliferation and pathogenesis of Entamoeba histolytica and erythrophagocytosis is considered to be a marker of invasive amoebiasis. Ca2+ has been found to play a central role in the process of phagocytosis. However, the molecular mechanisms and the signalling mediated by Ca2+ still remain largely unknown. Here we show that Calmodulin-like calcium binding protein EhCaBP3 of E. histolytica is directly involved in disease pathomechanism by its capacity to participate in cytoskeleton dynamics and scission machinery during erythrophagocytosis. Using imaging techniques EhCaBP3 was found in phagocytic cups and newly formed phagosomes along with actin and myosin IB. In vitro studies confirmed that EhCaBP3 directly binds actin, and affected both its polymerization and bundling activity. Moreover, it also binds myosin 1B in the presence of Ca2+. In cells where EhCaBP3 expression was down regulated by antisense RNA, the level of RBC uptake was reduced, myosin IB was found to be absent at the site of pseudopod cup closure and the time taken for phagocytosis increased, suggesting that EhCaBP3 along with myosin 1B mediate the closure of phagocytic cups. Experiments with EhCaBP3 mutant defective in Ca2+ -binding showed that Ca2+ binding is required for phagosome formation. Liposome binding assay revealed that EhCaBP3 recruitment and enrichment to membrane is independent of any cellular protein as it binds directly to phosphatidylserine. Taken together, our results suggest a novel pathway mediating phagocytosis in E. histolytica, and an unusual mechanism of modulation of cytoskeleton dynamics by two calcium binding proteins, EhCaBP1 and EhCaBP3 with mostly non-overlapping functions. Entamoeba histolytica is one of the major causes of morbidity and mortality in developing countries. Phagocytosis plays an important role in both survival and virulence and has been used as a virulence marker. Inhibition of phagocytosis leads to a defect in cellular proliferation. Therefore, the molecules that participate in phagocytosis are good targets for developing new drugs. However, the molecular mechanism of the process is still largely unknown. Here, we demonstrate that Calmodulin-like calcium binding protein EhCaBP3 is involved in erythrophagocytosis. We show this by a number of different approaches including immunostaining of actin, myosin1B, EhCaBP1 and EhCaBP3 during uptake of RBC; over expression and down regulation of EhCaBP3, and over expression of calcium defective mutant of EhCaBP3. Our analysis suggests that EhCaBP3 can regulate actin dynamics. Along with actin and myosin 1B it can participate in both initiation and formation of phagosomes. The Ca2+-bound form of this protein is required only for progression from cups into early phagosomes but not for initiation. Our results demonstrate the complex role of Ca2+ binding proteins, EhCaBP1 and EhCaBP3 in regulation of phagocytosis in the protist parasite E. histolytica and the novel mechanisms of manipulating actin dynamics at multiple levels.
Collapse
|
7
|
Sillo A, Matthias J, Konertz R, Bozzaro S, Eichinger L. Salmonella typhimurium is pathogenic for Dictyostelium cells and subverts the starvation response. Cell Microbiol 2011; 13:1793-811. [PMID: 21824247 DOI: 10.1111/j.1462-5822.2011.01662.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In unicellular amoebae, such as Dictyostelium discoideum, bacterial phagocytosis is a food hunting device, while in higher organisms it is the first defence barrier against microbial infection. In both cases, pathogenic bacteria exploit phagocytosis to enter the cell and multiply intracellularly. Salmonella typhimurium, the agent of food-borne gastroenteritis, is phagocytosed by both macrophages and Dictyostelium cells. By using cell biological assays and global transcriptional analysis with DNA microarrays covering the Dictyostelium genome, we show here that S. typhimurium is pathogenic for Dictyostelium cells. Depending on the degree of virulence, which in turn depended on bacterial growth conditions, Salmonella could kill Dictyostelium cells or inhibit their growth and development. In the early phase of infection in non-nutrient buffer, the ingested bacteria escaped degradation, induced a starvation-like transcriptional response but inhibited selectively genes required for chemotaxis and aggregation. This way differentiation of the host cells into spore and stalk cells was blocked or delayed, which in turn is likely to be favourable for the establishment of a replicative niche for Salmonella. Inhibition of the aggregation competence and chemotactic streaming of aggregation-competent cells in the presence of Salmonella suggests interference with cAMP signalling.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano (Torino), Italy
| | | | | | | | | |
Collapse
|
8
|
Sawarkar R, Visweswariah SS, Nellen W, Nanjundiah V. Histone deacetylases regulate multicellular development in the social amoeba Dictyostelium discoideum. J Mol Biol 2009; 391:833-48. [PMID: 19576222 DOI: 10.1016/j.jmb.2009.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 11/29/2022]
Abstract
Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB(-) cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.
Collapse
Affiliation(s)
- Ritwick Sawarkar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | | | | | |
Collapse
|
9
|
Melendez AJ, Tay HK. Phagocytosis: a repertoire of receptors and Ca(2+) as a key second messenger. Biosci Rep 2008; 28:287-98. [PMID: 18826374 DOI: 10.1042/bsr20080082] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Receptor-mediated phagocytosis is a complex process that mediates the internalization, by a cell, of other cells and large particles; this is an important physiological event not only in mammals, but in a wide diversity of organisms. Of simple unicellular organisms that use phagocytosis to extract nutrients, to complex metazoans in which phagocytosis is essential for the innate defence system, as a first line of defence against invading pathogens, as well as for the clearance of damaged, dying or dead cells. Evolution has armed multicellular organisms with a range of receptors expressed on many cells that serve as the molecular basis to bring about phagocytosis, regardless of the organism or the specific physiological event concerned. Key to all phagocytic processes is the finely controlled rearrangement of the actin cytoskeleton, in which Ca(2+) signals play a major role. Ca(2+) is involved in cytoskeletal changes by affecting the actions of a number of contractile proteins, as well as being a cofactor for the activation of a number of intracellular signalling molecules, which are known to play important roles during the initiation, progression and resolution of the phagocytic process. In mammals, the requirement of Ca(2+) for the initial steps in phagocytosis, and the subsequent phagosome maturation, can be quite different depending on the type of cell and on the type of receptor that is driving phagocytosis. In this review we discuss the different receptors that mediate professional and non-professional phagocytosis, and discuss the role of Ca(2+) in the different steps of this complex process.
Collapse
Affiliation(s)
- Alirio J Melendez
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore.
| | | |
Collapse
|
10
|
Lee CH, Jeong SY, Kim BJ, Choi CH, Kim JS, Koo BM, Seok YJ, Yim HS, Kang SO. Dictyostelium CBP3 associates with actin cytoskeleton and is related to slug migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:281-90. [PMID: 15843041 DOI: 10.1016/j.bbamcr.2005.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2004] [Revised: 12/24/2004] [Accepted: 01/04/2005] [Indexed: 10/25/2022]
Abstract
Calcium-binding protein 3 (CBP3) expression was up-regulated under the control of the actin 15 promoter and down-regulated by RNA interference in Dictyostelium discoideum. The overexpression of CBP3 accelerated cell aggregation and formed small aggregates and fruiting body. CBP3-inhibited cells showed uneven aggregation and increased slug trail lengths toward the directed light, whereas CBP3-overexpressing cells showed the opposite phenomena. Under dark condition, the enhanced slug trail length was also observed in the CBP3-inhibited cells. Yeast two-hybrid screening identified actin 8 as interacting protein with CBP3. The interaction between CBP3 and actin was confirmed by beta-galactosidase assay and surface plasmon resonance. CBP3 was associated with Triton X-100-insoluble cytoskeleton in the presence of Ca(2+) and the interaction of CBP3 with cytoskeleton was increased by the addition of Ca(2+). Using fluorescence microscopy, CBP3 was also shown to associate with the actin cytoskeleton during development. Subcellular fractionation indicated that CBP3 was enriched in cytosolic fraction. Taken together, these results suggest that CBP3 interacts with actin cytoskeleton and has a role during cell aggregation and slug migration of Dictyostelium.
Collapse
Affiliation(s)
- Chang-Hun Lee
- School of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Myre MA, O'Day DH. Dictyostelium calcium-binding protein 4a interacts with nucleomorphin, a BRCT-domain protein that regulates nuclear number. Biochem Biophys Res Commun 2004; 322:665-71. [PMID: 15325281 DOI: 10.1016/j.bbrc.2004.07.168] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Indexed: 10/26/2022]
Abstract
Nucleomorphin from Dictyostelium discoideum is a nuclear calmodulin-binding protein that is a member of the BRCT-domain containing cell cycle checkpoint proteins. Two differentially expressed isoforms, NumA and NumB, share an extensive acidic domain (DEED) that when deleted produces highly multinucleated cells. We performed a yeast two-hybrid screen of a Dictyostelium cDNA library using NumA as bait. Here we show that nucleomorphin interacts with calcium-binding protein 4a (CBP4a) in a Ca(2+)-dependent manner. Further deletion analysis suggests this interaction requires residues found within the DEED domain. NumA and CBP4a mRNAs are expressed at the same stages of development. CBP4a belongs to a large family of Dictyostelium CBPs, for which no cellular or developmental functions had previously been determined. Since the interaction of CBP4a with nucleomorphin requires the DEED domain, this suggests that CBP4a may respond to Ca(2+)-signalling through modulating factors that might function in concert to regulate nuclear number.
Collapse
Affiliation(s)
- Michael A Myre
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ont., Canada
| | | |
Collapse
|
12
|
Coukell B, Li Y, Moniakis J, Cameron A. The Ca2+/calcineurin-regulated cup gene family in Dictyostelium discoideum and its possible involvement in development. EUKARYOTIC CELL 2004; 3:61-71. [PMID: 14871937 PMCID: PMC329516 DOI: 10.1128/ec.3.1.61-71.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Changes in free intracellular Ca2+ are thought to regulate several major processes during Dictyostelium development, including cell aggregation and cell type-specific gene expression, but the mechanisms involved are unclear. To learn more about Ca2+ signaling and Ca2+ homeostasis in this organism, we used suppression subtractive hybridization to identify genes up-regulated by high extracellular Ca2+. Unexpectedly, many of the genes identified belong to a novel gene family (termed cup) with seven members. In vegetative cells, the cup genes were up-regulated by high Ca2+ but not by other ions or by heat, oxidative, or osmotic stress. cup induction by Ca2+ was blocked completely by inhibitors of calcineurin and protein synthesis. In developing cells, cup expression was high during aggregation and late development but low during the slug stage. This pattern correlates closely with reported levels of free intracellular Ca2+ during development. The cup gene products are highly homologous, acidic proteins possessing putative ricin domains. BLAST searches failed to reveal homologs in other organisms, but Western analyses suggested that Cup-like proteins might exist in certain other cellular slime mold species. Localization experiments indicated that Cup proteins are primarily cytoplasmic but become cell membrane-associated during Ca2+ stress and cell aggregation. When cup expression was down-regulated by antisense RNA, the cells failed to aggregate. However, this developmental block was overcome by partially up-regulating cup expression. Together, these results suggest that the Cup proteins in Dictyostelium might play an important role in stabilizing and/or regulating the cell membrane during Ca2+ stress and/or certain stages of development.
Collapse
Affiliation(s)
- Barrie Coukell
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada.
| | | | | | | |
Collapse
|
13
|
Sakamoto H, Nishio K, Tomisako M, Kuwayama H, Tanaka Y, Suetake I, Tajima S, Ogihara S, Coukell B, Maeda M. Identification and characterization of novel calcium-binding proteins of Dictyostelium and their spatial expression patterns during development. Dev Growth Differ 2004; 45:507-14. [PMID: 14706075 DOI: 10.1111/j.1440-169x.2003.00718.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Five putative Ca2(+)-binding proteins, CBP5, 6, 7, 8 and 9, all having EF-hand motifs, were found by searching the Dictyostelium cDNA database (http://www.csm.biol.tsukuba.ac.jp/cDNAproject.html). 45Ca2(+)-overlay experiments revealed that four of these (excluding CBP9) are real Ca2(+)-binding proteins. Northern blot analysis revealed that the genes encoding CBP5, 6, 7 and 8 are all developmentally regulated. In situ hybridization analyses revealed that spatial expression of these genes was regulated in several different ways. CBP1, 2, 3, 5, 6 and 7 are expressed in prespore cells in the slug stage. Transcripts of the genes for CBP1 and 5 are enriched in prestalk subtype PstO cells. In contrast, CBP4 is expressed predominantly in PstO cells. CBP8 is evenly expressed at a very low level throughout the whole slug. Such distinct spatial expression patterns suggest that the CBP might be involved in morphogenesis and might have their own roles either in prespore or in prestalk cell differentiation of Dictyostelium.
Collapse
Affiliation(s)
- Haruyo Sakamoto
- Department of Biology, Graduate School of Science, Osaka University, Machikaneyama-cho 1-16, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Iranfar N, Fuller D, Loomis WF. Genome-wide expression analyses of gene regulation during early development of Dictyostelium discoideum. EUKARYOTIC CELL 2003; 2:664-70. [PMID: 12912885 PMCID: PMC178357 DOI: 10.1128/ec.2.4.664-670.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using genome-wide microarrays, we recognized 172 genes that are highly expressed at one stage or another during multicellular development of Dictyostelium discoideum. When developed in shaken suspension, 125 of these genes were expressed if the cells were treated with cyclic AMP (cAMP) pulses at 6-min intervals between 2 and 6 h of development followed by high levels of exogenous cAMP. In the absence of cAMP treatment, only three genes, carA, gbaB, and pdsA, were consistently expressed. Surprisingly, 14 other genes were induced by cAMP treatment of mutant cells lacking the activatable adenylyl cyclase, ACA. However, these genes were not cAMP induced if both of the developmental adenylyl cyclases, ACA and ACR, were disrupted, showing that they depend on an internal source of cAMP. Constitutive activity of the cAMP-dependent protein kinase PKA was found to bypass the requirement of these genes for adenylyl cyclase and cAMP pulses, demonstrating the critical role of PKA in transducing the cAMP signal to early gene expression. In the absence of constitutive PKA activity, expression of later genes was strictly dependent on ACA in pulsed cells.
Collapse
Affiliation(s)
- Negin Iranfar
- Cell and Developmental Biology, Division of Biology, University of California, San Diego, La Jolla, California 92093-0368, USA
| | | | | |
Collapse
|
15
|
Furukawa R, Maselli A, Thomson SAM, Lim RWL, Stokes JV, Fechheimer M. Calcium regulation of actin crosslinking is important for function of the actin cytoskeleton in Dictyostelium. J Cell Sci 2003; 116:187-96. [PMID: 12456728 DOI: 10.1242/jcs.00220] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The actin cytoskeleton is sensitive to changes in calcium, which affect contractility, actin-severing proteins, actin-crosslinking proteins and calmodulin-regulated enzymes. To dissect the role of calcium control on the activity of individual proteins from effects of calcium on other processes, calcium-insensitive forms of these proteins were prepared and introduced into living cells to replace a calcium-sensitive form of the same protein. Crosslinking and bundling of actin filaments by the Dictyostelium 34 kDa protein is inhibited in the presence of micromolar free calcium. A modified form of the 34 kDa protein with mutations in the calcium binding EF hand (34 kDa deltaEF2) was prepared using site-directed mutagenesis and expressed in E. coli. Equilibrium dialysis using [(45)Ca]CaCl(2) revealed that the wild-type protein is able to bind one calcium ion with a Kd of 2.4 microM. This calcium binding is absent in the 34 kDa deltaEF2 protein. The actin-binding activity of the 34 kDa deltaEF2 protein was equivalent to wildtype but calcium insensitive in vitro. The wild-type and 34 kDa deltaEF2 proteins were expressed in 34-kDa-null and 34 kDa/alpha-actinin double null mutant Dictyostelium strains to test the hypothesis that calcium regulation of actin crosslinking is important in vivo. The 34 kDa deltaEF2 failed to supply function of the 34 kDa protein important for control of cell size and for normal growth to either of these 34-kDa-null strains. Furthermore, the distribution of the 34 kDa protein and actin were abnormal in cells expressing 34 kDa deltaEF2. Thus, calcium regulation of the formation and/or dissolution of crosslinked actin structures is required for dynamic behavior of the actin cytoskeleton important for cell structure and growth.
Collapse
Affiliation(s)
- Ruth Furukawa
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
16
|
Gauthier ML, O'Day DH. Detection of calmodulin-binding proteins and calmodulin-dependent phosphorylation linked to calmodulin-dependent chemotaxis to folic and cAMP in Dictyostelium. Cell Signal 2001; 13:575-84. [PMID: 11483410 DOI: 10.1016/s0898-6568(01)00187-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calmodulin (CaM) antagonists, trifluoperazine (TFP) or calmidazolium (R24571), dose-dependently inhibited cAMP and folic acid (FA) chemotaxis in Dictyostelium. Developing, starved, and refed cells were compared to determine if certain CaM-binding proteins (CaMBPs) and CaM-dependent phosphorylation events could be identified as potential downstream effectors. Recombinant CaM ([35S]VU-1-CaM) gel overlays coupled with cell fractionation revealed at least three dozen Ca(2+)-dependent and around 12 Ca(2+)-independent CaMBPs in Dictyostelium. The CaMBPs associated with early development were also found in experimentally starved cells (cAMP chemotaxis), but were different for the CaMBP population linked to growth-phase cells (FA chemotaxis). Probing Western blots with phosphoserine antibodies revealed several phosphoprotein bands that displayed increases when cAMP-responsive cells were treated with TFP. In FA-responsive cells, several but distinct phosphoproteins decreased when treated with TFP. These data show that unique CaMBPs are present in growing, FA-chemosensitive cells vs. starved cAMP-chemoresponsive cells that may be important for mediating CaM-dependent events during chemotaxis.
Collapse
Affiliation(s)
- M L Gauthier
- Department of Zoology, University of Toronto at Mississauga, L5L 1C6, Mississauga, ON, Canada
| | | |
Collapse
|