1
|
Williams KS, Secomb TW, El-Kareh AW. An autonomous mathematical model for the mammalian cell cycle. J Theor Biol 2023; 569:111533. [PMID: 37196820 DOI: 10.1016/j.jtbi.2023.111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
A mathematical model for the mammalian cell cycle is developed as a system of 13 coupled nonlinear ordinary differential equations. The variables and interactions included in the model are based on detailed consideration of available experimental data. A novel feature of the model is inclusion of cycle tasks such as origin licensing and initiation, nuclear envelope breakdown and kinetochore attachment, and their interactions with controllers (molecular complexes involved in cycle control). Other key features are that the model is autonomous, except for a dependence on external growth factors; the variables are continuous in time, without instantaneous resets at phase boundaries; mechanisms to prevent rereplication are included; and cycle progression is independent of cell size. Eight variables represent cell cycle controllers: the Cyclin D1-Cdk4/6 complex, APCCdh1, SCFβTrCP, Cdc25A, MPF, NuMA, the securin-separase complex, and separase. Five variables represent task completion, with four for the status of origins and one for kinetochore attachment. The model predicts distinct behaviors corresponding to the main phases of the cell cycle, showing that the principal features of the mammalian cell cycle, including restriction point behavior, can be accounted for in a quantitative mechanistic way based on known interactions among cycle controllers and their coupling to tasks. The model is robust to parameter changes, in that cycling is maintained over at least a five-fold range of each parameter when varied individually. The model is suitable for exploring how extracellular factors affect cell cycle progression, including responses to metabolic conditions and to anti-cancer therapies.
Collapse
Affiliation(s)
| | - Timothy W Secomb
- BIO5 Institute, University of Arizona, Tucson, AZ, USA; Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
2
|
Strickfaden H. Reflections on the organization and the physical state of chromatin in eukaryotic cells. Genome 2020; 64:311-325. [PMID: 33306433 DOI: 10.1139/gen-2020-0132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, our perception of chromatin structure and organization in the cell nucleus has changed in fundamental ways. The 30 nm chromatin fiber has lost its status as an essential in vivo structure. Hi-C and related biochemical methods, advanced electron and super-resolved fluorescence microscopy, together with concepts from soft matter physics, have revolutionized the field. A comprehensive understanding of the structural and functional interactions that regulate cell cycle and cell type specific nuclear functions appears within reach, but it requires the integration of top-down and bottom-up approachs. In this review, I present an update on nuclear architecture studies with an emphasis on organization and the controversy regarding the physical state of chromatin in cells.
Collapse
Affiliation(s)
- Hilmar Strickfaden
- Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Cremer T, Cremer M, Hübner B, Silahtaroglu A, Hendzel M, Lanctôt C, Strickfaden H, Cremer C. The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. Bioessays 2020; 42:e1900132. [PMID: 31994771 DOI: 10.1002/bies.201900132] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/24/2019] [Indexed: 12/11/2022]
Abstract
This article focuses on the role of the interchromatin compartment (IC) in shaping nuclear landscapes. The IC is connected with nuclear pore complexes (NPCs) and harbors splicing speckles and nuclear bodies. It is postulated that the IC provides routes for imported transcription factors to target sites, for export routes of mRNA as ribonucleoproteins toward NPCs, as well as for the intranuclear passage of regulatory RNAs from sites of transcription to remote functional sites (IC hypothesis). IC channels are lined by less-compacted euchromatin, called the perichromatin region (PR). The PR and IC together form the active nuclear compartment (ANC). The ANC is co-aligned with the inactive nuclear compartment (INC), comprising more compacted heterochromatin. It is postulated that the INC is accessible for individual transcription factors, but inaccessible for larger macromolecular aggregates (limited accessibility hypothesis). This functional nuclear organization depends on still unexplored movements of genes and regulatory sequences between the two compartments.
Collapse
Affiliation(s)
- Thomas Cremer
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Marion Cremer
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Barbara Hübner
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Asli Silahtaroglu
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, Byg.18.03, 2200, Copenhagen N, Denmark
| | - Michael Hendzel
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Christian Lanctôt
- Integration Santé, 1250 Avenue de la Station local 2-304, Shawinigan, Québec, G9N 8K9, Canada
| | - Hilmar Strickfaden
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Christoph Cremer
- Institute of Molecular Biology (IMB) Ackermannweg 4, 55128 Mainz, Germany, and Institute of Pharmacy & Molecular Biotechnology (IPMB), University Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Chagin VO, Reinhart B, Becker A, Mortusewicz O, Jost KL, Rapp A, Leonhardt H, Cardoso MC. Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus 2019; 10:231-253. [PMID: 31744372 PMCID: PMC6949026 DOI: 10.1080/19491034.2019.1688932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive heterochromatin is considered as a functionally inert genome compartment, important for its architecture and stability. How such stable structure is maintained is not well understood. Here, we apply four different visualization schemes to label it and investigate its dynamics during DNA replication and repair. We show that replisomes assemble over the heterochromatin in a temporally ordered manner. Furthermore, heterochromatin undergoes transient decompaction locally at the active sites of DNA synthesis. Using selective laser microirradiation conditions that lead to damage repaired via processive DNA synthesis, we measured similarly local decompaction of heterochromatin. In both cases, we could not observe large-scale movement of heterochromatin to the domain surface. Instead, the processive DNA synthesis machinery assembled at the replication/repair sites. Altogether, our data are compatible with a progression of DNA replication/repair along the chromatin in a dynamic mode with localized and transient decompaction that does not globally remodels the whole heterochromatin compartment.
Collapse
Affiliation(s)
- Vadim O. Chagin
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Britta Reinhart
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annette Becker
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - K. Laurence Jost
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - M. Cristina Cardoso
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
5
|
Arifulin EA, Musinova YR, Vassetzky YS, Sheval EV. Mobility of Nuclear Components and Genome Functioning. BIOCHEMISTRY (MOSCOW) 2018; 83:690-700. [PMID: 30195325 DOI: 10.1134/s0006297918060068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell nucleus is characterized by strong compartmentalization of structural components in its three-dimensional space. Certain genomic functions are accompanied by changes in the localization of chromatin loci and nuclear bodies. Here we review recent data on the mobility of nuclear components and the role of this mobility in genome functioning.
Collapse
Affiliation(s)
- E A Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Y R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Y S Vassetzky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.,UMR8126, CNRS, Université Paris-Sud, Institut de Cancérologie Gustave Roussy, Villejuif, 94805, France
| | - E V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, Villejuif, 94805, France
| |
Collapse
|
6
|
Masiello I, Siciliani S, Biggiogera M. Perichromatin region: a moveable feast. Histochem Cell Biol 2018; 150:227-233. [DOI: 10.1007/s00418-018-1703-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
|
7
|
Cremer T, Cremer M, Cremer C. The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context. BIOCHEMISTRY (MOSCOW) 2018; 83:313-325. [PMID: 29626919 DOI: 10.1134/s000629791804003x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.
Collapse
Affiliation(s)
- T Cremer
- Biocenter, Department of Biology II, Ludwig Maximilian University (LMU), Munich, Germany.
| | | | | |
Collapse
|
8
|
Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, Guengoer T, Graf A, Krebs S, Blum H, Zakhartchenko V, Wolf E, Cremer T. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2015; 5:555-89. [PMID: 25482066 PMCID: PMC4615760 DOI: 10.4161/19491034.2014.979712] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.
Collapse
Key Words
- 3D-CLSM, 3-dimensional confocal laser scanning microscopy
- 3D-SIM, 3-dimensional structured illumination microscopy
- B23, nucleophosmin B23
- BTA, Bos taurus
- CDC, chromatin domain cluster
- CT, chromosome territory
- EM, electron microscopy
- ENC, embryonic nuclei with conventional nuclear architecture
- ENP, embryonic nuclei with peripheral CT distribution
- H3K4me3
- H3K4me3, histone H3 with tri-methylated lysine 4
- H3K9me3
- H3K9me3, histone H3 with tri-methylated lysine 9
- H3S10p, histone H3 with phosphorylated serine 10
- IC, interchromatin compartment
- IVF, in vitro fertilization
- MCB, major chromatin body
- PR, perichromatin region
- RNA polymerase II
- RNA polymerase II-S2p, RNA polymerase II with phosphorylated serine 2 of its CTD domain
- RNA polymerase II-S5p, RNA polymerase II with phosphorylated serine 5 of its CTD domain
- SC-35, splicing factor SC-35
- SCNT, somatic cell nuclear transfer.
- bovine preimplantation development
- chromatin domain
- chromosome territory
- embryonic genome activation
- in vitro fertilization (IVF)
- interchromatin compartment
- major EGA, major embryonic genome activation
- somatic cell nuclear transfer (SCNT)
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics ; Biocenter; LMU Munich ; Munich , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Arifulin EA. Ultrastructural organization of replicating chromatin in prematurely condensed chromosomes. ACTA ACUST UNITED AC 2015. [DOI: 10.7124/bc.0008e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- E. A. Arifulin
- A. N. Belozersky Institute of Physico-Chemical Biology M. V. Lomonosov Moscow State University
| |
Collapse
|
10
|
Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C. The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 2015; 589:2931-43. [PMID: 26028501 DOI: 10.1016/j.febslet.2015.05.037] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Recent methodological advancements in microscopy and DNA sequencing-based methods provide unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear machineries. We discuss a model of the underlying functional nuclear organization derived mostly from electron and super-resolved fluorescence microscopy studies. It is based on two spatially co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the compact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the interchromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and export functions. The ANC is the major site of RNA synthesis. It is highly enriched in epigenetic marks for transcriptionally competent chromatin and RNA Polymerase II. Marks for silent chromatin are enriched in the INC. Multi-scale cross-correlation spectroscopy suggests that nuclear architecture resembles a random obstacle network for diffusing proteins. An increased dwell time of proteins and protein complexes within the ANC may help to limit genome scanning by factors or factor complexes to DNA exposed within the ANC.
Collapse
Affiliation(s)
- Thomas Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany.
| | - Marion Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Barbara Hübner
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Hilmar Strickfaden
- University of Alberta, Cross Cancer Institute Dept. of Oncology, Edmonton, AB, Canada
| | - Daniel Smeets
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Jens Popken
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Michael Sterr
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Yolanda Markaki
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) & BioQuant Center, Research Group Genome Organization & Function, Heidelberg, Germany.
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Mainz and Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany.
| |
Collapse
|
11
|
Use of halogenated precursors to define a transcription time window after treatment with hypometabolizing molecules. Histochem Cell Biol 2014; 141:243-9. [DOI: 10.1007/s00418-014-1180-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2014] [Indexed: 10/25/2022]
|
12
|
Abstract
The principles that determine the organization of the nucleus have become clearer in recent years, largely because of new insights into polymer, colloid, and soft-matter science. Macromolecules, together with the giant linear polymers that form the chromosomes, are confined at high concentrations within the nuclear envelope and their interactions are influenced strongly by short-range depletion or entropic forces which are negligible in dilute systems, in addition to the more familiar van der Waals, electrostatic, steric, hydrogen bonding, and hydrophobic forces. The studies described in this volume are consistent with the model that this complex and concentrated mixture of macromolecules is maintained in a delicate equilibrium by quite simple although unsuspected physicochemical principles. The sensitivity of this equilibrium to perturbation may underlie the controversies about the existence of a nuclear matrix or scaffold. In this volume, we underline the importance for cell biologists of being familiar with current work in colloid, polymer, soft matter, and nanoscience. This chapter presents a brief background to the aspects of the nucleus that are considered in detail in subsequent chapters.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, CRCHUQ-Oncology, Québec, Canada; Biosystems Group, Biotechnology Centre, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
13
|
Abstract
Understanding the evolutionary origin of the nucleus and its compartmentalized architecture provides a huge but, as expected, greatly rewarding challenge in the post-genomic era. We start this chapter with a survey of current hypotheses on the evolutionary origin of the cell nucleus. Thereafter, we provide an overview of evolutionarily conserved features of chromatin organization and arrangements, as well as topographical aspects of DNA replication and transcription, followed by a brief introduction of current models of nuclear architecture. In addition to features which may possibly apply to all eukaryotes, the evolutionary plasticity of higher-order nuclear organization is reflected by cell-type- and species-specific features, by the ability of nuclear architecture to adapt to specific environmental demands, as well as by the impact of aberrant nuclear organization on senescence and human disease. We conclude this chapter with a reflection on the necessity of interdisciplinary research strategies to map epigenomes in space and time.
Collapse
|
14
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
15
|
Intranuclear sphingomyelin is associated with transcriptionally active chromatin and plays a role in nuclear integrity. Biol Cell 2010; 102:361-75. [PMID: 20095965 DOI: 10.1042/bc20090139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Sphingomyelin is one of the major phospholipids in the cell nucleus. However, its intranuclear distribution with regard to different functional nuclear domains as well as its possible involvement in the nuclear functional architecture remains to be elucidated. RESULTS We carried out an ultrastructural cytochemical study of the intranuclear distribution of SM (sphingomyelin) using an in situ binding assay of neutral SMase (sphingomyelinase) conjugated to colloidal gold particles. The enzymatic labelling was carried out on ultrathin sections of different mammalian cells prepared by means of various fixation and resin-embedding protocols. Transmission electron microscopic analysis revealed preferential localization of SM within the PR (perichromatin region), a functionally important nucleoplasmic domain containing sites of pre-mRNA synthesis and processing. In the nucleolus, SM is mostly associated with the dense fibrillar component containing transcriptionally active ribosomal genes. Microinjection of enzymatically active SMase into living cells resulted in a rapid degradation of intranuclear structure. CONCLUSIONS Our observations, supported by biochemical data, provide evidence for the involvement of SM in important nuclear functions. They bring additional information pointing out the PR as an essential functional nuclear domain. Furthermore, they suggest a role for SM in the internal nuclear architecture.
Collapse
|
16
|
Luijsterburg MS, White MF, van Driel R, Dame RT. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit Rev Biochem Mol Biol 2009; 43:393-418. [PMID: 19037758 DOI: 10.1080/10409230802528488] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
17
|
Solimando L, Luijsterburg MS, Vecchio L, Vermeulen W, van Driel R, Fakan S. Spatial organization of nucleotide excision repair proteins after UV-induced DNA damage in the human cell nucleus. J Cell Sci 2008; 122:83-91. [PMID: 19066286 DOI: 10.1242/jcs.031062] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nucleotide excision repair (NER) is an evolutionary conserved DNA repair system that is essential for the removal of UV-induced DNA damage. In this study we investigated how NER is compartmentalized in the interphase nucleus of human cells at the ultrastructural level by using electron microscopy in combination with immunogold labeling. We analyzed the role of two nuclear compartments: condensed chromatin domains and the perichromatin region. The latter contains transcriptionally active and partly decondensed chromatin at the surface of condensed chromatin domains. We studied the distribution of the damage-recognition protein XPC and of XPA, which is a central component of the chromatin-associated NER complex. Both XPC and XPA rapidly accumulate in the perichromatin region after UV irradiation, whereas only XPC is also moderately enriched in condensed chromatin domains. These observations suggest that DNA damage is detected by XPC throughout condensed chromatin domains, whereas DNA-repair complexes seem preferentially assembled in the perichromatin region. We propose that UV-damaged DNA inside condensed chromatin domains is relocated to the perichromatin region, similar to what has been shown for DNA replication. In support of this, we provide evidence that UV-damaged chromatin domains undergo expansion, which might facilitate the translocation process. Our results offer novel insight into the dynamic spatial organization of DNA repair in the human cell nucleus.
Collapse
Affiliation(s)
- Liliana Solimando
- Centre of Electron Microscopy, University of Lausanne, 27 Bugnon, CH-1005 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
18
|
Kireev I, Lakonishok M, Liu W, Joshi VN, Powell R, Belmont AS. In vivo immunogold labeling confirms large-scale chromatin folding motifs. Nat Methods 2008; 5:311-3. [PMID: 18345005 DOI: 10.1038/nmeth.1196] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Accepted: 02/26/2008] [Indexed: 11/09/2022]
Abstract
The difficulty in localizing specific cellular proteins by immuno-electron microscopy techniques limits applications of electron microscopy to cell biology. We found that in vivo immunogold labeling improves epitope accessibility, ultrastructural preservation and three-dimensional visualization, and allows correlated light and electron microscopy. We detected large-scale chromatin folding motifs within intact interphase nuclei of CHO cells and visualized the ultrastructure of DNA replication 'factories' labeled with GFP-proliferating cell nuclear antigen (PCNA).
Collapse
Affiliation(s)
- Igor Kireev
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, 601 S. Goodwin Ave., Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
19
|
Hancock R. Packing of the polynucleosome chain in interphase chromosomes: evidence for a contribution of crowding and entropic forces. Semin Cell Dev Biol 2007; 18:668-75. [PMID: 17904880 DOI: 10.1016/j.semcdb.2007.08.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 08/22/2007] [Indexed: 11/23/2022]
Abstract
In the crowded intranuclear environment, entropic depletion forces between macromolecules are expected to be strong. A review of simulations of linear polymers leads to several predictions about probable conformations of a polynucleosome chain in these conditions. These include a globular conformation, variable compaction due to different local rigidity or curvature of the mosaic of isochores, satellite sequences, and nucleosomes containing different histone variants, and the possibility that chromosomes represent separate phases like those seen in heterogeneous particle mixtures by experiment and simulation. Experimental results which show that macromolecular crowding alone, in the absence of exogenous cations, can stabilise interphase chromosomes and cause self-association of polynucleosome chains are presented. Together, these considerations suggest that macromolecular crowding and entropic forces are major factors in packing polynucleosome chains in vivo.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, 9 rue MacMahon, Québec, QC, Canada G1R 2J6.
| |
Collapse
|
20
|
Fakan S, van Driel R. The perichromatin region: a functional compartment in the nucleus that determines large-scale chromatin folding. Semin Cell Dev Biol 2007; 18:676-81. [PMID: 17920313 DOI: 10.1016/j.semcdb.2007.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/22/2007] [Indexed: 12/29/2022]
Abstract
The perichromatin region has emerged as an important functional domain of the interphase nucleus. Major nuclear functions, such as DNA replication and transcription, as well as different RNA processing factors, occur within this domain. In this review, we summarize in situ observations regarding chromatin structure analysed by transmission electron microscopy and compare results to data obtained by other methods. In particular, we address the functional architecture of the perichromatin region and the way chromatin may be folded within this nucleoplasmic domain.
Collapse
Affiliation(s)
- Stanislav Fakan
- Centre of Electron Microscopy, University of Lausanne, 27 Bugnon, CH-1005 Lausanne, Switzerland.
| | | |
Collapse
|
21
|
Albiez H, Cremer M, Tiberi C, Vecchio L, Schermelleh L, Dittrich S, Küpper K, Joffe B, Thormeyer T, von Hase J, Yang S, Rohr K, Leonhardt H, Solovei I, Cremer C, Fakan S, Cremer T. Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Res 2006; 14:707-33. [PMID: 17115328 DOI: 10.1007/s10577-006-1086-x] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/04/2006] [Accepted: 08/04/2006] [Indexed: 11/28/2022]
Abstract
In spite of strong evidence that the nucleus is a highly organized organelle, a consensus on basic principles of the global nuclear architecture has not so far been achieved. The chromosome territory-interchromatin compartment (CT-IC) model postulates an IC which expands between chromatin domains both in the interior and the periphery of CT. Other models, however, dispute the existence of the IC and claim that numerous chromatin loops expand between and within CTs. The present study was undertaken to resolve these conflicting views. (1) We demonstrate that most chromatin exists in the form of higher-order chromatin domains with a compaction level at least 10 times above the level of extended 30 nm chromatin fibers. A similar compaction level was obtained in a detailed analysis of a particularly gene-dense chromosome region on HSA 11, which often expanded from its CT as a finger-like chromatin protrusion. (2) We further applied an approach which allows the experimental manipulation of both chromatin condensation and the width of IC channels in a fully reversible manner. These experiments, together with electron microscopic observations, demonstrate the existence of the IC as a dynamic, structurally distinct nuclear compartment, which is functionally linked with the chromatin compartment.
Collapse
Affiliation(s)
- Heiner Albiez
- Department of Biology II, LMU Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rytkönen AK, Vaara M, Nethanel T, Kaufmann G, Sormunen R, Läärä E, Nasheuer HP, Rahmeh A, Lee MYWT, Syväoja JE, Pospiech H. Distinctive activities of DNA polymerases during human DNA replication. FEBS J 2006; 273:2984-3001. [PMID: 16762037 DOI: 10.1111/j.1742-4658.2006.05310.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The contributions of human DNA polymerases (pols) alpha, delta and epsilon during S-phase progression were studied in order to elaborate how these enzymes co-ordinate their functions during nuclear DNA replication. Pol delta was three to four times more intensely UV cross-linked to nascent DNA in late compared with early S phase, whereas the cross-linking of pols alpha and epsilon remained nearly constant throughout the S phase. Consistently, the chromatin-bound fraction of pol delta, unlike pols alpha and epsilon, increased in the late S phase. Moreover, pol delta neutralizing antibodies inhibited replicative DNA synthesis most efficiently in late S-phase nuclei, whereas antibodies against pol epsilon were most potent in early S phase. Ultrastructural localization of the pols by immuno-electron microscopy revealed pol epsilon to localize predominantly to ring-shaped clusters at electron-dense regions of the nucleus, whereas pol delta was mainly dispersed on fibrous structures. Pol alpha and proliferating cell nuclear antigen displayed partial colocalization with pol delta and epsilon, despite the very limited colocalization of the latter two pols. These data are consistent with models where pols delta and epsilon pursue their functions at least partly independently during DNA replication.
Collapse
Affiliation(s)
- Anna K Rytkönen
- Biocenter Oulu and Department of Biochemistry, University of Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Mika Lännenpää
- Department of Biology, University of Joensuu, Joensuu, Finland.
| | | |
Collapse
|
24
|
Verschure PJ, Visser AE, Rots MG. Step out of the Groove: Epigenetic Gene Control Systems and Engineered Transcription Factors. ADVANCES IN GENETICS 2006; 56:163-204. [PMID: 16735158 DOI: 10.1016/s0065-2660(06)56005-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
At the linear DNA level, gene activity is believed to be driven by binding of transcription factors, which subsequently recruit the RNA polymerase to the gene promoter region. However, it has become clear that transcriptional activation involves large complexes of many different proteins, which not only directly recruit components of the transcription machinery but also affect the DNA folding. Such proteins, including various chromatin-modifying enzymes, alter among other processes nucleosome positioning and histone modifications and are potentially involved in changing the overall structure of the chromatin and/or the position of chromatin in the nucleus. These epigenetic regulatory features are now known to control and regulate gene expression, although the molecular mechanisms still need to be clarified in more detail. Several diseases are characterized by aberrant gene-expression patterns. Many of these diseases are linked to dysregulation of epigenetic gene-regulatory systems. To interfere with aberrant gene expression, a novel approach is emerging as a disease therapy, involving engineered transcription factors. Engineered transcription factors are based on, for example, zinc-finger proteins (ZFP) that bind DNA in a sequence-specific manner. Engineered transcription factors based on ZFP are fused to effector domains that function to normalize disrupted gene-expression levels. Zinc-finger proteins most likely also influence epigenetic regulatory systems, such as the complex set of chemical histone and DNA modifications, which control chromatin compaction and nuclear organization. In this chapter, we review how epigenetic regulation systems acting at various levels of packaging the genome in the cell nucleus add to gene-expression control at the DNA level. Since an increasing number of diseases are described to have a clear link to epigenetic dysregulation, we here highlight 10 examples of such diseases. In the second part, we describe the different effector domains that have been fused to ZFPs and are capable of activating or silencing endogenous genes, and we illustrate how these effector domains influence epigenetic control mechanisms. Finally, we speculate how accumulating knowledge about epigenetics can be exploited to make such zinc-finger-transcription factors (ZF-TF) even more effective.
Collapse
Affiliation(s)
- Pernette J Verschure
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, 1098SM Amsterdam, The Netherlands.
| | | | | |
Collapse
|
25
|
Postberg J, Alexandrova O, Cremer T, Lipps HJ. Exploiting nuclear duality of ciliates to analyse topological requirements for DNA replication and transcription. J Cell Sci 2005; 118:3973-83. [PMID: 16129882 DOI: 10.1242/jcs.02497] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spatial and temporal replication patterns are used to describe higher-order chromatin organisation from nuclei of early metazoan to mammalian cells. Here we demonstrate evolutionary conserved similarities and differences in replication patterns of micronuclei and macronuclei in the spirotrichous ciliate Stylonychia lemnae. Since this organism possesses two kinds of morphologically and functionally different nuclei in one cell, it provides an excellent model system to analyse topological requirements for DNA replication and transcription. Replication in the heterochromatic micronucleus occurs in foci-like structures showing spatial and temporal patterns similar to nuclei of higher eukaryotes, demonstrating that these patterns are inherent features of nuclear architecture. The 'nanochromosomes' of the macronucleus are replicated in the propagating replication band. We show that it consists of hundreds of replication foci. Post-replicative macronuclear chromatin remains organised in foci. These foci are not randomly distributed throughout the macronucleus, indicating a higher-order organisation of macronuclear chromatin above the level of 'nanochromosomes'. Both telomerase and proliferating cell nuclear antigen (PCNA) occur as foci-like structures in the rear zone of the replication band, suggesting that a wave of chromatin modification driven by a short or continuous exogenous signal permits the assembly of replication factories at predicted sites. We further show that transcription occurs at discrete sites colocalised with putative nucleoli and dispersed chromatin. Common principles of functional nuclear architecture were conserved during eukaryotic evolution. Moreover nuclear duality inherent to ciliates with their germline micronucleus and their somatic macronucleus may eventually provide further insight into epigenetic regulation of transcription, replication and nuclear differentiation.
Collapse
Affiliation(s)
- Jan Postberg
- Institute of Cell Biology, University of Witten/Herdecke, Stockumer Str. 10, 58453 Witten, Germany.
| | | | | | | |
Collapse
|
26
|
Koberna K, Ligasová A, Malínský J, Pliss A, Siegel AJ, Cvacková Z, Fidlerová H, Masata M, Fialová M, Raska I, Berezney R. Electron microscopy of DNA replication in 3-D: evidence for similar-sized replication foci throughout S-phase. J Cell Biochem 2005; 94:126-38. [PMID: 15523671 DOI: 10.1002/jcb.20300] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
DNA replication sites (RS) in synchronized HeLa cells have been studied at the electron microscopic level. Using an improved method for detection following the in vivo incorporation of biotin-16-deoxyuridine triphosphate, discrete RS, or foci are observed throughout the S-phase. In particular, the much larger RS or foci typically observed by fluorescence microscopic approaches in mid- and late-S-phase, are found to be composed of smaller discrete foci that are virtually identical in size to the RS observed in early-S-phase. Pulse-chase experiments demonstrate that the RS of early-S-phase are maintained when chased through S-phase and into the next cell generation. Stereologic analysis demonstrates that the relative number of smaller sized foci present at a given time remains constant from early through mid-S-phase with only a slight decrease in late-S-phase. 3-D reconstruction of serial sections reveals a network-like organization of the RS in early-S-phase and confirms that numerous smaller-sized replication foci comprise the larger RS characteristic of late-S-phase.
Collapse
Affiliation(s)
- Karel Koberna
- Department of Cell Biology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Albertov 4, CZ-12800 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Philimonenko AA, Jackson DA, Hodný Z, Janácek J, Cook PR, Hozák P. Dynamics of DNA replication: an ultrastructural study. J Struct Biol 2004; 148:279-89. [PMID: 15522776 DOI: 10.1016/j.jsb.2004.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 07/23/2004] [Indexed: 11/19/2022]
Abstract
DNA replication in cells takes place in domains scattered throughout the nucleoplasm. We have characterized the dynamics of DNA synthesis in synchronized mid-S-phase HeLa cells. Saponin-permeabilized cells were allowed to elongate nascent DNA chains in presence of biotin-dUTP for 5, 15, and 30 min (a pulse experiment), or for 5 min followed by an incubation with unlabeled precursors for 10 or 25 min (a pulse-and-chase experiment). The replication foci were then identified in ultrathin sections using immunogold labeling of the incorporated biotin. Total number of particles per nucleus, total scanned area of the nucleus, size, shape, and gold particle number of each labeled cluster, and the density of clusters per nucleus were evaluated. We have demonstrated that as replication proceeds, the labeled sites increase in size up to 240 nm (30 min incorporation) while maintaining a broadly round shape. In pulse-and-chase experiments the labeled DNA was shown to spread to occupy DNA foci of approximately 400 nm in diameter. These results demonstrate that DNA replication is compartmentalized within cell nuclei at the level of DNA foci and support the view that the synthetic centers are spatially constrained while the chromatin loops are dynamic during DNA synthesis.
Collapse
Affiliation(s)
- Anatoly A Philimonenko
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4 Krc, Czech Republic
| | | | | | | | | | | |
Collapse
|
28
|
Verschure PJ, van der Kraan I, Manders EMM, Hoogstraten D, Houtsmuller AB, van Driel R. Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules. EMBO Rep 2003; 4:861-6. [PMID: 12947417 PMCID: PMC1326359 DOI: 10.1038/sj.embor.embor922] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 07/14/2003] [Accepted: 07/16/2003] [Indexed: 11/09/2022] Open
Abstract
Most chromatin in interphase nuclei is part of condensed chromatin domains. Previous work has indicated that transcription takes place primarily at the surface of chromatin domains, that is, in the perichromatin region. It is possible that genes inside chromatin domains are silenced due to inaccessibility to macromolecular components of the transcription machinery. We have tested the accessibility of chromatin domains in nuclei of living cells with proteins and dextrans of different molecular sizes. Our results show that chromatin domains are readily accessible to large macromolecules, including proteins with a molecular weight of several hundred kilodaltons. Therefore, the silencing of genes that are incorporated into such domains is not due to the physical inaccessibility of condensed chromatin domains to transcription factors.
Collapse
Affiliation(s)
- Pernette J Verschure
- Swammerdam Institute for Life Sciences, BioCentrum Amsterdam, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Puvion-Dutilleul F, Souquere-Besse S, Albagli-Curiel O. The relationship between BCL6 bodies and nuclear sites of normal and halogenated DNA and RNA synthesis. Microsc Res Tech 2003; 61:389-407. [PMID: 12811744 DOI: 10.1002/jemt.10363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BCL6 is a POZ/BTB and zinc finger transcription factor that self-interacts and accumulates into discrete nuclear "bodies" of unknown function. We recently reported that BCL6 bodies associate with bromodeoxyuridine (BrdU)-substituted DNA, suggesting their implication in replication. To examine this possibility, we examine here by electron and confocal microscopy the relation between BCL6 bodies and replication foci (RF) using incorporation of various halogenated nucleotides (BrdU, chlorodeoxyuridine, CldU, and iododeoxyuridine, IdU) or PCNA (proliferating cell nuclear antigen) staining. We show that BCL6 bodies are found associated with RF, as revealed by PCNA staining. However, such association is markedly prolonged upon BrdU or CldU incorporation, but less, or not at all, upon IdU incorporation. Pulse-chase and double-labeling experiments indicate that IdU-substituted DNA leaves BCL6 bodies after a few tenths of minutes while BrdU- or CldU-substituted DNA stalls in their vicinity for several hours, thereby giving the characteristic "crowns" of DNA entirely surrounding BCL6 bodies. In all cases, however, the halogenated DNA ends up undergoing a movement from BCL6 bodies toward nucleoplasm and nuclear periphery to reach euchromatin and heterochromatin, respectively. We propose that replicating DNA is prone to be bound by BCL6, while BrdU/CldU incorporation increases this propensity possibly because these two events have synergistic effects on the structure and chromatinisation of the newly synthesized DNA. Finally, despite the known proximity between nuclear sites of transcription and replication, we show via several approaches that BCL6 bodies do not appear to be involved either in RNA synthesis or storage.
Collapse
|
30
|
|