1
|
Wang X, Zhang C, Madji R, Voros C, Mazères S, Bijani C, Deraeve C, Cuvillier O, Gornitzka H, Maddelein ML, Hemmert C. N-Heterocyclic Carbene-Iridium Complexes as Photosensitizers for In Vitro Photodynamic Therapy to Trigger Non-Apoptotic Cell Death in Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020691. [PMID: 36677751 PMCID: PMC9861386 DOI: 10.3390/molecules28020691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
A series of seven novel iridium complexes were synthetized and characterized as potential photosensitizers for photodynamic therapy (PDT) applications. Among them, four complexes were evaluated in vitro for their anti-proliferative activity with and without irradiation on a panel of five cancer cell lines, namely PC-3 (prostate cancer), T24 (bladder cancer), MCF7 (breast cancer), A549 (lung cancer) and HeLa (cervix cancer), and two non-cancerous cell models (NIH-3T3 fibroblasts and MC3T3 osteoblasts). After irradiation at 458 nm, all tested complexes showed a strong selectivity against cancer cells, with a selectivity index (SI) ranging from 8 to 34 compared with non-cancerous cells. The cytotoxic effect of all these complexes was found to be independent of the anti-apoptotic protein Bcl-xL. The compound exhibiting the best selectivity, complex 4a, was selected for further investigations. Complex 4a was mainly localized in the mitochondria. We found that the loss of cell viability and the decrease in ATP and GSH content induced by complex 4a were independent of both Bcl-xL and caspase activation, leading to a non-apoptotic cell death. By counteracting the intrinsic or acquired resistance to apoptosis associated with cancer, complex 4a could be an interesting therapeutic alternative to be studied in preclinical models.
Collapse
Affiliation(s)
- Xing Wang
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Chen Zhang
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Ryma Madji
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Camille Voros
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Christian Bijani
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Céline Deraeve
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
| | - Olivier Cuvillier
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Heinz Gornitzka
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Marie-Lise Maddelein
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| | - Catherine Hemmert
- Coordination Chemistry Laboratory of the National Centre for Scientific Research (LCC-CNRS), University of Toulouse, CNRS, Université Toulouse III–Paul Sabatier (UPS), 31077 Toulouse, France
- Correspondence: (O.C.); (H.G.); (M.-L.M.); (C.H.)
| |
Collapse
|
2
|
Mitigation of radiation injury by selective stimulation of the LPA(2) receptor. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:117-25. [PMID: 23127512 DOI: 10.1016/j.bbalip.2012.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 11/21/2022]
Abstract
Due to its antiapoptotic action, derivatives of the lipid mediator lysophosphatidic acid (LPA) provide potential therapeutic utility in diseases associated with programmed cell death. Apoptosis is one of the major pathophysiological processes elicited by radiation injury to the organism. Consequently, therapeutic explorations applying compounds that mimic the antiapoptotic action of LPA have begun. Here we present a brief account of our decade-long drug discovery effort aimed at developing LPA mimics with a special focus on specific agonists of the LPA(2) receptor subtype, which was found to be highly effective in protecting cells from apoptosis. We describe new evidence that 2-((3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)thio)benzoic acid (GRI977143), a prototypic nonlipid agonist specific to the LPA(2) receptor subtype, rescues apoptotically condemned cells in vitro and in vivo from injury caused by high-dose γ-irradiation. GRI977143 shows the features of a radiomitigator because it is effective in rescuing the lives of mice from deadly levels of radiation when administered 24h after radiation exposure. Our findings suggest that by specifically activating LPA(2) receptors GRI977143 activates the ERK1/2 prosurvival pathway, effectively reduces Bax translocation to the mitochondrion, attenuates the activation of initiator and effector caspases, reduces DNA fragmentation, and inhibits PARP-1 cleavage associated with γ-irradiation-induced apoptosis. GRI977143 also inhibits bystander apoptosis elicited by soluble proapoptotic mediators produced by irradiated cells. Thus, GRI977143 can serve as a prototype scaffold for lead optimization paving the way to more potent analogs amenable for therapeutic exploration. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
4
|
Li Q, Li W, Hui LP, Zhao CY, He L, Koike K. 13,28-Epoxy triterpenoid saponins from Ardisia japonica selectively inhibit proliferation of liver cancer cells without affecting normal liver cells. Bioorg Med Chem Lett 2012; 22:6120-5. [DOI: 10.1016/j.bmcl.2012.08.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 08/03/2012] [Accepted: 08/07/2012] [Indexed: 12/22/2022]
|
5
|
Grifalconi M, Celotti L, Mognato M. Bystander response in human lymphoblastoid TK6 cells. Mutat Res 2007; 625:102-11. [PMID: 17669438 DOI: 10.1016/j.mrfmmm.2007.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 05/23/2007] [Accepted: 06/01/2007] [Indexed: 05/16/2023]
Abstract
The mechanisms of the medium-mediated bystander response induced by gamma-rays in non-irradiated TK6 cells were investigated. Cell cultures were irradiated and the culture medium discarded immediately after irradiation and replaced with a fresh one. In cells incubated with conditioned medium from irradiated cells (CM), a significant decrease in cell viability and cloning efficiency was observed, together with a significant increase in apoptosis, also in directly irradiated cells. To examine whether bystander apoptosis involved the extrinsic pathway, an inhibitor of caspase-8 was added to CM cultures, which significantly decreased apoptosis to control levels. The addition to CM of ROS scavengers, Cu-Zn superoxide dismutase and N-acetylcysteine did not affect the induction of apoptosis. To assess whether CM treatment activates a DNA damage response, also the formation of gamma-H2AX foci, as markers of double-strand breaks and their colocalisation with 53-binding protein 1 (53BP1) and the protein mutated in the Nijmegen breakage syndrome 1 (NBS1) was analysed. In cultures treated for 2h with CM, 9-11% of cells showed gamma-H2AX foci, which partially or totally lacked colocalisation with 53BP1 and NBS1 foci. About 85% of irradiated cells were positive for gamma-H2AX foci, which colocalised with 53BP1 and NBS1 proteins. At 24h from irradiation, very few irradiated cells retained foci, fitting DNA repair kinetics. The number of foci-positive bystander cells also decreased to background values 24h after CM incubation. Our results suggest that irradiated TK6 cells release into the medium some soluble factors, not ROS, which are responsible for the cytotoxic effects induced in bystander cells. In our experimental system, the role of ROS appeared to be of minor importance in inducing cell mortality, but probably critical in activating the DNA damage response in the responsive fraction of bystander cells.
Collapse
Affiliation(s)
- Mauro Grifalconi
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy
| | | | | |
Collapse
|
8
|
Fischer B, Coelho D, Dufour P, Bergerat JP, Denis JM, Gueulette J, Bischoff P. Caspase 8-mediated cleavage of the pro-apoptotic BCL-2 family member BID in p53-dependent apoptosis. Biochem Biophys Res Commun 2003; 306:516-22. [PMID: 12804595 DOI: 10.1016/s0006-291x(03)01004-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this study was to characterize the apoptotic pathways activated by fast neutrons in the human lymphoblastoid cell line TK6 and in its p53 -/- derivative. Our results demonstrate that while p53 is not required for neutron-induced apoptosis, as previously shown, it does affect the kinetics of apoptosis and the molecular pathways leading to the activation of effector caspases. Indeed, rapid p53-dependent apoptosis was associated with the activation of caspase 9, 8, 3, and 7 and the cleavage of BID by caspase 8. In contrast, the slow-occurring p53-independent apoptotic process, mediated by caspase 7, took place without BID cleavage and loss of transmembrane mitochondrial potential. Altogether, our findings highlight an essential role for caspase 8-mediated BID cleavage, in the course of p53-dependent apoptosis triggered by fast neutrons in lymphoid cells. They also demonstrate that this mechanism is not involved in p53-independent apoptosis.
Collapse
Affiliation(s)
- Barbara Fischer
- Laboratoire de Cancérologie Expérimentale et de Radiobiologie EA 3430, Université Louis Pasteur, Institut de Recherche contre les Cancers de l'Appareil Digestif, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
9
|
Ferrer M, Izeboud T, Ferreira CG, Span SW, Giaccone G, Kruyt FAE. Cisplatin triggers apoptotic or nonapoptotic cell death in Fanconi anemia lymphoblasts in a concentration-dependent manner. Exp Cell Res 2003; 286:381-95. [PMID: 12749865 DOI: 10.1016/s0014-4827(03)00112-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cells derived from Fanconi anemia (FA) patients are hypersensitive for cross-linking agents, such as cisplatin, that are potent inducers of programmed cell death (PCD). Here, we studied cisplatin hypersensitivity in FA in relation to the mechanism of PCD in lymphoblastoid cells representing FA groups A and C. In FA cells, a low concentration of cisplatin caused chromatin condensation, phosphatidylserine (PS) externalization, and the expression of an 18-kDa variant of Bax, all indicators of apoptotic cell death, and the latter suggesting the involvement of a mitochondrial route. However, procaspases-3, -8, and -9, and PARP were not cleaved, although small increases in caspase activity could be detected. At a high concentration of cisplatin, both FA and corrected cells showed a robust cleavage of procaspases and PARP. DNA fragmentation was clearly visible under high cisplatin conditions and to some extent at a low concentration in FA-A cells, but not in the FA-C cell line regardless of the presence of functional FANCC, suggesting an unknown deficiency in these cells. We conclude that hypersensitivity in FA cells is associated with a mixture of necrotic and apoptotic features that is best described as apoptotic-like cell death, and that a defective FA pathway does not interfere with the proper activation of caspase-mediated cell death.
Collapse
Affiliation(s)
- Miriam Ferrer
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Rubik B. Sympathetic Resonance Technology: scientific foundation and summary of biologic and clinical studies. J Altern Complement Med 2002; 8:823-56. [PMID: 12614535 DOI: 10.1089/10755530260511838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sympathetic Resonance Technology (SRT; Clarus Products, International, L.L.C., San Rafael, CA) is a novel technology used in consumer health care products to protect humans from the potentially harmful effects of stress. A summary of the previously unpublished studies on SRT, both basic and clinical, is presented. These studies collectively show that SRT mitigates the stress response for a variety of stressors such as chemical and electromagnetic stress in various biologic systems and multiple levels of organization, ranging from the molecular to the behavioral. A rudimentary model of how SRT may work at the level of the biofield, the endogenous electromagnetic field of the organism, is proposed. By interacting with key component frequencies in the biofield, SRT may stabilize the organism homeodynamically, thereby protecting it from the effects of stressful stimuli.
Collapse
Affiliation(s)
- Beverly Rubik
- Institute for Frontier Science, Oakland, CA 94611-2802, USA.
| |
Collapse
|