1
|
Kuo CM, Jen HH, Chen FY, Akbarian M, Ou TH, Liu KY, Lin JL, Chen SH. High-performance peptide and disulfide mapping by direct injection of intact proteins using on-line coupled UV-liquid chromatography microdroplet mass spectrometry (UVLC-MMS). Anal Chim Acta 2023; 1279:341790. [PMID: 37827684 DOI: 10.1016/j.aca.2023.341790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/19/2023] [Accepted: 09/06/2023] [Indexed: 10/14/2023]
Abstract
Microdroplet mass spectrometry (MMS), achieving ultra-fast enzyme digestion in the ionization source, holds great promises for innovating protein analysis. Here, in-depth protein characterization is demonstrated by direct injection of intact protein mixtures via on-line coupling MMS with capillary C4 liquid chromatography (LC) containing UV windows (UVLC-MMS) through an enzyme introduction tee. We showed complete sets of peptides of individual proteins (hemoglobin, bovine serum albumin, and ribonuclease A) in a mixture could be obtained in one injection. Such full (100%) sequence coverage, however, could not be achieved by conventional nanoLC-MS method using bottom-up approach with single enzyme. Moreover, direct injection of a chaperone α-crystalline (α-Cry) complex yielded identification of post-translational modifications including novel sites and semi-quantitative characterization including 3:1 stoichiometry ratio of αA- and αB-Cry sub-units and ∼1.4 phosphorylation/subunit on S45 (novel site) and S122 (main site) of αA-Cry, ∼0.7 phosphorylation/subunit on S19 (main site) and S45 of αB-Cry, as well as 100% acetylation on both N-termini of each subunits by matching the mass and retention time of the intact and its digested peptides. Furthermore, trifluoroacetic acid was able to be used in the mobile phase with UVLC-MMS to improve the separation of differentially reduced intact species and detectability of the droplet-digested products. This allowed us to completely map four disulfide linkages of ribonuclease A based on collision-induced dissociation of disulfide clusters, some of which would otherwise not be detected, preventing scrambling or shuffling errors arising from lengthy bulk solution digestion by the bottom-up approach. Integration of UVLC and MMS greatly improves droplet digestion efficiency and MS detection, enabling highly efficient workflow for in-depth and accurate protein characterization.
Collapse
Affiliation(s)
- Chin-Ming Kuo
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hung-Hsiang Jen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Fung-Yu Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tai-Hong Ou
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kang-Yu Liu
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Jung-Lee Lin
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Shu-Hui Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
2
|
Benndorf R, Velazquez R, Zehr JD, Pond SLK, Martin JL, Lucaci AG. Human HspB1, HspB3, HspB5 and HspB8: Shaping these disease factors during vertebrate evolution. Cell Stress Chaperones 2022; 27:309-323. [PMID: 35678958 PMCID: PMC9346038 DOI: 10.1007/s12192-022-01268-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/05/2022] Open
Abstract
Small heat shock proteins (sHSPs) emerged early in evolution and occur in all domains of life and nearly in all species, including humans. Mutations in four sHSPs (HspB1, HspB3, HspB5, HspB8) are associated with neuromuscular disorders. The aim of this study is to investigate the evolutionary forces shaping these sHSPs during vertebrate evolution. We performed comparative evolutionary analyses on a set of orthologous sHSP sequences, based on the ratio of non-synonymous: synonymous substitution rates for each codon. We found that these sHSPs had been historically exposed to different degrees of purifying selection, decreasing in this order: HspB8 > HspB1, HspB5 > HspB3. Within each sHSP, regions with different degrees of purifying selection can be discerned, resulting in characteristic selective pressure profiles. The conserved α-crystallin domains were exposed to the most stringent purifying selection compared to the flanking regions, supporting a 'dimorphic pattern' of evolution. Thus, during vertebrate evolution the different sequence partitions were exposed to different and measurable degrees of selective pressures. Among the disease-associated mutations, most are missense mutations primarily in HspB1 and to a lesser extent in the other sHSPs. Our data provide an explanation for this disparate incidence. Contrary to the expectation, most missense mutations cause dominant disease phenotypes. Theoretical considerations support a connection between the historic exposure of these sHSP genes to a high degree of purifying selection and the unusual prevalence of genetic dominance of the associated disease phenotypes. Our study puts the genetics of inheritable sHSP-borne diseases into the context of vertebrate evolution.
Collapse
Affiliation(s)
| | - Ryan Velazquez
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Jordan D. Zehr
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Sergei L. Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| | - Jody L. Martin
- Cell and Molecular Core, Cardiovascular Research Institute, University of California at Davis, Davis, CA USA
| | - Alexander G. Lucaci
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
3
|
Tikhomirova TS, Selivanova OM, Galzitskaya OV. α-Crystallins are small heat shock proteins: Functional and structural properties. BIOCHEMISTRY (MOSCOW) 2017; 82:106-121. [DOI: 10.1134/s0006297917020031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
4
|
Koteiche HA, Claxton DP, Mishra S, Stein RA, McDonald ET, Mchaourab HS. Species-Specific Structural and Functional Divergence of α-Crystallins: Zebrafish αBa- and Rodent αA(ins)-Crystallin Encode Activated Chaperones. Biochemistry 2015; 54:5949-58. [PMID: 26378715 DOI: 10.1021/acs.biochem.5b00678] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In addition to contributing to lens optical properties, the α-crystallins are small heat shock proteins that possess chaperone activity and are predicted to bind and sequester destabilized proteins to delay cataract formation. The current model of α-crystallin chaperone mechanism envisions a transition from the native oligomer to an activated form that has higher affinity to non-native states of the substrate. Previous studies have suggested that this oligomeric plasticity is encoded in the primary sequence and controls access to high affinity binding sites within the N-terminal domain. Here, we further examined the role of sequence variation in the context of species-specific α-crystallins from rat and zebrafish. Alternative splicing of the αA gene in rodents produces αA(ins), which is distinguished by a longer N-terminal domain. The zebrafish genome includes duplicate αB-crystallin genes, αBa and αBb, which display divergent primary sequence and tissue expression patterns. Equilibrium binding experiments were employed to quantitatively define chaperone interactions with a destabilized model substrate, T4 lysozyme. In combination with multiangle light scattering, we show that rat αA(ins) and zebrafish α-crystallins display distinct global structural properties and chaperone activities. Notably, we find that αA(ins) and αBa demonstrate substantially enhanced chaperone function relative to other α-crystallins, binding the same substrate more than 2 orders of magnitude higher affinity and mimicking the activity of fully activated mammalian small heat shock proteins. These results emphasize the role of sequence divergence as an evolutionary strategy to tune chaperone function to the requirements of the tissues and organisms in which they are expressed.
Collapse
Affiliation(s)
- Hanane A Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | - Sanjay Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | - Ezelle T McDonald
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine , Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Wang L, Zhao WC, Yin XL, Ge JY, Bu ZG, Ge HY, Meng QF, Liu P. Lens proteomics: analysis of rat crystallins when lenses are exposed to dexamethasone. MOLECULAR BIOSYSTEMS 2012; 8:888-901. [PMID: 22269969 DOI: 10.1039/c2mb05463a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To identify glucocorticoid induced cataract (GIC)-specific modified crystallins and related changes, we analyzed rat crystallins and related changes in lenses exposed to dexamethasone (Dex). To carry out proteomics analyses, we separated soluble lens proteins with two-dimensional electrophoresis (2-DE) and modified crystallins were analyzed with matrix assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF-MS/MS). Related changes in mRNA, protein levels and morphological and functional changes of modified crystallins were also determined. Measured masses (except for γD-crystallin as the larger and cross-link form), the isoelectric points (PIs; except for βB3-crystallin as the alkalinization form) and amino acid sequences of all known rat crystallins matched previously reported data. Analysis by 2-DE indicated that αA, αB, βB3 and γD increased when lenses were exposed to 5 μM Dex; βA4 increased when lenses were exposed to 1 μM Dex and the five proteins that had the highest expressional trend were identical with the results of Q-PCR. βA3/A1 crystallin (expressional trend identical with results of Q-PCR) and the serum albumin precursor gradually disappeared when exposed to 1-50 μM Dex. Results of Western blotting, immunohistochemistry or fluorescence analysis showed that αA and αB increased most when exposed to 5 μM Dex and βA1/A3 and KI-67 decreased obviously when exposed to 1-50 μM Dex. Electron microscopy showed that the condition of the lens was better when lenses were exposed to 5 μM Dex than at other levels and cracks between the fiber cells became larger when lenses were exposed to 1-50 μM Dex. A chaperone role of α-crystallin protecting heated catalase (CAT) and the activity of superoxide dismutase (SOD), glutathione (GSH), and caspase-3 were highest when exposed to 5 μM Dex. Moreover, αA-crystallins were associated with increased phosphorylation (PI decreased). In conclusion, the proteomics analysis and related changes of rat crystallins when lenses were exposed to Dex in this study will be useful for comparison with normal lens proteins and GIC. We also provided a mechanism for GIC from a proteomics aspect based on the in vitro model.
Collapse
Affiliation(s)
- Lin Wang
- Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hilton GR, Lioe H, Stengel F, Baldwin AJ, Benesch JLP. Small heat-shock proteins: paramedics of the cell. Top Curr Chem (Cham) 2012; 328:69-98. [PMID: 22576357 DOI: 10.1007/128_2012_324] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The small heat-shock proteins (sHSPs) comprise a family of molecular chaperones which are widespread but poorly understood. Despite considerable effort, comparatively few high-resolution structures have been determined for the sHSPs, a likely consequence of their tendency to populate ensembles of inter-converting conformational and oligomeric states at equilibrium. This dynamic structure appears to underpin the sHSPs' ability to bind and sequester target proteins rapidly, and renders them the first line of defence against protein aggregation during disease and cellular stress. Here we describe recent studies on the sHSPs, with a particular focus on those which have provided insight into the structure and dynamics of these proteins. The combined literature reveals a picture of a remarkable family of molecular chaperones whose thermodynamic and kinetic properties are exquisitely balanced to allow functional regulation by subtle changes in cellular conditions.
Collapse
|
7
|
Chen Y, Yi L, Yan G, Fang Y, Jang Y, Wu X, Zhou X, Wei L. alpha-Lipoic acid alters post-translational modifications and protects the chaperone activity of lens alpha-crystallin in naphthalene-induced cataract. Curr Eye Res 2010; 35:620-30. [PMID: 20597648 DOI: 10.3109/02713681003768211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To evaluate whether alpha-lipoic acid (LA) inhibits lens opacity of naphthalene-induced cataract by altering post-translational modifications (PTMs) and protecting the chaperone activity of alpha-crystallins. METHODS Forty-five Sprague-Dawley rats were divided into three groups: control, naphthalene, and naphthalene plus LA. Cataracts were induced by oral administration of 1 g naphthalene/kg body weight/day. Rats in the naphthalene plus LA group were also fed 30 mg LA/day. The development of naphthalene-initiated cataract was monitored every week by slit lamp microscopy for nine weeks, then the lens proteins were separated by HPLC, and peaks corresponding to alpha-crystallins were resolved on 2-DE. The spots of 2-DE were subjected to mass spectrometry to identify PTMs. Chaperone activity of alpha-crystallins was measured by heat-induced aggregation of betaL-crystallin. RESULTS The lenses of rats fed with naphthalene plus LA exhibited less light scattering than that fed with only naphthalene at three weeks after treatment (P < 0.01). C-terminal truncated alphaA crystallin was detected in naphthalene-induced cataract and was abrogated by LA treatment. Several other post-translational modifications were identified including methylation, phosphorylation, acetylation, carbamylation, and oxidation. CONCLUSIONS Our data are the first to show PTM changes induced by naphthalene in rat lenses. Our findings also indicate that LA can inhibit naphthalene-induced lens opacity by altering PTM and protecting the chaperone activity of alpha-crystallins.
Collapse
Affiliation(s)
- Yan Chen
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ecroyd H, Carver JA. The effect of small molecules in modulating the chaperone activity of αB-crystallin against ordered and disordered protein aggregation. FEBS J 2008; 275:935-47. [DOI: 10.1111/j.1742-4658.2008.06257.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Ecroyd H, Meehan S, Horwitz J, Aquilina J, Benesch J, Robinson C, Macphee C, Carver J. Mimicking phosphorylation of alphaB-crystallin affects its chaperone activity. Biochem J 2007; 401:129-41. [PMID: 16928191 PMCID: PMC1698675 DOI: 10.1042/bj20060981] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AlphaB-crystallin is a member of the sHsp (small heat-shock protein) family that prevents misfolded target proteins from aggregating and precipitating. Phosphorylation at three serine residues (Ser19, Ser45 and Ser59) is a major post-translational modification that occurs to alphaB-crystallin. In the present study, we produced recombinant proteins designed to mimic phosphorylation of alphaB-crystallin by incorporating a negative charge at these sites. We employed these mimics to undertake a mechanistic and structural investigation of the effect of phosphorylation on the chaperone activity of alphaB-crystallin to protect against two types of protein misfolding, i.e. amorphous aggregation and amyloid fibril assembly. We show that mimicking phosphorylation of alphaB-crystallin results in more efficient chaperone activity against both heat-induced and reduction-induced amorphous aggregation of target proteins. Mimick-ing phosphorylation increased the chaperone activity of alphaB-crystallin against one amyloid-forming target protein (kappa-casein), but decreased it against another (ccbeta-Trp peptide). We observed that both target protein identity and solution (buffer) conditions are critical factors in determining the relative chaperone ability of wild-type and phosphorylated alphaB-crystallins. The present study provides evidence for the regulation of the chaperone activity of alphaB-crystallin by phosphorylation and indicates that this may play an important role in alleviating the pathogenic effects associated with protein conformational diseases.
Collapse
Affiliation(s)
- Heath Ecroyd
- *School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah Meehan
- *School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
| | - Joseph Horwitz
- †Jules Stein Institute, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095-7008, U.S.A
| | - J. Andrew Aquilina
- ‡School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | - Carol V. Robinson
- §Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Cait E. Macphee
- ∥The Biological and Soft Systems Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - John A. Carver
- *School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
10
|
Schaefer H, Chamrad DC, Herrmann M, Stuwe J, Becker G, Klose J, Blueggel M, Meyer HE, Marcus K. Study of posttranslational modifications in lenticular αA-Crystallin of mice using proteomic analysis techniques. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1948-62. [PMID: 17157567 DOI: 10.1016/j.bbapap.2006.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/09/2006] [Accepted: 10/09/2006] [Indexed: 11/19/2022]
Abstract
In the present work the complexity in the 2D-gel protein pattern of murin lenticular alphaA-Crystallin was analyzed. An in depth study of the different protein isoforms was done combining different proteomic tools. Lens proteins of four different ages, from embryo to 100-week-old mice, were separated by large 2D-PAGE, revealing an increase in the number and intensity of the spots of alphaA-Crystallin during the process of aging. For further analyses the oldest mice were chosen. Comparison and evaluation of two different staining methods proved Imidazole-Zinc to be a good alternative to the generally used Coomassie stain. The characterization of the different alphaA-Crystallin protein species was done using nanoLC-ESI-MS/MS (liquid chromatography electrospray ionisation tandem mass spectrometry). Data interpretation was done by database searching, manual validation and a new MS/MS-interpretation tool for posttranslational modifications--the PTM-Explorer. Using this way, eight different phosphorylation sites were identified and localized; the identification of four of them was not published so far. Furthermore, quantitative N-terminal acetylation of alphaA-Crystallin and variable C-terminal truncation was observed, also not published in this extent yet. The results of the mass spectrometric analysis were validated by immunoblotting experiments using two different alphaA-Crystallin specific antibodies. In addition, a fluorescent phospho-specific stain was used to detect the protein spots including phosphorylation groups. Re-separation 2D-PAGE was done to round off the present study and explain the appearance of some of the protein spots in the gel as artifacts of the 2D-PAGE separation.
Collapse
MESH Headings
- Aging
- Amino Acid Sequence
- Animals
- Chromatography, Liquid
- Electrophoresis, Gel, Two-Dimensional/methods
- Imidazoles
- Immunoblotting
- Lens, Crystalline/embryology
- Lens, Crystalline/growth & development
- Lens, Crystalline/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Phosphoproteins/analysis
- Phosphorylation
- Protein Processing, Post-Translational
- Proteomics/methods
- Rosaniline Dyes
- Spectrometry, Mass, Electrospray Ionization
- Staining and Labeling
- Tandem Mass Spectrometry
- Zinc
- alpha-Crystallin A Chain/metabolism
Collapse
Affiliation(s)
- Heike Schaefer
- Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstr.150, 44801 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Garcia-Barreno P, Guisasola MC, Suarez A. Fluorescent and compositional changes in crystallin supramolecular structures in pig lens during development. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:179-85. [PMID: 15908249 DOI: 10.1016/j.cbpc.2005.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 02/21/2005] [Accepted: 02/21/2005] [Indexed: 11/18/2022]
Abstract
Water soluble proteins (WSPs) in Sus scrofa lenses from pigs in different developmental stages: (young (GI), young adult (GII), and middle-aged (GIII)) were separated using GF-HPLC, yielding fractions of different molecular weights. Non-tryptophan (345/420 nm) and tryptophan (280/345 nm) fluorescence was measured in these fractions. Relative non-tryptophan fluorescence increased with age at a rate directly correlated to the molecular weight of aggregates forming the different chromatographic fractions, while tryptophan fluorescence tended to decrease. The crystallins constituting each fraction were separated using 2D-electrophoresis and after development with Coomassie blue they were identified using MS-TOF. Also, the protein content of each spot was quantified by subsequent scanning and integration. The proportions of unchanged crystallins characteristically changed with age in chromatographic fractions of different molecular weights. Thus it was possible to relate these changes with those occurring in the fluorescent properties and molecular weight of supramolecular structures.
Collapse
Affiliation(s)
- P Garcia-Barreno
- Unidad de Medicina y Cirugia Experimental, Hospital General, Universitario Gregorio Marañón, Doctor Esquerdo, 46, 28007, Madrid, Spain
| | | | | |
Collapse
|
12
|
Abraham Spector Bibliography. Exp Eye Res 2004. [DOI: 10.1016/j.exer.2004.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Koteiche HA, McHaourab HS. Mechanism of chaperone function in small heat-shock proteins. Phosphorylation-induced activation of two-mode binding in alphaB-crystallin. J Biol Chem 2003; 278:10361-7. [PMID: 12529319 DOI: 10.1074/jbc.m211851200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The consequences of alphaB-crystallin phosphorylation on its chaperone activity were investigated using a detailed analysis of the recognition and binding of destabilized T4 lysozyme (T4L) mutants by alphaB-crystallin phosphorylation mimics containing combinations of serine to aspartate substitutions. The T4L site-directed mutants were selected to constitute an energetic ladder of progressively destabilized proteins having similar structures in the folded state. alphaB-crystallin and its variants differentially recognize the T4L mutants, binding the more destabilized ones to a larger extent. Furthermore, the aspartate substitutions result in an increase in the extent of binding to the same T4L mutant and in the appearance of biphasic binding isotherms. The latter indicates the presence of two modes of binding characterized by different affinities and different numbers of binding sites. The transition to two-mode binding can also be induced by temperature or pH activation of the second mode. The similarity between the phosphorylation, pH, and temperature effects suggests a common structural origin. The location of the phosphorylation sites in the N-terminal domain and the hypothesized burial of this domain in the core of the oligomeric structure are consistent with a critical role for the destabilization of the quaternary structure in the process of recognition and binding by small heat-shock proteins.
Collapse
Affiliation(s)
- Hanane A Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
14
|
Altered Patterns of Phosphorylation in Cultured Mouse Lenses During Development of Buthionine Sulfoximine Cataracts. Exp Eye Res 2002. [DOI: 10.1006/exer.2002.2008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Wang K, Spector A. ATP causes small heat shock proteins to release denatured protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6335-45. [PMID: 11737188 DOI: 10.1046/j.0014-2956.2001.02580.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small heat-shock proteins (sHSPs) are a ubiquitous family of low molecular mass (15-30 kDa) stress proteins that have been found in all organisms. Under stress, sHSPs such as alpha-crystallin can act as chaperones binding partially denatured proteins and preventing further denaturation and aggregation. Recently, it has been proposed that the function of sHSPs is to stabilize stress-denatured protein and then act cooperatively with other HSPs to renature the partially denatured protein in an ATP-dependent manner. However, the process by which this occurs is obscure. As no significant phosphorylation of alpha-crystallin was observed during the renaturation, the role of ATP is not clear. It is now shown that ATP at normal physiological concentrations causes sHSPs to change their confirmation and release denatured protein, allowing other molecular chaperones such as HSP70 to renature the protein and renew its biological activity. In the absence of ATP, sHSPs such as alpha-crystallin are more efficient than HSP70 in preventing stress-induced protein aggregation. This work also indicates that in mammalian systems at normal cellular ATP concentrations, sHSPs are not effective chaperones.
Collapse
Affiliation(s)
- K Wang
- Department of Ophthalmology, Columbia University, New York 10032, USA.
| | | |
Collapse
|
16
|
Wang K. alpha-B- and alpha-A-crystallin prevent irreversible acidification-induced protein denaturation. Biochem Biophys Res Commun 2001; 287:642-7. [PMID: 11563843 DOI: 10.1006/bbrc.2001.5636] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-Crystallin (alpha), a major structural protein of the mammalian lens, is a large, physically heterogeneous macromolecule with an average molecular weight of approximately 800 kDa and is composed of two 20-kDa polypeptides designated as alphaA and alphaB. A line of evidence strongly suggests that alphaB may have an essential nonlenticular function. Here it is demonstrated that alphaB can bind partially denatured enzymes effectively at acidic pH and prevent their irreversible aggregation, but cannot prevent loss of enzyme activity. However, when the inactive luciferase bound to alphaB was treated with reticulocyte lysate (a rich source of molecular chaperones) and an ATP-generating system, more than 50% of the original luciferase activity could be recovered. Somewhat less activation was observed when alphaA-bound enzyme or the alpha-bound enzyme was renatured similarly. The overall results suggest that alpha acts as a chaperone to stabilize denaturing proteins at acidic pH so that at a later time they can be reactivated by other chaperones.
Collapse
Affiliation(s)
- K Wang
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|
17
|
Avivi A, Joel A, Nevo E. The lens protein alpha-B-crystallin of the blind subterranean mole-rat: high homology with sighted mammals. Gene 2001; 264:45-9. [PMID: 11245977 DOI: 10.1016/s0378-1119(00)00603-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Blind subterranean mole rats, Spalax ehrenbergi, retain a subcutaneous, degenerated eye, which is visually non-functional but which does function in circadian entrainment. Crystallins, members of the small heat shock protein family, constitute approximately 90% of the water-soluble proteins of the transparent eye lens and are crucial for its optical properties, but they are also expressed in other tissues. In our attempt to understand the role of the eye in the blind mole-rat, we now describe the cloning, sequencing, and expression of the cDNA of alpha-B-Crystallin from two species of Spalax (S. galili and S. Judaei, with diploid chromosome numbers 2n=52 and 60, respectively). Spalax alpha- B-Crystallin is highly conserved. It is expressed in many tissues of Spalax, among them Spalax eye. The sequence of the cDNA of alpha-B-Crystallin in the eye and in the heart of Spalax is identical. Further studies are essential to clarify the role of this gene in the lens of an atrophied eye of a visually blind mammal.
Collapse
Affiliation(s)
- A Avivi
- Laboratory of Molecular Evolution of Animals, Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| | | | | |
Collapse
|