1
|
Sotomayor-Lugo F, Iglesias-Barrameda N, Castillo-Aleman YM, Casado-Hernandez I, Villegas-Valverde CA, Bencomo-Hernandez AA, Ventura-Carmenate Y, Rivero-Jimenez RA. The Dynamics of Histone Modifications during Mammalian Zygotic Genome Activation. Int J Mol Sci 2024; 25:1459. [PMID: 38338738 PMCID: PMC10855761 DOI: 10.3390/ijms25031459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Mammalian fertilization initiates the reprogramming of oocytes and sperm, forming a totipotent zygote. During this intricate process, the zygotic genome undergoes a maternal-to-zygotic transition (MZT) and subsequent zygotic genome activation (ZGA), marking the initiation of transcriptional control and gene expression post-fertilization. Histone modifications are pivotal in shaping cellular identity and gene expression in many mammals. Recent advances in chromatin analysis have enabled detailed explorations of histone modifications during ZGA. This review delves into conserved and unique regulatory strategies, providing essential insights into the dynamic changes in histone modifications and their variants during ZGA in mammals. The objective is to explore recent advancements in leading mechanisms related to histone modifications governing this embryonic development phase in depth. These considerations will be useful for informing future therapeutic approaches that target epigenetic regulation in diverse biological contexts. It will also contribute to the extensive areas of evolutionary and developmental biology and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rene Antonio Rivero-Jimenez
- Abu Dhabi Stem Cells Center, Abu Dhabi P.O. Box 4600, United Arab Emirates; (F.S.-L.); (N.I.-B.); (Y.M.C.-A.); (I.C.-H.); (C.A.V.-V.); (A.A.B.-H.); (Y.V.-C.)
| |
Collapse
|
2
|
Wellard SR, Hopkins J, Jordan PW. A Seminiferous Tubule Squash Technique for the Cytological Analysis of Spermatogenesis Using the Mouse Model. J Vis Exp 2018. [PMID: 29443055 DOI: 10.3791/56453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Meiotic progression in males is a process that requires the concerted action of a number of highly regulated cellular events. Errors occurring during meiosis can lead to infertility, pregnancy loss or genetic defects. Commencing at the onset of puberty and continuing throughout adulthood, continuous semi-synchronous waves of spermatocytes undergo spermatogenesis and ultimately form haploid sperm. The first wave of mouse spermatocytes undergoing meiotic initiation appear at day 10 post-partum (10 dpp) and are released into the lumen of seminiferous tubules as mature sperm at 35 dpp. Therefore, it is advantageous to utilize mice within this developmental time-window in order to obtain highly enriched populations of interest. Analysis of rare cell stages is more difficult in older mice due to the contribution of successive spermatogenic waves, which increase the diversity of the cellular populations within the tubules. The method described here is an easily implemented technique for the cytological evaluation of the cells found within the seminiferous tubules of mice, including spermatogonia, spermatocytes, and spermatids. The tubule squash technique maintains the integrity of isolated male germ cells and allows examination of cellular structures that are not easily visualized with other techniques. To demonstrate the possible applications of this tubule squash technique, spindle assembly was monitored in spermatocytes progressing through the prophase to metaphase I transition (G2/MI transition). In addition, centrosome duplication, meiotic sex chromosome inactivation (MSCI), and chromosome bouquet formation were assessed as examples of the cytological structures that can be observed using this tubule squash method. This technique can be used to pinpoint specific defects during spermatogenesis that are caused by mutation or exogenous perturbation, and thus, contributes to our molecular understanding of spermatogenesis.
Collapse
Affiliation(s)
- Stephen R Wellard
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Jessica Hopkins
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health;
| |
Collapse
|
3
|
Cedeno RJ, Nakauka-Ddamba A, Yousefi M, Sterling S, Leu NA, Li N, Pehrson JR, Lengner CJ. The histone variant macroH2A confers functional robustness to the intestinal stem cell compartment. PLoS One 2017; 12:e0185196. [PMID: 28934364 PMCID: PMC5608326 DOI: 10.1371/journal.pone.0185196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 12/20/2022] Open
Abstract
A stem cell's epigenome directs cell fate during development, homeostasis, and regeneration. Epigenetic dysregulation can lead to inappropriate cell fate decisions, aberrant cell function, and even cancer. The histone variant macroH2A has been shown to influence gene expression, guide cell fate, and safeguard against genotoxic stress. Interestingly, mice lacking functional macroH2A histones (hereafter referred to as macroH2A DKO) are viable and fertile; yet suffer from increased perinatal death and reduced weight and size compared to wildtype (WT). Here, we ask whether the ostensible reduced vigor of macroH2A DKO mice extends to intestinal stem cell (ISC) function during homeostasis, regeneration, and oncogenesis. Lgr5-eGFP-IRES-CreERT2 or Hopx-CreERT2::Rosa26-LSL-tdTomato ISC reporter mice or the C57BL/6J-Apcmin/J murine intestinal adenoma model were bred into a macroH2A DKO or strain-matched WT background and assessed for ISC functionality, regeneration and tumorigenesis. High-dose (12Gy) whole-body γ-irradiation was used as an injury model. We show that macroH2A is dispensable for intestinal homeostasis and macroH2A DKO mice have similar numbers of active crypt-base columnar ISCs (CBCs). MacroH2A DKO intestine exhibits impaired regeneration following injury, despite having significantly more putative reserve ISCs. DKO reserve ISCs disproportionately undergo apoptosis compared to WT after DNA damage infliction. Interestingly, a macroH2A DKO background does not significantly increase tumorigenesis in the Apcmin model of intestinal adenoma. We conclude that macroH2A influences reserve ISC number and function during homeostasis and regeneration. These data suggest macroH2A enhances reserve ISC survival after DNA damage and thus confers functional robustness to the intestinal epithelium.
Collapse
Affiliation(s)
- Ryan James Cedeno
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Angela Nakauka-Ddamba
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Maryam Yousefi
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Cell and Molecular Biology Graduate Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States of America
| | - Stephanie Sterling
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Nicolae Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ning Li
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - John R Pehrson
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America
| | - Christopher Joachim Lengner
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Animal Transgenesis, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, United States of America.,Center for Molecular Studies in Digestive and Liver Disease, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.,Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Rivera-Casas C, Gonzalez-Romero R, Cheema MS, Ausió J, Eirín-López JM. The characterization of macroH2A beyond vertebrates supports an ancestral origin and conserved role for histone variants in chromatin. Epigenetics 2016; 11:415-25. [PMID: 27082816 DOI: 10.1080/15592294.2016.1172161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Histone variants play a critical role in chromatin structure and epigenetic regulation. These "deviant" proteins have been historically considered as the evolutionary descendants of ancestral canonical histones, helping specialize the nucleosome structure during eukaryotic evolution. Such view is now challenged by 2 major observations: first, canonical histones present extremely unique features not shared with any other genes; second, histone variants are widespread across many eukaryotic groups. The present work further supports the ancestral nature of histone variants by providing the first in vivo characterization of a functional macroH2A histone (a variant long defined as a specific refinement of vertebrate chromatin) in a non-vertebrate organism (the mussel Mytilus) revealing its recruitment into heterochromatic fractions of actively proliferating tissues. Combined with in silico analyses of genomic data, these results provide evidence for the widespread presence of macroH2A in metazoan animals, as well as in the holozoan Capsaspora, supporting an evolutionary origin for this histone variant lineage before the radiation of Filozoans (including Filasterea, Choanoflagellata and Metazoa). Overall, the results presented in this work help configure a new evolutionary scenario in which histone variants, rather than modern "deviants" of canonical histones, would constitute ancient components of eukaryotic chromatin.
Collapse
Affiliation(s)
- Ciro Rivera-Casas
- a Department of Biological Sciences, Chromatin Structure and Evolution (Chromevol) Group , Florida International University , North Miami , FL , USA
| | - Rodrigo Gonzalez-Romero
- a Department of Biological Sciences, Chromatin Structure and Evolution (Chromevol) Group , Florida International University , North Miami , FL , USA
| | - Manjinder S Cheema
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , British Columbia , Canada
| | - Juan Ausió
- b Department of Biochemistry and Microbiology , University of Victoria , Victoria , British Columbia , Canada
| | - José M Eirín-López
- a Department of Biological Sciences, Chromatin Structure and Evolution (Chromevol) Group , Florida International University , North Miami , FL , USA
| |
Collapse
|
5
|
Friedman N, Barzily-Rokni M, Isaac S, Eden A. The histone H2A variant macroH2A1 does not localize to the centrosome. PLoS One 2011; 6:e17262. [PMID: 21364955 PMCID: PMC3043097 DOI: 10.1371/journal.pone.0017262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/27/2011] [Indexed: 12/31/2022] Open
Abstract
MacroH2A1 is a histone H2A variant which contains a large non-histone C-terminal region of largely unknown function. Within this region is a macro domain which can bind ADP-ribose and related molecules. Most studies of macroH2A1 focus on the involvement of this variant in transcriptional repression. Studies in mouse embryos and in embryonic stem cells suggested that during early development macroH2A can be found at the centrosome. Centrosomal localization of macroH2A was later reported in somatic cells. Here we provide data showing that macroH2A1 does not localize to the centrosome and that the centrosomal signal observed with antibodies directed against the macroH2A1 non-histone region may be the result of antibody cross-reactivity.
Collapse
Affiliation(s)
- Nathalie Friedman
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Barzily-Rokni
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Isaac
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amir Eden
- Department of Cell and Developmental Biology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
6
|
Chang CC, Gao S, Sung LY, Corry GN, Ma Y, Nagy ZP, Tian XC, Rasmussen TP. Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer. Cell Reprogram 2010; 12:43-53. [PMID: 20132012 DOI: 10.1089/cell.2009.0043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Oocytes contain a maternal store of the histone variant MacroH2A, which is eliminated from zygotes shortly after fertilization. Preimplantation embryos then execute three cell divisions without MacroH2A before the onset of embryonic MacroH2A expression at the 16-cell stage. During subsequent development, MacroH2A is expressed in most cells, where it is assembled into facultative heterochromatin. Because differentiated cells contain heterochromatin rich in MacroH2A, we investigated the fate of MacroH2A during somatic cell nuclear transfer (SCNT). The results show that MacroH2A is rapidly eliminated from the chromosomes of transplanted somatic cell nuclei by a process in which MacroH2A is first stripped from chromosomes, and then degraded. Furthermore, MacroH2A is eliminated from transplanted nuclei by a mechanism requiring intact microtubules and nuclear envelope break down. Preimplantation SCNT embryos express endogenous MacroH2A once they reach the morula stage, similar to the timing observed in embryos produced by natural fertilization. We also show that the ability to reprogram somatic cell heterochromatin by SCNT is tied to the developmental stage of recipient cell cytoplasm because enucleated zygotes fail to support depletion of MacroH2A from transplanted somatic nuclei. Together, the results indicate that nuclear reprogramming by SCNT utilizes the same chromatin remodeling mechanisms that act upon the genome immediately after fertilization.
Collapse
Affiliation(s)
- Ching-Chien Chang
- Center for Regenerative Biology, University of Connecticut, Storrs, Connecticut 06269-4243, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gardiner J, McGee P, Overall R, Marc J. Are histones, tubulin, and actin derived from a common ancestral protein? PROTOPLASMA 2008; 233:1-5. [PMID: 18615236 DOI: 10.1007/s00709-008-0305-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/05/2008] [Indexed: 05/26/2023]
Abstract
Histones and the cytoskeletal components tubulin and actin all act as thermal ratchets, using the energy present in Brownian motion to do work. All three also bind to nucleotides. Here we suggest that histones, tubulin, and actin derive from a common ancestral protein. There is some sequence similarity between histone 2A and the bacterial tubulin homologue FtsZ. Histones and actin also share some sequence similarity in the nucleotides and at phosphate-binding sites. Thus, actin and tubulin may also be related, although this is not obvious from sequence analysis. Indeed, actin and tubulin are closely functionally related and cooperate in many cellular processes. Interestingly, recent advances in nanotechnology suggest that thermal ratchets may be able to impart lifelike properties; thus, the evolution of the ancestral histone, tubulin, and actin thermal ratchet may have been crucial in the development of complexity in living organisms.
Collapse
Affiliation(s)
- J Gardiner
- School of Biological Sciences, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | | | |
Collapse
|
8
|
LI S, LIU H. Functions of histone H2A variants. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00385.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Chang CC, Ma Y, Jacobs S, Tian XC, Yang X, Rasmussen TP. A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev Biol 2005; 278:367-80. [PMID: 15680357 DOI: 10.1016/j.ydbio.2004.11.032] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 11/01/2004] [Accepted: 11/11/2004] [Indexed: 01/15/2023]
Abstract
MacroH2A histones are variants of canonical histone H2A that are conserved among vertebrates. Previous studies have implicated macroH2As in epigenetic gene-silencing events including X chromosome inactivation. Here we show that macroH2A is present in developing and mature mouse oocytes. MacroH2A is localized to chromatin of germinal vesicles (GV) in both late growth stage (lg-GV) and fully grown (fg-GV) stage oocytes. In addition, macroH2A is associated with the chromosomes of mature oocytes, and abundant macroH2A is present in the first polar body. However, maternal macroH2A is lost from zygotes generated by normal fertilization by the late 2 pronuclei (2PN) stage. Normal embryos at 2-, 4-, and 8-cell stages lack macroH2A except in residual polar bodies. MacroH2A protein expression reappears in embryos after the 8-cell stage and persists in morulae and blastocysts, where nuclear macroH2A is present in both the trophectodermal and inner cell mass cells. We followed the loss of macroH2A from pronuclei in parthenogenetic embryos generated by oocyte activation. Abundant macroH2A is present upon the metaphase II plate and persists through parthenogenetic anaphase, but macroH2A is progressively lost during pronuclear decondensation prior to synkaryogamy. Examination of embryos generated by intracytoplasmic sperm injection (ICSI) revealed that macroH2A is associated exclusively with female pronuclei prior to loss in late pronucleus stage embryos. These results outline a surprising finding that a maternal store of macroH2A is removed from the maternal genome prior to synkaryogamy, resulting in embryos that execute three to four mitotic divisions in the absence of macroH2A prior to the onset of embryonic macroH2A expression.
Collapse
Affiliation(s)
- Ching-Chien Chang
- Center for Regenerative Biology, University of Connecticut, 1392 Storrs Road, Storrs, CT 06269-4243, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Dosage compensation in mammals is achieved by the transcriptional inactivation of one X chromosome in female cells. From the time X chromosome inactivation was initially described, it was clear that several mechanisms must be precisely integrated to achieve correct regulation of this complex process. X-inactivation appears to be triggered upon differentiation, suggesting its regulation by developmental cues. Whereas any number of X chromosomes greater than one is silenced, only one X chromosome remains active. Silencing on the inactive X chromosome coincides with the acquisition of a multitude of chromatin modifications, resulting in the formation of extraordinarily stable facultative heterochromatin that is faithfully propagated through subsequent cell divisions. The integration of all these processes requires a region of the X chromosome known as the X-inactivation center, which contains the Xist gene and its cis-regulatory elements. Xist encodes an RNA molecule that plays critical roles in the choice of which X chromosome remains active, and in the initial spread and establishment of silencing on the inactive X chromosome. We are now on the threshold of discovering the factors that regulate and interact with Xist to control X-inactivation, and closer to an understanding of the molecular mechanisms that underlie this complex process.
Collapse
Affiliation(s)
- Kathrin Plath
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
11
|
Chadwick BP, Willard HF. Cell cycle-dependent localization of macroH2A in chromatin of the inactive X chromosome. J Cell Biol 2002; 157:1113-23. [PMID: 12082075 PMCID: PMC2173542 DOI: 10.1083/jcb.200112074] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
One of several features acquired by chromatin of the inactive X chromosome (Xi) is enrichment for the core histone H2A variant macroH2A within a distinct nuclear structure referred to as a macrochromatin body (MCB). In addition to localizing to the MCB, macroH2A accumulates at a perinuclear structure centered at the centrosome. To better understand the association of macroH2A1 with the centrosome and the formation of an MCB, we investigated the distribution of macroH2A1 throughout the somatic cell cycle. Unlike Xi-specific RNA, which associates with the Xi throughout interphase, the appearance of an MCB is predominantly a feature of S phase. Although the MCB dissipates during late S phase and G2 before reforming in late G1, macroH2A1 remains associated during mitosis with specific regions of the Xi, including at the X inactivation center. This association yields a distinct macroH2A banding pattern that overlaps with the site of histone H3 lysine-4 methylation centered at the DXZ4 locus in Xq24. The centrosomal pool of macroH2A1 accumulates in the presence of an inhibitor of the 20S proteasome. Therefore, targeting of macroH2A1 to the centrosome is likely part of a degradation pathway, a mechanism common to a variety of other chromatin proteins.
Collapse
Affiliation(s)
- Brian P Chadwick
- Department of Genetics, Case Western Reserve University School of Medicine and Center for Human Genetics and Research Institute, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | | |
Collapse
|
12
|
Abstract
X-chromosome inactivation leads to divergent fates for two homologous chromosomes. Whether one X remains active or becomes silenced depends on the activity of Xist, a gene expressed only from the inactive X and whose RNA product 'paints' the X in cis. Recent work argues that Xist RNA itself is the acting agent for initiating the silencing step. Xist RNA contains separable domains for RNA localization and chromosome silencing. While no Xist RNA-interacting factors have been identified, a growing collection of chromatin alterations have been identified on the inactive X, including variant histone H2A composition and histone H3 methylation. Some or all of these changes may be critical for chromosome-wide silencing. As none of the silencing proteins identified so far is unique to X chromosome inactivation, the specificity must partly reside in Xist RNA whose spread along the X orchestrates general silencing factors for this specific task.
Collapse
Affiliation(s)
- Dena E Cohen
- Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
13
|
Nesterova TB, Mermoud JE, Hilton K, Pehrson J, Surani MA, McLaren A, Brockdorff N. Xist expression and macroH2A1.2 localisation in mouse primordial and pluripotent embryonic germ cells. Differentiation 2002; 69:216-25. [PMID: 11841480 DOI: 10.1046/j.1432-0436.2002.690415.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanism underlying X chromosome inactivation in female mammals involves the non-coding RNAs Xist and its antisense partner Tsix. Prior to X inactivation, these RNAs are transcribed in an unstable form from all X chromosomes, both in the early embryo and in undifferentiated embryonic stem (ES) cells. Upon differentiation, the expression of these unstable transcripts from all alleles is silenced, and Xist RNA becomes stabilised specifically on the inactivating X chromosome. This pattern of expression is then maintained throughout subsequent somatic cell divisions. Once established, the inactive state of the X chromosome is remarkably stable, the only natural case of reactivation occurring in XX primordial germ cells (PGCs) when they enter the genital ridge. To gain insight into the X reactivation process, we have analysed Xist gene expression using RNA FISH in PGCs and also in PGC-derived embryonic germ (EG) cells. XX EG cells were shown to express unstable Xist/Tsix from both X chromosomes. In contrast, no unstable Xist/Tsix transcripts were detected in XX PGCs at any stage. Instead, a proportion of XX PGCs isolated from the genital ridge between 11.5 and 13.5 dpc (the period during which X chromosome reactivation occurs) showed an accumulation of stable Xist RNA on one X. The number of these cells decreased progressively and was nearly extinguished by 13.5 dpc. As a late marker for the inactive state, we analysed localisation of the histone H2A variant macroH2A1.2. Although macroH2A1.2 expression was observed in PGCs, no significant localisation to the inactive X was detected at any stage. We discuss these results in the context of understanding X chromosome reactivation.
Collapse
Affiliation(s)
- Tatyana B Nesterova
- X inactivation Group, MRC Clinical Sciences Centre, Faculty of Medicine ICSTM, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
| | | | | | | | | | | | | |
Collapse
|