1
|
Guest JD, Santamaria AJ, Solano JP, de Rivero Vaccari JP, Dietrich WD, Pearse DD, Khan A, Levi AD. Challenges in advancing Schwann cell transplantation for spinal cord injury repair. Cytotherapy 2025; 27:36-50. [PMID: 39387736 DOI: 10.1016/j.jcyt.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AIMS In this article we aimed to provide an expert synthesis of the current status of Schwann cell (SC)therapeutics and potential steps to increase their clinical utility. METHODS We provide an expert synthesis based on preclinical, clinical and manufacturing experience. RESULTS Schwann cells (SCs) are essential for peripheral nerve regeneration and are of interest in supporting axonal repair after spinal cord injury (SCI). SCs can be isolated and cultivated in tissue culture from adult nerve biopsies or generated from precursors and neural progenitors using specific differentiation protocols leading to expanded quantities. In culture, they undergo dedifferentiation to a state similar to "repair" SCs. The known repertoire of SC functions is increasing beyond axon maintenance, myelination, and axonal regeneration to include immunologic regulation and the release of potentially therapeutic extracellular vesicles. Recently, autologous human SC cultures purified under cGMP conditions have been tested in both nerve repair and subacute and chronic SCI clinical trials. Although the effects of SCs to support nerve regeneration are indisputable, their efficacy for clinical SCI has been limited according to the outcomes examined. CONCLUSIONS This review discusses the current limitations of transplanted SCs within the damaged spinal cord environment. Limitations include limited post-transplant cell survival, the inability of SCs to migrate within astrocytic parenchyma, and restricted axonal regeneration out of SC-rich graft regions. We describe steps to amplify the survival and integration of transplanted SCs and to expand the repertoire of uses of SCs, including SC-derived extracellular vesicles. The relative merits of transplanting autologous versus allogeneic SCs and the role that endogenous SCs play in spinal cord repair are described. Finally, we briefly describe the issues requiring solutions to scale up SC manufacturing for commercial use.
Collapse
Affiliation(s)
- James D Guest
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P Solano
- Pediatric Critical Care, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Juan P de Rivero Vaccari
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - William D Dietrich
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Damien D Pearse
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Aisha Khan
- The Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Allan D Levi
- The Miami Project to Cure Paralysis and Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Dill-Macky AS, Lee EN, Wertheim JA, Koss KM. Glia in tissue engineering: From biomaterial tools to transplantation. Acta Biomater 2024; 190:24-49. [PMID: 39396630 DOI: 10.1016/j.actbio.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Glia are imperative in nearly every function of the nervous system, including neurotransmission, neuronal repair, development, immunity, and myelination. Recently, the reparative roles of glia in the central and peripheral nervous systems have been elucidated, suggesting a tremendous potential for these cells as novel treatments to central nervous system disorders. Glial cells often behave as 'double-edged swords' in neuroinflammation, ultimately deciding the life or death of resident cells. Compared to glia, neuronal cells have limited mobility, lack the ability to divide and self-renew, and are generally more delicate. Glia have been candidates for therapeutic use in many successful grafting studies, which have been largely focused on restoring myelin with Schwann cells, olfactory ensheathing glia, and oligodendrocytes with support from astrocytes. However, few therapeutics of this class have succeeded past clinical trials. Several tools and materials are being developed to understand and re-engineer these grafting concepts for greater success, such as extra cellular matrix-based scaffolds, bioactive peptides, biomolecular delivery systems, biomolecular discovery for neuroinflammatory mediation, composite microstructures such as artificial channels for cell trafficking, and graft enhanced electrical stimulation. Furthermore, advances in stem cell-derived cortical/cerebral organoid differentiation protocols have allowed for the generation of patient-derived glia comparable to those acquired from tissues requiring highly invasive procedures or are otherwise inaccessible. However, research on bioengineered tools that manipulate glial cells is nowhere near as comprehensive as that for systems of neurons and neural stem cells. This article explores the therapeutic potential of glia in transplantation with an emphasis on novel bioengineered tools for enhancement of their reparative properties. STATEMENT OF SIGNIFICANCE: Neural glia are responsible for a host of developmental, homeostatic, and reparative roles in the central nervous system but are often a major cause of tissue damage and cellular loss in insults and degenerative pathologies. Most glial grafts have employed Schwann cells for remyelination, but other glial with novel biomaterials have been employed, emphasizing their diverse functionality. Promising strategies have emerged, including neuroimmune mediation of glial scar tissues and facilitated migration and differentiation of stem cells for neural replacement. Herein, a comprehensive review of biomaterial tools for glia in transplantation is presented, highlighting Schwann cells, astrocytes, olfactory ensheating glia, oligodendrocytes, microglia, and ependymal cells.
Collapse
Affiliation(s)
- A S Dill-Macky
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - E N Lee
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - J A Wertheim
- Department of Surgery, University of Arizona, 1501 N Campbell Ave, Tucson, AZ 85724, United States
| | - K M Koss
- Department of Neurobiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0625, United States; Sealy Institute for Drug Discovery, University of Texas Medical Branch, 105 11th Street Galveston, TX 77555-1110, United States.
| |
Collapse
|
3
|
Nasiry D, Khalatbary AR. Stem cell-derived extracellular vesicle-based therapy for nerve injury: A review of the molecular mechanisms. World Neurosurg X 2023; 19:100201. [PMID: 37181584 PMCID: PMC10173266 DOI: 10.1016/j.wnsx.2023.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Recent evidence suggests that stem cell therapy has beneficial effects on nerve damage. These beneficial effects were subsequently found to be exerted in part in a paracrine manner by the release of extracellular vesicles. Stem cell-secreted extracellular vesicles have shown great potential to reduce inflammation and apoptosis, optimize the function of Schwann cells, regulate genes related to regeneration, and improve behavioral performance after nerve damage. This review summarizes the current knowledge on the effect of stem cell-derived extracellular vesicles on neuroprotection and regeneration along with their molecular mechanisms after nerve damage.
Collapse
Affiliation(s)
- Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Khalatbary
- Cellular and Molecular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Corresponding author.
| |
Collapse
|
4
|
Ma X, Yang W, Nie P, Zhang Z, Chen Z, Wei H. Implantation of skin-derived precursor Schwann cells improves erectile function in a bilateral cavernous nerve injury rat model. Basic Clin Androl 2023; 33:11. [PMID: 37198550 DOI: 10.1186/s12610-023-00187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/12/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND This study was conducted to investigate the therapeutic potential of the skin-derived precursor Schwann cells for the treatment of erectile dysfunction in a rat model of bilateral cavernous nerve injury. RESULTS The skin-derived precursor Schwann cells-treatment significantly restored erectile functions, accelerated the recovery of endothelial and smooth muscle tissues in the penis, and promoted nerve repair. The expression of p-Smad2/3 decreased after the treatment, which indicated significantly reduced fibrosis in the corpus cavernosum. CONCLUSIONS Implantation of skin-derived precursor Schwann cells is an effective therapeutic strategy for treating erectile dysfunction induced by bilateral cavernous nerve injury.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Pan Nie
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Zhenbin Zhang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Zehong Chen
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
6
|
Errante EL, Diaz A, Smartz T, Khan A, Silvera R, Brooks AE, Lee YS, Burks SS, Levi AD. Optimal Technique for Introducing Schwann Cells Into Peripheral Nerve Repair Sites. Front Cell Neurosci 2022; 16:929494. [PMID: 35846565 PMCID: PMC9283978 DOI: 10.3389/fncel.2022.929494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injury (PNI) is found in a relatively large portion of trauma patients. If the injury is severe, such as with the presence of a long segmental gap, PNI can present a challenge for treatment. The current clinical standard of nerve harvest for the repair of long segmental gap PNI can lead to many potential complications. While other methods have been utilized, recent evidence indicates the relevance of cell therapies, particularly through the use of Schwann cells, for the treatment of PNI. Schwann cells (SCs) are integral in the regeneration and restoration of function following PNI. SCs are able to dedifferentiate and proliferate, remove myelin and axonal debris, and are supportive in axonal regeneration. Our laboratory has demonstrated that SCs are effective in the treatment of severe PNI when axon guidance channels are utilized. However, in order for this treatment to be effective, optimal techniques for cellular placement must be used. Thus, here we provide relevant background information, preclinical, and clinical evidence for our method in the treatment of severe PNI through the use of SCs and axon guidance channels.
Collapse
Affiliation(s)
- Emily L. Errante
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anthony Diaz
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Taylor Smartz
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Aisha Khan
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Risset Silvera
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Adriana E. Brooks
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yee-Shuan Lee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - S. Shelby Burks
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Allan D. Levi
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Allan D. Levi
| |
Collapse
|
7
|
Gant KL, Guest JD, Palermo AE, Vedantam A, Jimsheleishvili G, Bunge MB, Brooks AE, Anderson KD, Thomas CK, Santamaria AJ, Perez MA, Curiel R, Nash MS, Saraf-Lavi E, Pearse DD, Widerström-Noga E, Khan A, Dietrich WD, Levi AD. Phase 1 Safety Trial of Autologous Human Schwann Cell Transplantation in Chronic Spinal Cord Injury. J Neurotrauma 2022; 39:285-299. [PMID: 33757304 PMCID: PMC9360180 DOI: 10.1089/neu.2020.7590] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A phase 1 open-label, non-randomized clinical trial was conducted to determine feasibility and safety of autologous human Schwann cell (ahSC) transplantation accompanied by rehabilitation in participants with chronic spinal cord injury (SCI). Magnetic resonance imaging (MRI) was used to screen eligible participants to estimate an individualized volume of cell suspension to be implanted. The trial incorporated standardized multi-modal rehabilitation before and after cell delivery. Participants underwent sural nerve harvest, and ahSCs were isolated and propagated in culture. The dose of culture-expanded ahSCs injected into the chronic spinal cord lesion of each individual followed a cavity-filling volume approach. Primary outcome measures for safety and trend-toward efficacy were assessed. Two participants with American Spinal Injury Association Impairment Scale (AIS) A and two participants with incomplete chronic SCI (AIS B, C) were each enrolled in cervical and thoracic SCI cohorts (n = 8 total). All participants completed the study per protocol, and no serious adverse events related to sural nerve harvest or ahSC transplantation were reported. Urinary tract infections and skin abrasions were the most common adverse events reported. One participant experienced a 4-point improvement in motor function, a 6-point improvement in sensory function, and a 1-level improvement in neurological level of injury. Follow-up MRI in the cervical (6 months) and thoracic (24 months) cohorts revealed a reduction in cyst volume after transplantation with reduced effect over time. This phase 1 trial demonstrated the feasibility and safety of ahSC transplantation combined with a multi-modal rehabilitation protocol for participants with chronic SCI.
Collapse
Affiliation(s)
- Katie L. Gant
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - James D. Guest
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Neuroscience, University of Miami, Miami, Florida, USA
| | - Anne E. Palermo
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Aditya Vedantam
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - George Jimsheleishvili
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Neuroscience, University of Miami, Miami, Florida, USA
- Department of Cell Biology, University of Miami, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
- Department of Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
| | - Adriana E. Brooks
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
| | - Kim D. Anderson
- Department of Physical Medicine and Rehabilitation, Case Western Reserve University, Metrohealth Medical Center, Cleveland, Ohio, USA
| | - Christine K. Thomas
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Andrea J. Santamaria
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Monica A. Perez
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
- Shirley Ryan AbilityLab, Northwestern University, Edward Hines Jr, VA Hospital, Chicago, Illinois, USA
| | - Rosie Curiel
- Department of Psychiatry, University of Miami, Miami, Florida, USA
| | - Mark S. Nash
- Department of Rehabilitation Medicine, University of Miami, Miami, Florida, USA
| | - Efrat Saraf-Lavi
- Department of Radiology, University of Miami, Miami, Florida, USA
| | - Damien D. Pearse
- Department of Neuroscience, University of Miami, Miami, Florida, USA
- Department of Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
- Shirley Ryan AbilityLab, Northwestern University, Edward Hines Jr, VA Hospital, Chicago, Illinois, USA
| | - Eva Widerström-Noga
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Neuroscience, University of Miami, Miami, Florida, USA
- Department of Rehabilitation Medicine, University of Miami, Miami, Florida, USA
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, USA
| | - Aisha Khan
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
| | - W. Dalton Dietrich
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Neuroscience, University of Miami, Miami, Florida, USA
- Department of Cell Biology, University of Miami, Miami, Florida, USA
- Department of Neurology, University of Miami, Miami, Florida, USA
- Department of Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida, USA
| | - Allan D. Levi
- The Miami Project to Cure Paralysis, University of Miami, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
- Department of Neuroscience, University of Miami, Miami, Florida, USA
| |
Collapse
|
8
|
Monje PV, Deng L, Xu XM. Human Schwann Cell Transplantation for Spinal Cord Injury: Prospects and Challenges in Translational Medicine. Front Cell Neurosci 2021; 15:690894. [PMID: 34220455 PMCID: PMC8249939 DOI: 10.3389/fncel.2021.690894] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023] Open
Abstract
The benefits of transplanting cultured Schwann cells (SCs) for the treatment of spinal cord injury (SCI) have been systematically investigated in experimental animals since the early 1990s. Importantly, human SC (hSC) transplantation for SCI has advanced to clinical testing and safety has been established via clinical trials conducted in the USA and abroad. However, multiple barriers must be overcome to enable accessible and effective treatments for SCI patients. This review presents available information on hSC transplantation for SCI with the intention to uncover gaps in our knowledge and discuss areas for future development. To this end, we introduce the historical progression of the work that supports existing and prospective clinical initiatives and explain the reasons for the choice of hSCs while also addressing their limitations as cell therapy products. A search of the relevant literature revealed that rat SCs have served as a preclinical model of reference since the onset of investigations, and that hSC transplants are relatively understudied, possibly due to the sophisticated resources and expertise needed for the traditional processing of hSC cultures from human nerves. In turn, we reason that additional experimentation and a reexamination of the available data are needed to understand the therapeutic value of hSC transplants taking into consideration that the manufacturing of the hSCs themselves may require further development for extended uses in basic research and clinical settings.
Collapse
Affiliation(s)
- Paula V. Monje
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Lingxiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Ahuja CS, Mothe A, Khazaei M, Badhiwala JH, Gilbert EA, van der Kooy D, Morshead CM, Tator C, Fehlings MG. The leading edge: Emerging neuroprotective and neuroregenerative cell-based therapies for spinal cord injury. Stem Cells Transl Med 2020; 9:1509-1530. [PMID: 32691994 PMCID: PMC7695641 DOI: 10.1002/sctm.19-0135] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/01/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injuries (SCIs) are associated with tremendous physical, social, and financial costs for millions of individuals and families worldwide. Rapid delivery of specialized medical and surgical care has reduced mortality; however, long-term functional recovery remains limited. Cell-based therapies represent an exciting neuroprotective and neuroregenerative strategy for SCI. This article summarizes the most promising preclinical and clinical cell approaches to date including transplantation of mesenchymal stem cells, neural stem cells, oligodendrocyte progenitor cells, Schwann cells, and olfactory ensheathing cells, as well as strategies to activate endogenous multipotent cell pools. Throughout, we emphasize the fundamental biology of cell-based therapies, critical features in the pathophysiology of spinal cord injury, and the strengths and limitations of each approach. We also highlight salient completed and ongoing clinical trials worldwide and the bidirectional translation of their findings. We then provide an overview of key adjunct strategies such as trophic factor support to optimize graft survival and differentiation, engineered biomaterials to provide a support scaffold, electrical fields to stimulate migration, and novel approaches to degrade the glial scar. We also discuss important considerations when initiating a clinical trial for a cell therapy such as the logistics of clinical-grade cell line scale-up, cell storage and transportation, and the delivery of cells into humans. We conclude with an outlook on the future of cell-based treatments for SCI and opportunities for interdisciplinary collaboration in the field.
Collapse
Affiliation(s)
- Christopher S. Ahuja
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Andrea Mothe
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Mohamad Khazaei
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Jetan H. Badhiwala
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Emily A. Gilbert
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
| | - Derek van der Kooy
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioCanada
| | - Cindi M. Morshead
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Division of Anatomy, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoOntarioCanada
| | - Charles Tator
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of SurgeryUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department of Genetics and DevelopmentKrembil Research Institute, UHNTorontoOntarioCanada
| |
Collapse
|
10
|
Functionalized nerve conduits for peripheral nerve regeneration: A literature review. HAND SURGERY & REHABILITATION 2020; 39:343-351. [PMID: 32485240 DOI: 10.1016/j.hansur.2020.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022]
Abstract
Functionalized neurotube are a third-generation of conduits with chemical or architectural bioactivity developed for axonal proliferation. The goal of this review is to provide a synopsis of the functionalized nerve conduits described in the literature according to their chemical and architectural properties and answer two questions: what are their mechanisms of action? Has their efficacy been proven compared to the autologous nerve graft? Our literature review relates all kind of conduits corresponding to functionalized neurotubes in peripheral nerve regeneration found in Medline and PubMed Central. Studies developing nerve gaps, chemotactic or structural features promoting each conduit, results, efficiency were selected. Fifty-five studies were selected and classified in: (a) intraluminal neurotrophic factors; (b) cell-based therapy (combined-in-vein muscles, amniotic membrane, Schwann cells, stem cells); (c) extracellular matrix proteins; (d) tissue engineering; (e) bioimplants. Functionalized neurotubes showed significantly better functional results than after end-to-end nerve suture. No studies can be able to show that neurotube results were better than autologous nerve graft results. We included all studies regardless of effectives to evaluate quality of reinnervation with modern tubulization. Functionalized neurotubes promote basic conduits for peripheral nerve regeneration. Thanks to bioengineering and microsurgery improvement, further neurotubes could promote best level of regeneration and functional recovery to successfully bridge a critical nerve gap.
Collapse
|
11
|
Monje PV. The properties of human Schwann cells: Lessons from in vitro culture and transplantation studies. Glia 2020; 68:797-810. [PMID: 32027424 DOI: 10.1002/glia.23793] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 11/10/2022]
Abstract
Human Schwann cells (hSCs) can be isolated directly from peripheral nerve and cultured using methods similar to those used for SCs from other species. Yet, important interspecies differences are revealed when the primary or expanded hSCs are compared to their nonhuman counterparts. This review addresses the special properties of nerve-derived hSCs that have resulted to date from both in vitro studies and in vivo research on cell transplantation in animal models and human subjects. A consensus has yet to emerge about the essential attributes of cultured normal hSCs. Thus, an emphasis is placed on the importance of validating hSC cultures by means of purity, identity, and biological activity to reliably use them as in vitro models of the SC phenotype and cell therapy products for injury repair. Combining traditional immunological methods, high-resolution omics approaches, and assorted cell-based assays is so far the best approach to unequivocally identify hSC populations obtained by direct isolation or derivation from stem cells. Special considerations are required to understand and manage the variability and heterogeneity proper of donor batches, as well as to evaluate risk factors. This is particularly important if the intended use of the hSCs is implantation in the human body, diagnosis of disease, or drug testing aimed at targeting any aspect of SC function in human patients. To conclude, in view of their unique properties, new concepts and methods are needed to better understand the biology of hSCs and exploit their full potential in basic science and regenerative medicine.
Collapse
Affiliation(s)
- Paula V Monje
- The Department of Neurological Surgery, Indiana University, Indianapolis, Indiana
| |
Collapse
|
12
|
Modrak M, Talukder MAH, Gurgenashvili K, Noble M, Elfar JC. Peripheral nerve injury and myelination: Potential therapeutic strategies. J Neurosci Res 2019; 98:780-795. [PMID: 31608497 DOI: 10.1002/jnr.24538] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/30/2019] [Accepted: 09/16/2019] [Indexed: 12/11/2022]
Abstract
Traumatic peripheral nerve injury represents a major clinical and public health problem that often leads to significant functional impairment and permanent disability. Despite modern diagnostic procedures and advanced microsurgical techniques, functional recovery after peripheral nerve repair is often unsatisfactory. Therefore, there is an unmet need for new therapeutic or adjunctive strategies to promote the functional recovery in nerve injury patients. In contrast to the central nervous system, Schwann cells in the peripheral nervous system play a pivotal role in several aspects of nerve repair such as degeneration, remyelination, and axonal growth. Several non-surgical approaches, including pharmacological, electrical, cell-based, and laser therapies, have been employed to promote myelination and enhance functional recovery after peripheral nerve injury. This review will succinctly discuss the potential therapeutic strategies in the context of myelination following peripheral neurotrauma.
Collapse
Affiliation(s)
- Max Modrak
- School of Medicine & Dentistry, The University of Rochester Medical Center, Rochester, New York, USA
| | - M A Hassan Talukder
- Department of Orthopaedics & Rehabilitation, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Khatuna Gurgenashvili
- Department of Neurology, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mark Noble
- Department of Biomedical Genetics, The University of Rochester Medical Center, Rochester, New York, USA
| | - John C Elfar
- Department of Orthopaedics & Rehabilitation, Penn State Hershey College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
13
|
Ko CC, Tu TH, Chen YT, Wu JC, Huang WC, Cheng H. Monkey Recovery from Spinal Cord Hemisection: Nerve Repair Strategies for Rhesus Macaques. World Neurosurg 2019; 129:e343-e351. [PMID: 31132502 DOI: 10.1016/j.wneu.2019.05.145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Repair of spinal cord injury (SCI) using peripheral nerve graft (PNG) and acidic fibroblast growth factor (aFGF) has shown promising results in rats and a few human patients, but not in nonhuman primates. The aim of this study was to verify the effective use of PNG and aFGF for repairing incomplete SCI in nonhuman primates. METHODS Six adult rhesus macaques received spinal cord hemisection at T8 level and were grouped into repair and control groups (n = 3 in each). Animals in the repair group underwent nerve repair with autologous PNG plus aFGF immediately after lesioning. The control group received exactly the same operation for lesioning but no treatment. Postoperative behavioral evaluations, electrophysiologic tests (including motor and somatosensory evoked potentials), and magnetic resonance imaging were performed and compared between the 2 groups as well as histologic examination of the spinal cord cephalic to, at, and caudal to the lesion site after sacrifice. RESULTS Animals in the repair group had better motor function in the lower limbs at every observed time point and demonstrated more improvement on electrophysiologic examinations than the control group. The repair group had smaller areas of myelomalacia on magnetic resonance imaging around the lesion compared with the control group, suggesting diminished inflammatory responses with the repair strategy. CONCLUSIONS PNG plus aFGF for SCI in nonhuman primates yielded improvements in clinical behavior, electrophysiologic tests, and magnetic resonance imaging. This study suggests that the repair strategy is feasible and effective for nonhuman primate SCI. Further investigations are warranted to corroborate its effectiveness for clinical application.
Collapse
Affiliation(s)
- Chin-Chu Ko
- Jhong Jheng Spine & Orthopedic Hospital, Kaohsiung, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Hsi Tu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ya-Tzu Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jau-Ching Wu
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Wen-Cheng Huang
- School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Henrich Cheng
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
|
15
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
16
|
Santamaria AJ, Benavides FD, Padgett KR, Guada LG, Nunez-Gomez Y, Solano JP, Guest JD. Dichotomous Locomotor Recoveries Are Predicted by Acute Changes in Segmental Blood Flow after Thoracic Spinal Contusion Injuries in Pigs. J Neurotrauma 2018; 36:1399-1415. [PMID: 30284945 DOI: 10.1089/neu.2018.6087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuroimaging facilitates the translation of animal pre-clinical research to human application. The large porcine spinal cord is useful for testing invasive interventions. Ideally, the safety and efficacy of a delayed intervention is tested in pigs that have recovered sufficiently after spinal cord injury (SCI) to allow either deterioration or improvement of function to be detected. We set out to create moderate severity T9 injuries in Yucatan minipigs by conducting a bridging study adapting methods previously developed in infant piglets. The injury severity was varied according to two pneumatic impactor parameters: the piston compression depth into tissue or the velocity. To stratify locomotor recovery, a 10-point scale used in prior piglet studies was redefined through longitudinal observations of spontaneous recovery. Using hindlimb body weight support to discriminate injury severity, we found that end-point recovery was strongly bimodal to either non-weight-bearing plegia with reciprocating leg movements (<5/10) or recovery of weight bearing that improved toward a ceiling effect (≥ 8/10). No intermediate recovery animals were observed at 2 months post-injury. The ability of intra-operative ultrasound and acute magnetic resonance imaging (MRI) to provide immediate predictive feedback regarding tissue and vascular changes following SCI was assessed. There was an inverse association between locomotor outcome and early gray matter hemorrhage on MRI and ultrasound. Epicenter blood flow following contusion predicted recovery or non-recovery of weight-bearing. The depth of the dorsal cerebrospinal fluid space, which varied between animals, influenced injury severity and confounded the results in this fixed-stroke paradigm.
Collapse
Affiliation(s)
- Andrea J Santamaria
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Francisco D Benavides
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Kyle R Padgett
- 2 Department of Radiation Oncology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Luis G Guada
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Yohjan Nunez-Gomez
- 3 Department of Pediatrics Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - Juan P Solano
- 3 Department of Pediatrics Critical Care, University of Miami, Miller School of Medicine, Miami, Florida
| | - James D Guest
- 1 The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida.,4 Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Thomas BB, Zhu D, Lin TC, Kim YC, Seiler MJ, Martinez-Camarillo JC, Lin B, Shad Y, Hinton DR, Humayun MS. A new immunodeficient retinal dystrophic rat model for transplantation studies using human-derived cells. Graefes Arch Clin Exp Ophthalmol 2018; 256:2113-2125. [PMID: 30215097 DOI: 10.1007/s00417-018-4134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 08/28/2018] [Accepted: 09/03/2018] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To create new immunodeficient Royal College of Surgeons (RCS) rats by introducing the defective MerTK gene into athymic nude rats. METHODS Female homozygous RCS (RCS-p+/RCS-p+) and male nude rats (Hsd:RH-Foxn1mu, mutation in the foxn1 gene; no T cells) were crossed to produce heterozygous F1 progeny. Double homozygous F2 progeny obtained by crossing the F1 heterozygotes was identified phenotypically (hair loss) and genotypically (RCS-p+ gene determined by PCR). Retinal degenerative status was confirmed by optical coherence tomography (OCT) imaging, electroretinography (ERG), optokinetic (OKN) testing, superior colliculus (SC) electrophysiology, and by histology. The effect of xenografts was assessed by transplantation of human embryonic stem cell-derived retinal pigment epithelium (hESC-RPE) and human-induced pluripotent stem cell-derived RPE (iPS-RPE) into the eye. Morphological analysis was conducted based on hematoxylin and eosin (H&E) and immunostaining. Age-matched pigmented athymic nude rats were used as control. RESULTS Approximately 6% of the F2 pups (11/172) were homozygous for RCS-p+ gene and Foxn1mu gene. Homozygous males crossed with heterozygous females resulted in 50% homozygous progeny for experimentation. OCT imaging demonstrated significant loss of retinal thickness in homozygous rats. H&E staining showed photoreceptor thickness reduced to 1-3 layers at 12 weeks of age. Progressive loss of visual function was evidenced by OKN testing, ERG, and SC electrophysiology. Transplantation experiments demonstrated survival of human-derived cells and absence of apparent immune rejection. CONCLUSIONS This new rat animal model developed by crossing RCS rats and athymic nude rats is suitable for conducting retinal transplantation experiments involving xenografts.
Collapse
Affiliation(s)
- Biju B Thomas
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA.
| | - Danhong Zhu
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tai-Chi Lin
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Young Chang Kim
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Magdalene J Seiler
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Juan Carlos Martinez-Camarillo
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| | - Bin Lin
- Department of Physical Medicine & Rehabilitation, University of California-Irvine, Irvine, CA, USA
- Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA
| | - Yousuf Shad
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - David R Hinton
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Humayun
- Department of Ophthalmology, USC Roski Eye Institute, University of Southern California, Los Angeles, CA, 90033, USA
- USC Institute for Biomedical Therapeutics, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Abstract
Recent advances in neuroscience and devices are ushering in a new generation of medical treatments. Engineered biodevices are demonstrating the potential to create long-term changes in neural circuits, termed neuroplasticity. Thus, the approach of engineering neuroplasticity is rapidly expanding, building on recent demonstrations of improved quality of life for people with movement disorders, epilepsy, and spinal cord injury. In addition, discovering the fundamental mechanisms of engineered neuroplasticity by leveraging anatomically well-documented systems like the spinal cord is likely to provide powerful insights into solutions for other neurotraumas, such as stroke and traumatic brain injury, as well as neurodegenerative disorders, such as Alzheimer's, Parkinson disease, and multiple sclerosis. Now is the time for advancing both the experimental neuroscience, device development, and pioneering human trials to reap the benefits of engineered neuroplasticity as a therapeutic approach for improving quality of life after spinal cord injury.
Collapse
Affiliation(s)
- Chet T Moritz
- Division of Physical Therapy, Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA.
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
- UW Institute of Neuroengineering (UWIN), University of Washington, Seattle, WA, USA.
- Washington Spinal Cord Injury Consortium, University of Washington, Seattle, WA, USA.
- Center for Sensorimotor Neural Engineering, Seattle, WA, USA.
- Department of Electrical Engineering, University of Washington , Box 356490, Seattle, WA, 98195, USA.
| |
Collapse
|
19
|
NT3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc Natl Acad Sci U S A 2018; 115:E5595-E5604. [PMID: 29844162 DOI: 10.1073/pnas.1804735115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Spinal cord injury (SCI) often leads to permanent loss of motor, sensory, and autonomic functions. We have previously shown that neurotrophin3 (NT3)-loaded chitosan biodegradable material allowed for prolonged slow release of NT3 for 14 weeks under physiological conditions. Here we report that NT3-loaded chitosan, when inserted into a 1-cm gap of hemisectioned and excised adult rhesus monkey thoracic spinal cord, elicited robust axonal regeneration. Labeling of cortical motor neurons indicated motor axons in the corticospinal tract not only entered the injury site within the biomaterial but also grew across the 1-cm-long lesion area and into the distal spinal cord. Through a combination of magnetic resonance diffusion tensor imaging, functional MRI, electrophysiology, and kinematics-based quantitative walking behavioral analyses, we demonstrated that NT3-chitosan enabled robust neural regeneration accompanied by motor and sensory functional recovery. Given that monkeys and humans share similar genetics and physiology, our method is likely translatable to human SCI repair.
Collapse
|
20
|
Lee YS, Funk LH, Lee JK, Bunge MB. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury. Neural Regen Res 2018; 13:684-691. [PMID: 29722321 PMCID: PMC5950679 DOI: 10.4103/1673-5374.230295] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2018] [Indexed: 01/07/2023] Open
Abstract
Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage depletion does improve histopathology of the injury site, the effect on axon growth and behavioral recovery appears no better than what can be achieved with Schwann cell transplants alone.
Collapse
Affiliation(s)
- Yee-Shuan Lee
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucy H. Funk
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jae K. Lee
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
21
|
Liu C, Kray J, Chan C. Schwann Cells Enhance Penetration of Regenerated Axons into Three-Dimensional Microchannels. Tissue Eng Regen Med 2018; 15:351-361. [PMID: 30603560 DOI: 10.1007/s13770-018-0115-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 01/03/2023] Open
Abstract
Nerve regeneration after injury requires proper axon alignment to bridge the lesion site and myelination to achieve functional recovery. Transplanted scaffolds with aligned channels, have been shown to induce axon growth to some extent. However, the penetration of axons into the microchannels remain a challenge, influencing the functional recovery of regenerated nerves. We previously demonstrated that the size of microchannels exerts significant impact on Schwann cells (SCs) migration. Here we demonstrate that migration of SCs promotes, significantly, the dorsal root ganglion (DRG) neurons to extend axons into three-dimensional channels and form aligned fascicular-like axon tracts. Moreover, the migrating SCs attach and wrap around the aligned axons of DRG neurons in the microchannels and initiate myelination. The SCs release growth factors that provide chemotactic signals to the regenerating axons, similar to the response achieved with nerve growth factor (NGF), but with the additional capability of promoting myelination, thereby demonstrating the beneficial effects of including SCs over NGF alone in enhancing axon penetration and myelination in three-dimensional microchannels.
Collapse
Affiliation(s)
- Chun Liu
- 1Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw, 2100EB, Lane, East Lansing, MI 48824 USA.,3Present Address: Center for Molecular Imaging, Department of Radiology, Medical School, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109 USA
| | - Jeremy Kray
- 1Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw, 2100EB, Lane, East Lansing, MI 48824 USA
| | - Christina Chan
- 1Department of Chemical Engineering and Materials Science, Michigan State University, 428 S. Shaw, 2100EB, Lane, East Lansing, MI 48824 USA.,2Department of Biochemistry and Molecular Biology, Michigan State University, 428 S. Shaw Lane, 2100EB, East Lansing, MI 48824 USA
| |
Collapse
|
22
|
Abstract
Cell transplant-mediated tissue repair of the damaged spinal cord is being tested in several clinical trials. The current candidates are neural stem cells, stromal cells, and autologous Schwann cells (aSC). Due to their peripheral origin and limited penetration of astrocytic regions, aSC are transplanted intralesionally as compared to neural stem cells that are transplanted into intact spinal cord. Injections into either location can cause iatrogenic injury, and thus technical precision is important in the therapeutic risk-benefit equation. In this chapter, we discuss how we bridged from transplant studies in large animals to human application for two Phase 1 aSC transplant studies, one subacute and one chronic. Preclinical SC transplant studies conducted at the University of Miami in 2009-2012 in rodents, minipigs, and primates supported a successful Investigational New Drug (IND) submission for a Phase 1 trial in subacute complete spinal cord injury (SCI). Our studies optimized the safety and efficiency of intralesional cell delivery for subacute human SCI and led to the development of new simpler techniques for cell delivery into subjects with chronic SCI. Key parameters of delivery methodology include precision localization of the injury site, stereotaxic devices to control needle trajectory, method of entry into the spinal cord, spinal cord motion reduction, the volume and density of the cell suspension, rate of delivery, and control of shear stresses on cells.
Collapse
|
23
|
Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 2017; 9:1125-1137. [PMID: 27736748 PMCID: PMC5087825 DOI: 10.1242/dmm.025833] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. Summary: In this Review, we discuss the advantages and disadvantages of the rat for studies of experimental spinal cord injury and summarize the knowledge gained from such studies.
Collapse
Affiliation(s)
- Jacob Kjell
- Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich 80336, Germany
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
24
|
DePaul MA, Lin CY, Silver J, Lee YS. Combinatory repair strategy to promote axon regeneration and functional recovery after chronic spinal cord injury. Sci Rep 2017; 7:9018. [PMID: 28827771 PMCID: PMC5567101 DOI: 10.1038/s41598-017-09432-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/26/2017] [Indexed: 01/08/2023] Open
Abstract
Eight weeks post contusive spinal cord injury, we built a peripheral nerve graft bridge (PNG) through the cystic cavity and treated the graft/host interface with acidic fibroblast growth factor (aFGF) and chondroitinase ABC (ChABC). This combinatorial strategy remarkably enhanced integration between host astrocytes and graft Schwann cells, allowing for robust growth, especially of catecholaminergic axons, through the graft and back into the distal spinal cord. In the absence of aFGF+ChABC fewer catecholaminergic axons entered the graft, no axons exited, and Schwann cells and astrocytes failed to integrate. In sharp contrast with the acutely bridge-repaired cord, in the chronically repaired cord only low levels of serotonergic axons regenerated into the graft, with no evidence of re-entry back into the spinal cord. The failure of axons to regenerate was strongly correlated with a dramatic increase of SOCS3 expression. While regeneration was more limited overall than at acute stages, our combinatorial strategy in the chronically injured animals prevented a decline in locomotor behavior and bladder physiology outcomes associated with an invasive repair strategy. These results indicate that PNG+aFGF+ChABC treatment of the chronically contused spinal cord can provide a permissive substrate for the regeneration of certain neuronal populations that retain a growth potential over time, and lead to functional improvements.
Collapse
Affiliation(s)
- Marc A DePaul
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Ching-Yi Lin
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Jerry Silver
- Case Western Reserve Univ., Dept. of Neurosciences, 10900 Euclid Ave., SOM E654, Cleveland, OH, 44106, USA
| | - Yu-Shang Lee
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA.
| |
Collapse
|
25
|
Schaal SM, Kitay BM, Cho KS, Lo TP, Barakat DJ, Marcillo AE, Sanchez AR, Andrade CM, Pearse DD. Schwann Cell Transplantation Improves Reticulospinal Axon Growth and Forelimb Strength after Severe Cervical Spinal Cord Contusion. Cell Transplant 2017; 16:207-28. [PMID: 17503734 DOI: 10.3727/000000007783464768] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.
Collapse
Affiliation(s)
- S M Schaal
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Blits B, Boer GJ, Verhaagen J. Pharmacological, Cell, and Gene Therapy Strategies to Promote Spinal Cord Regeneration. Cell Transplant 2017. [DOI: 10.3727/000000002783985521] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neuronal survival and neurite outgrowth have enabled the design of experiments aimed at viral vector-mediated transfer of genes encoding neurotrophic factors, growth-associated proteins, cell adhesion molecules, and antiapoptotic genes. Central to the success of these approaches was the development of efficient, nontoxic vectors for gene delivery and the acquirement of the appropriate (genetically modified) cells for neurotransplantation. Direct gene transfer in the nervous system was first achieved with herpes viral and E1-deleted adenoviral vectors. Both vector systems are problematic in that these vectors elicit immunogenic and cytotoxic responses. Adeno-associated viral vectors and lentiviral vectors constitute improved gene delivery systems and are beginning to be applied in neuroregeneration research of the spinal cord. Ex vivo approaches were initially based on the implantation of genetically modified fibroblasts. More recently, transduced Schwann cells, genetically modified pieces of peripheral nerve, and olfactory ensheathing glia have been used as implants into the injured spinal cord.
Collapse
Affiliation(s)
- Bas Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Gerard J. Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Joost Verhaagen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| |
Collapse
|
27
|
Huber E, Lachappelle P, Sutter R, Curt A, Freund P. Are midsagittal tissue bridges predictive of outcome after cervical spinal cord injury? Ann Neurol 2017; 81:740-748. [DOI: 10.1002/ana.24932] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Eveline Huber
- Spinal Cord Injury Center; Balgrist University Hospital; Zurich Switzerland
| | | | - Reto Sutter
- Radiology; Balgrist University Hospital; Zurich Switzerland
| | - Armin Curt
- Spinal Cord Injury Center; Balgrist University Hospital; Zurich Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center; Balgrist University Hospital; Zurich Switzerland
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology; University College London; London United Kingdom
- Department of Brain Repair and Rehabilitation, UCL Institute of Neurology; University College London; London United Kingdom
- Department of Neurophysics; Max Planck Institute for Human Cognitive and Brain Sciences; Leipzig Germany
| |
Collapse
|
28
|
Bastidas J, Athauda G, De La Cruz G, Chan WM, Golshani R, Berrocal Y, Henao M, Lalwani A, Mannoji C, Assi M, Otero PA, Khan A, Marcillo AE, Norenberg M, Levi AD, Wood PM, Guest JD, Dietrich WD, Bartlett Bunge M, Pearse DD. Human Schwann cells exhibit long-term cell survival, are not tumorigenic and promote repair when transplanted into the contused spinal cord. Glia 2017; 65:1278-1301. [PMID: 28543541 DOI: 10.1002/glia.23161] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022]
Abstract
The transplantation of rodent Schwann cells (SCs) provides anatomical and functional restitution in a variety of spinal cord injury (SCI) models, supporting the recent translation of SCs to phase 1 clinical trials for human SCI. Whereas human (Hu)SCs have been examined experimentally in a complete SCI transection paradigm, to date the reported behavior of SCs when transplanted after a clinically relevant contusive SCI has been restricted to the use of rodent SCs. Here, in a xenotransplant, contusive SCI paradigm, the survival, biodistribution, proliferation and tumorgenicity as well as host responses to HuSCs, cultured according to a protocol analogous to that developed for clinical application, were investigated. HuSCs persisted within the contused nude rat spinal cord through 6 months after transplantation (longest time examined), exhibited low cell proliferation, displayed no evidence of tumorigenicity and showed a restricted biodistribution to the lesion. Neuropathological examination of the CNS revealed no adverse effects of HuSCs. Animals exhibiting higher numbers of surviving HuSCs within the lesion showed greater volumes of preserved white matter and host rat SC and astrocyte ingress as well as axon ingrowth and myelination. These results demonstrate the safety of HuSCs when employed in a clinically relevant experimental SCI paradigm. Further, signs of a potentially positive influence of HuSC transplants on host tissue pathology were observed. These findings show that HuSCs exhibit a favorable toxicity profile for up to 6 months after transplantation into the contused rat spinal cord, an important outcome for FDA consideration of their use in human clinical trials.
Collapse
Affiliation(s)
- Johana Bastidas
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Gagani Athauda
- The Department of Cellular Biology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199.,The Department of Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Gabriela De La Cruz
- Translational Pathology Laboratory, Lineberger Comprehensive Cancer Center, Department of Pathology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, 27599
| | - Wai-Man Chan
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Roozbeh Golshani
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Yerko Berrocal
- The Department of Cellular Biology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199.,The Department of Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, 33199
| | - Martha Henao
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Anil Lalwani
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Chikato Mannoji
- The Department of Orthopedic Surgery, Chiba University School of Medicine, Chiba, Japan
| | - Mazen Assi
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - P Anthony Otero
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Aisha Khan
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Alexander E Marcillo
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Michael Norenberg
- The Department of Pathology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Allan D Levi
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Patrick M Wood
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - James D Guest
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurology, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Cell Biology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Cell Biology, The University of Miami Miller School of Medicine, Miami, Florida, 33136
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Neuroscience Program, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine, Miami, Florida, 33136.,Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida, 33136
| |
Collapse
|
29
|
Bunge MB, Monje PV, Khan A, Wood PM. From transplanting Schwann cells in experimental rat spinal cord injury to their transplantation into human injured spinal cord in clinical trials. PROGRESS IN BRAIN RESEARCH 2017; 231:107-133. [PMID: 28554394 DOI: 10.1016/bs.pbr.2016.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the potential therapies designed to repair the injured spinal cord is cell transplantation, notably the use of autologous adult human Schwann cells (SCs). Here, we detail some of the critical research accomplished over the last four decades to establish a foundation that enables these cells to be tested in clinical trials. New culture systems allowed novel information to be gained about SCs, including discovering ways to stimulate their proliferation to acquire adequately large numbers for transplantation into the injured human spinal cord. Transplantation of rat SCs into rat models of spinal cord injury has demonstrated that SCs promote repair of injured spinal cord. Additional work required to gain approval from the Food and Drug Administration for the first SC trial in the Miami Project is disclosed. This trial and a second one now underway are described.
Collapse
Affiliation(s)
- Mary B Bunge
- The Miami Project to Cure Paralysis, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States; Department of Cell Biology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States; Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States.
| | - Paula V Monje
- The Miami Project to Cure Paralysis, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States; Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Aisha Khan
- The Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| | - Patrick M Wood
- The Miami Project to Cure Paralysis, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States; Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
30
|
Anderson KD, Guest JD, Dietrich WD, Bartlett Bunge M, Curiel R, Dididze M, Green BA, Khan A, Pearse DD, Saraf-Lavi E, Widerström-Noga E, Wood P, Levi AD. Safety of Autologous Human Schwann Cell Transplantation in Subacute Thoracic Spinal Cord Injury. J Neurotrauma 2017; 34:2950-2963. [PMID: 28225648 DOI: 10.1089/neu.2016.4895] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The rationale for implantation of autologous human Schwann cells (SCs) in persons with subacute spinal cord injury (SCI) is based on evidence that transplanted SCs are neuroprotective, support local axonal plasticity, and are capable of myelinating axons. A Phase I clinical trial was conducted to evaluate the safety of autologous human SC transplantation into the injury epicenter of six subjects with subacute SCI. The trial was an open-label, unblinded, non-randomized, non-placebo controlled study with a dose escalation design and standard medical rehabilitation. Participants were paraplegics with neurologically complete, trauma-induced spinal lesions. Autologous SCs were cultured in vitro from a sural nerve harvested from each participant and injected into the epicenter of the spinal lesion. Outcome measures for safety were protocol compliance, feasibility, adverse events, stability of neurological level, absence of detectable mass lesion, and the emergence of clinically significant neuropathic pain or muscle spasticity no greater than expected for a natural course cohort. One year post-transplantation, there were no surgical, medical, or neurological complications to indicate that the timing or procedure for the cell transplantation was unsafe. There were no adverse events or serious adverse events related to the cell therapy. There was no evidence of additional spinal cord damage, mass lesion, or syrinx formation. We conclude that it is feasible to identify eligible candidates, appropriately obtain informed consent, perform a peripheral nerve harvest to obtain SCs within 5-30 days of injury, and perform an intra-spinal transplantation of highly purified autologous SCs within 4-7 weeks of injury.
Collapse
Affiliation(s)
- Kim D Anderson
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida
| | - James D Guest
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida.,3 The Neuroscience Program, The University of Miami Miller School of Medicine , Miami, Florida
| | - W Dalton Dietrich
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida.,3 The Neuroscience Program, The University of Miami Miller School of Medicine , Miami, Florida.,4 Department of Cell Biology, The University of Miami Miller School of Medicine , Miami, Florida.,5 Department of Neurology, The University of Miami Miller School of Medicine , Miami, Florida.,6 Department of The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine , Miami, Florida
| | - Mary Bartlett Bunge
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida.,3 The Neuroscience Program, The University of Miami Miller School of Medicine , Miami, Florida.,4 Department of Cell Biology, The University of Miami Miller School of Medicine , Miami, Florida.,5 Department of Neurology, The University of Miami Miller School of Medicine , Miami, Florida.,6 Department of The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine , Miami, Florida
| | - Rosie Curiel
- 7 Department of Psychiatry, The University of Miami Miller School of Medicine , Miami, Florida
| | - Marine Dididze
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida
| | - Barth A Green
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida.,5 Department of Neurology, The University of Miami Miller School of Medicine , Miami, Florida.,8 Department of Orthopaedics, The University of Miami Miller School of Medicine , Miami, Florida.,9 Department of Rehabilitation Medicine, The University of Miami Miller School of Medicine , Miami, Florida
| | - Aisha Khan
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,6 Department of The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine , Miami, Florida
| | - Damien D Pearse
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida.,3 The Neuroscience Program, The University of Miami Miller School of Medicine , Miami, Florida.,6 Department of The Interdisciplinary Stem Cell Institute, The University of Miami Miller School of Medicine , Miami, Florida.,11 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Efrat Saraf-Lavi
- 10 Department of Radiology, The University of Miami Miller School of Medicine , Miami, Florida
| | - Eva Widerström-Noga
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida.,3 The Neuroscience Program, The University of Miami Miller School of Medicine , Miami, Florida.,9 Department of Rehabilitation Medicine, The University of Miami Miller School of Medicine , Miami, Florida.,11 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - Patrick Wood
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida
| | - Allan D Levi
- 1 The Miami Project to Cure Paralysis, The University of Miami Miller School of Medicine , Miami, Florida.,2 Department of Neurological Surgery, The University of Miami Miller School of Medicine , Miami, Florida.,8 Department of Orthopaedics, The University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
31
|
|
32
|
Yoshizawa H, Senda D, Natori Y, Tanaka R, Mizuno H, Hayashi A. End-to-Side Neurorrhaphy as Schwann Cells Provider to Acellular Nerve Allograft and Its Suitable Application. PLoS One 2016; 11:e0167507. [PMID: 27907118 PMCID: PMC5132318 DOI: 10.1371/journal.pone.0167507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Axonal regeneration relies on support from proliferating host Schwann cells (SCs), and previous studies on acellular nerve allografts (ANGs) suggest that axons can regenerate into ANGs within a limited distance. Numerous studies have demonstrated that the supplementation of ANGs with exogenous factors, such as cultured SCs, stem cells, and growth factors, promote nerve regeneration in ANGs. However, there are several problems associated with their utilization. In this study, we investigated whether end-to-side (ETS) neurorrhaphy, which is an axonal provider, could be useful as an SC provider to support axonal elongation in ANGs. We found that ETS neurorrhaphy effectively promoted SC migration into ANGs when an epineurium window combined with partial neurectomy was performed, and the effectiveness increased when it was applied bilaterally. When we transplanted ANGs containing migrated SCs via ETS neurorrhaphy (hybrid ANGs) to the nerve gap, hybrid ANGs increased the number of regenerated axons and facilitated rapid axonal elongation, particularly when ETS neurorrhaphy was applied to both edges of the graft. This approach may represent a novel application of ETS neurorrhaphy and lead to the development of hybrid ANGs, making ANGs more practical in a clinical setting.
Collapse
Affiliation(s)
- Hidekazu Yoshizawa
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Daiki Senda
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Yuhei Natori
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Rica Tanaka
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
33
|
Altinova H, Möllers S, Deumens R, Gerardo-Nava J, Führmann T, van Neerven SGA, Bozkurt A, Mueller CA, Hoff HJ, Heschel I, Weis J, Brook GA. Functional recovery not correlated with axon regeneration through olfactory ensheathing cell-seeded scaffolds in a model of acute spinal cord injury. Tissue Eng Regen Med 2016; 13:585-600. [PMID: 30603440 DOI: 10.1007/s13770-016-9115-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/03/2016] [Accepted: 02/18/2016] [Indexed: 12/18/2022] Open
Abstract
The implantation of bioengineered scaffolds into lesion-induced gaps of the spinal cord is a promising strategy for promoting functional tissue repair because it can be combined with other intervention strategies. Our previous investigations showed that functional improvement following the implantation of a longitudinally microstructured collagen scaffold into unilateral mid-cervical spinal cord resection injuries of adult Lewis rats was associated with only poor axon regeneration within the scaffold. In an attempt to improve graft-host integration as well as functional recovery, scaffolds were seeded with highly enriched populations of syngeneic, olfactory bulb-derived ensheathing cells (OECs) prior to implantation into the same lesion model. Regenerating neurofilament-positive axons closely followed the trajectory of the donor OECs, as well as that of the migrating host cells within the scaffold. However, there was only a trend for increased numbers of regenerating axons above that supported by non-seeded scaffolds or in the untreated lesions. Nonetheless, significant functional recovery in skilled forelimb motor function was observed following the implantation of both seeded and non-seeded scaffolds which could not be correlated to the extent of axon regeneration within the scaffold. Mechanisms other than simple bridging of axon regeneration across the lesion must be responsible for the improved motor function.
Collapse
Affiliation(s)
- Haktan Altinova
- Department of Neurosurgery, Evangelic Hospital Bethel, Bielefeld, Germany.,2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany.,4Department of Neurosurgery, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Sven Möllers
- 5Charité Stem Cell Facility, Charité University Hospital, Berlin, Germany
| | - Ronald Deumens
- 2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany.,6Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Jose Gerardo-Nava
- 2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany
| | - Tobias Führmann
- 7Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Ontario, Canada
| | | | - Ahmet Bozkurt
- 8Department of Plastic, Reconstructive and Hand Surgery, Burn Centre, Uniklinik RWTH Aachen University, Aachen, Germany.,9Department of Plastic and Aesthetic, Reconstructive and Hand Surgery, Center for Reconstructive Microsurgery and Peripheral Nerve Surgery (ZEMPEN), Agaplesion Markus Hospital Frankfurt, Academic Hospital of Johann Wolfgang von Goethe University, Frankfurt, Germany
| | | | - Hans Joachim Hoff
- Department of Neurosurgery, Evangelic Hospital Bethel, Bielefeld, Germany
| | | | - Joachim Weis
- 2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany
| | - Gary Anthony Brook
- 2Institute of Neuropathology, Uniklinik RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance-Translational Brain Medicine (JARA Brain), Jülich, Germany
| |
Collapse
|
34
|
Bunge MB. Efficacy of Schwann cell transplantation for spinal cord repair is improved with combinatorial strategies. J Physiol 2016; 594:3533-8. [PMID: 26876753 DOI: 10.1113/jp271531] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/08/2016] [Indexed: 11/08/2022] Open
Abstract
When cells (including Schwann cells; SCs) of the peripheral nervous system (PNS) could be purified and expanded in number in tissue culture, Richard Bunge in 1975 envisioned that the SCs could be introduced to repair the central nervous system (CNS), as SCs enable axons to regenerate after PNS injury. Importantly, autologous human SCs could be transplanted into injured human spinal cord. Availability of the new culture systems to study interactions between sensory neurons, SCs and fibroblasts increased our knowledge of SC biology in the 1970s and '80s. Joining the Miami Project to Cure Paralysis in 1989 brought the opportunity to use this knowledge to initiate spinal cord repair studies. Development of a rat complete spinal cord transection/SC bridge model allowed the demonstration that axons regenerate into the SC bridge. Together with study of contused rat spinal cord, it was concluded that implanted SCs reduce cavitation, protect tissue around the lesion, support axon regeneration and form myelin. SC transplantation efficacy was improved when combined with neurotrophins, elevation of cyclic AMP levels, olfactory ensheathing cells, a steroid or chondroitinase. Increased efficacy meant higher numbers of axons, particularly from the brainstem, and more SC-myelinated axons in the implants and improvement in hindlimb movements. Human SCs support axon regeneration as do rat SCs. Astrocytes at the SC bridge-host spinal cord interfaces play a key role in determining whether axons enter the SC milieu. The SC work described here contributed to gaining approval from the FDA for an initial autologous human SC clinical trial (at the Miami Project) that has been completed and found to be safe.
Collapse
Affiliation(s)
- Mary Bartlett Bunge
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL, 33136, USA
| |
Collapse
|
35
|
Abstract
Acute spinal cord injuries are life-changing events that lead to substantial morbidity and mortality, but the role of cell-based treatment for these injuries is unclear. Cell therapy is a rapidly evolving treatment methodology, with basic science and early phase I/II human trials showing promise. Multiple cell lines can be used in cell therapy, including adult or embryonic stem cells, Schwann cells, olfactory ensheathing cells, and induced pluripotent stem cells. Adult stem cells, Schwann cells, and olfactory ensheathing cells are readily available but lack the ability to differentiate into cells of the central nervous system. Mesenchymal stem cells can decrease cell death by modifying the local environment into which they are introduced. Peripheral nerve cells, such as Schwann cells and olfactory ensheathing cells, can myelinate existing axons and foster axonal growth in the central nervous system, and embryonic stem cells can differentiate into neural progenitor stem cells of the central nervous system. Induced pluripotent stem cells are the basis of an emerging technology that has yet to be implemented in human trials but may offer a means of cell therapy without the ethical dilemmas associated with embryonic cells.
Collapse
|
36
|
Guiding migration of transplanted glial progenitor cells in the injured spinal cord. Sci Rep 2016; 6:22576. [PMID: 26971438 PMCID: PMC4789737 DOI: 10.1038/srep22576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Transplantation of glial-restricted progenitors (GRPs) is a promising strategy for generating a supportive environment for axon growth in the injured spinal cord. Here we explored the possibility of producing a migratory stream of GRPs via directional cues to create a supportive pathway for axon regeneration. We found that the axon growth inhibitor chondroitin sulfate proteoglycan (CSPG) strongly inhibited the adhesion and migration of GRPs, an effect that could be modulated by the adhesion molecule laminin. Digesting glycosaminoglycan side chains of CSPG with chondroitinase improved GRP migration on stripes of CSPG printed on cover glass, although GRPs were still responsive to the remaining repulsive signals of CSPG. Of all factors tested, the basic fibroblast growth factor (bFGF) had the most significant effect in promoting the migration of cultured GRPs. When GRPs were transplanted into either normal spinal cord of adult rats or the injury site in a dorsal column hemisection model of spinal cord injury, a population of transplanted cells migrated toward the region that was injected with the lentivirus expressing chondroitinase or bFGF. These findings suggest that removing CSPG-mediated inhibition, in combination with guidance by attractive factors, can be a promising strategy to produce a migratory stream of supportive GRPs.
Collapse
|
37
|
Abstract
Spinal cord injury (SCI) often represents a condition of permanent neurologic deficit. It has been possible to understand and delineate the mechanisms contributing to loss of function following primary injury. The clinicians might hope to improve the outcome in SCI injury by designing treatment strategies that could target these secondary mechanisms of response to injury. However, the approaches like molecular targeting of the neurons or surgical interventions have yielded very limited success till date. In recent times, a great thrust is put on to the cellular transplantation mode of treatment strategies to combat SCI problems so as to gain maximum functional recovery. In this review, we discuss about the various cellular transplantation strategies that could be employed in the treatment of SCI. The success of such cellular approaches involving Schwann cells, olfactory ensheathing cells, peripheral nerve, embryonic CNS tissue and activated macrophage has been supported by a number of reports and has been detailed here. Many of these cell transplantation strategies have reached the clinical trial stages. Also, the evolving field of stem cell therapy has made it possible to contemplate the role of both embryonic stem cells and induced pluripotent stem cells to stimulate the differentiation of neurons when transplanted in SCI models. Moreover, the roles of tissue engineering techniques and synthetic biomaterials have also been explained with their beneficial and deleterious effects. Many of these cell-based therapeutic approaches have been able to cause only a little change in recovery and a combinatorial approach involving more than one strategy are now being tried out to successfully treat SCI and improve functional recovery.
Collapse
|
38
|
Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya SS, Erceg S. Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells 2016; 33:1036-41. [PMID: 25728093 DOI: 10.1002/stem.1959] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 12/26/2022]
Abstract
Spinal cord injury (SCI) usually results in long lasting locomotor and sensory neuron degeneration below the injury. Astrocytes normally play a decisive role in mechanical and metabolic support of neurons, but in the spinal cord they cause injury, exerting well-known detrimental effects that contribute to glial scar formation and inhibition of axon outgrowth. Cell transplantation is considered a promising approach for replacing damaged cells and promoting neuroprotective and neuroregenerative repair, but the effects of the grafted cells on local tissue and the regenerative properties of endogenous neural stem cells in the injured spinal cord are largely unknown. During the last 2 decades cumulative evidence from diverse animal models has indicated that reactive astrocytes in synergy with transplanted cells could be beneficial for injury in multiple ways, including neuroprotection and axonal growth. In this review, we specifically focus on the dual opposing roles of reactive astrocytes in SCI and how they contribute to the creation of a permissive environment when combined with transplanted cells as the influential components for a local regenerative niche. Modulation of reactive astrocyte function might represent an extremely attractive new therapy to enhance the functional outcomes in patients.
Collapse
Affiliation(s)
- Dunja Lukovic
- CABIMER (Centro Andaluz de Biología Molecular y Medicina Regenerativa), Avda. Americo Vespucio s/n, Parque Científico y Tecnológico Cartuja, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
The Morphofunctional Effect of the Transplantation of Bone Marrow Stromal Cells and Predegenerated Peripheral Nerve in Chronic Paraplegic Rat Model via Spinal Cord Transection. Neural Plast 2015; 2015:389520. [PMID: 26634157 PMCID: PMC4655076 DOI: 10.1155/2015/389520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/27/2015] [Accepted: 06/07/2015] [Indexed: 01/09/2023] Open
Abstract
Functional recovery following spinal cord injury (SCI) is limited by poor axonal and cellular regeneration as well as the failure to replace damaged myelin. Employed separately, both the transplantation of the predegenerated peripheral nerve (PPN) and the transplantation of bone marrow stromal cells (BMSCs) have been shown to promote the regrowth and remyelination of the damaged central axons in SCI models of hemisection, transection, and contusion injury. With the aim to test the effects of the combined transplantation of PPN and BMSC on regrowth, remyelination, and locomotor function in an adult rat model of spinal cord (SC) transection, 39 Fischer 344 rats underwent SC transection at T9 level. Four weeks later they were randomly assigned to traumatic spinal cord injury (TSCI) without treatment, TSCI + Fibrin Glue (FG), TSCI + FG + PPN, and TSCI + FG + PPN + BMSCs. Eight weeks after, transplantation was carried out on immunofluorescence and electron microscope studies. The results showed greater axonal regrowth and remyelination in experimental groups TSCI + FG + PPN and TSCI + FG + PPN + BMSCs analyzed with GAP-43, neuritin, and myelin basic protein. It is concluded that the combined treatment of PPN and BMSCs is a favorable strategy for axonal regrowth and remyelination in a chronic SC transection model.
Collapse
|
40
|
Rat Nasal Respiratory Mucosa-Derived Ectomesenchymal Stem Cells Differentiate into Schwann-Like Cells Promoting the Differentiation of PC12 Cells and Forming Myelin In Vitro. Stem Cells Int 2015; 2015:328957. [PMID: 26339250 PMCID: PMC4539076 DOI: 10.1155/2015/328957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/03/2015] [Accepted: 01/04/2015] [Indexed: 01/23/2023] Open
Abstract
Schwann cell (SC) transplantation as a cell-based therapy can enhance peripheral and central nerve repair experimentally, but it is limited by the donor site morbidity for clinical application. We investigated weather respiratory mucosa stem cells (REMSCs), a kind of ectomesenchymal stem cells (EMSCs), isolated from rat nasal septum can differentiate into functional Schwann-like cells (SC-like cells). REMSCs proliferated quickly in vitro and expressed the neural crest markers (nestin, vimentin, SOX10, and CD44). Treated with a mixture of glial growth factors for 7 days, REMSCs differentiated into SC-like cells. The differentiated REMSCs (dREMSCs) exhibited a spindle-like morphology similar to SC cells. Immunocytochemical staining and Western blotting indicated that SC-like cells expressed the glial markers (GFAP, S100β, Galc, and P75) and CNPase. When cocultured with dREMSCs for 5 days, PC12 cells differentiated into mature neuron-like cells with long neurites. More importantly, dREMSCs could form myelin structures with the neurites of PC12 cells at 21 days in vitro. Our data indicated that REMSCs, a kind of EMSCs, could differentiate into SC-like cells and have the ability to promote the differentiation of PC12 cells and form myelin in vitro.
Collapse
|
41
|
Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells Int 2015; 2015:948040. [PMID: 26124844 PMCID: PMC4466497 DOI: 10.1155/2015/948040] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/14/2014] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury (SCI) is a central nervous system- (CNS-) related disorder for which there is yet no successful treatment. Within the past several years, cell-based therapies have been explored for SCI repair, including the use of pluripotent human stem cells, and a number of adult-derived stem and mature cells such as mesenchymal stem cells, olfactory ensheathing cells, and Schwann cells. Although promising, cell transplantation is often overturned by the poor cell survival in the treatment of spinal cord injuries. Alternatively, the therapeutic role of different cells has been used in tissue engineering approaches by engrafting cells with biomaterials. The latter have the advantages of physically mimicking the CNS tissue, while promoting a more permissive environment for cell survival, growth, and differentiation. The roles of both cell- and biomaterial-based therapies as single therapeutic approaches for SCI repair will be discussed in this review. Moreover, as the multifactorial inhibitory environment of a SCI suggests that combinatorial approaches would be more effective, the importance of using biomaterials as cell carriers will be herein highlighted, as well as the recent advances and achievements of these promising tools for neural tissue regeneration.
Collapse
|
42
|
Marcol W, Ślusarczyk W, Larysz-Brysz M, Francuz T, Jędrzejowska-Szypułka H, Łabuzek K, Lewin-Kowalik J. Grafted Activated Schwann Cells Support Survival of Injured Rat Spinal Cord White Matter. World Neurosurg 2015; 84:511-9. [PMID: 25910924 DOI: 10.1016/j.wneu.2015.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE The influence of cultured Schwann cells on injured spinal cord in rats is examined. METHODS Focal injury of spinal cord white matter at the T10 level was produced using our original non-laminectomy method with a high-pressure air stream. Schwann cells from 7-day predegenerated rat sciatic nerves were cultured, transducted with green fluorescent protein and injected into the cisterna magna (experimental group) 3 times: immediately after spinal cord injury and 3 and 7 days later. Neurons in the brainstem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of the experiment. The functional outcome and morphologic features of neuronal survival were analyzed during a 12-week follow-up. The lesions were visualized and analyzed using magnetic resonance imaging. The maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. RESULTS Rats treated with Schwann cells presented significant improvement of locomotor performance and spinal cord morphology compared with the control group. The distance covered by Schwann cells was 7 mm from the epicenter of the injury. The number of brainstem and motor cortex FG-positive neurons in the experimental group was significantly higher than in the control group. CONCLUSIONS The data show that activated Schwann cells are able to induce the repair of injured spinal cord white matter. The route of application of cells via the cisterna magna seemed to be useful for their delivery in spinal cord injury therapy.
Collapse
Affiliation(s)
- Wiesław Marcol
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| | - Wojciech Ślusarczyk
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Larysz-Brysz
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Krzysztof Łabuzek
- Department of Pharmacology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Lewin-Kowalik
- Department of Physiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
43
|
Xue F, Wu EJ, Zhang PX, Li-Ya A, Kou YH, Yin XF, Han N. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation. Neural Regen Res 2015; 10:104-11. [PMID: 25788929 PMCID: PMC4357092 DOI: 10.4103/1673-5374.150715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2014] [Indexed: 01/25/2023] Open
Abstract
We examined the restorative effect of modified biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantation in vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial fibrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve fibers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our findings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvironment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.
Collapse
Affiliation(s)
- Feng Xue
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Er-Jun Wu
- Graduate School of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Pei-Xun Zhang
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - A Li-Ya
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Xiao-Feng Yin
- Department of Trauma and Orthopedics, Peking University People's Hospital, Beijing, China
| | - Na Han
- Central Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
44
|
Xu XM. Breaking news in spinal cord injury research: FDA approved phase I clinical trial of human, autologous schwann cell transplantation in patients with spinal cord injuries. Neural Regen Res 2015; 7:1685-7. [PMID: 25624788 PMCID: PMC4302447 DOI: 10.3969/j.issn.1673-5374.2012.22.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Indexed: 01/17/2023] Open
Affiliation(s)
- Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute & Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
Kaneko A, Matsushita A, Sankai Y. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats. Biomed Mater 2015; 10:015008. [DOI: 10.1088/1748-6041/10/1/015008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Cowley KC, MacNeil BJ, Chopek JW, Sutherland S, Schmidt BJ. Neurochemical excitation of thoracic propriospinal neurons improves hindlimb stepping in adult rats with spinal cord lesions. Exp Neurol 2014; 264:174-87. [PMID: 25527257 DOI: 10.1016/j.expneurol.2014.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/01/2014] [Accepted: 12/07/2014] [Indexed: 01/07/2023]
Abstract
Using an in vitro neonatal rat brainstem-spinal cord preparation, we previously showed that cervicothoracic propriospinal neurons contribute to descending transmission of the bulbospinal locomotor command signal, and neurochemical excitation of these neurons facilitates signal propagation. The present study examined the relevance of these observations to adult rats in vivo. The first aim was to determine the extent to which rats are able to spontaneously recover hindlimb locomotor function in the presence of staggered contralateral hemisections (left T2-4 and right T9-11) designed to abolish all long direct bulbospinal projections. The second aim was to determine whether neurochemical excitation of thoracic propriospinal neurons in such animals facilitates hindlimb stepping. In the absence of intrathecal drug injection, all animals (n=24) displayed some degree of hindlimb recovery ranging from weak ankle movements to brief periods of unsupported hindlimb stepping on the treadmill. The effect of boluses of neurochemicals delivered via an intrathecal catheter (tip placed midway between the rostral and caudal thoracic hemisections) was examined at post-lesion weeks 3, 6 and 9. Quipazine was particularly effective facilitating hindlimb stepping. Subsequent complete transection above the rostral (n=3) or caudal (n=2) hemisections at week 9 had no consistent effect on drug-free locomotor performance, but the facilitatory effect of drug injection decreased in 4/5 animals. Two animals underwent complete transection at T3 as the first and only surgery and implantation of two intrathecal catheters targeted to the mid-thoracic and lumbar regions, respectively. A similar facilitatory effect on stepping was observed in response to drugs administered via either catheter. The results indicate that partial spontaneous recovery of stepping occurs in adult rats after abolishing all long direct bulbospinal connections, in contrast to previous studies suggesting that hindlimb stepping after dual hemisections either does not occur or is observed only if the second hemisection surgery is delayed relative to the first. The results support the hypothesis that artificial modulation of propriospinal neuron excitability may facilitate recovery of motor function after spinal cord injury. However, whether this facilitation is due to enhanced transmission of a descending locomotor signal or is the result of excitation of thoracolumbar circuits independent of supraspinal influence, requires further study.
Collapse
Affiliation(s)
- Kristine C Cowley
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada
| | - Brian J MacNeil
- Department of Physical Therapy, College of Rehabilitation Sciences, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada
| | - Jeremy W Chopek
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada
| | - Scott Sutherland
- Department of Radiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada
| | - Brian J Schmidt
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada; Department of Internal Medicine, Section of Neurology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 3J7, Canada.
| |
Collapse
|
47
|
Christie SD, Sadi D, Mendez I. Intraspinal Transplantation of hNT Neurons in the Lesioned Adult Rat Spinal Cord. Can J Neurol Sci 2014; 31:87-96. [PMID: 15038476 DOI: 10.1017/s0317167100002882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background:The role of neural transplantation as a restorative strategy for spinal cord injury continues to be intensely investigated. Ideally, the tissue source for transplantation must be readily available, free of disease and able to survive and mature following implantation into the adverse environment created by the injury. We have studied the use of a commercially available cell line of cultured human neurons (hNT neurons) as a tissue source for neural transplantation in spinal cord injury.Methods:Following a left lateral thoracic hemisection, 54 immunosuppressed, female Wistar rats were randomly allocated into different treatment groups; hemisection only or hemisection and hNT cell transplantation (via a bridge, double or triple graft). Grafting occurred three days after spinal cord injury. After thirteen weeks the animals were sacrificed and tissue sections were stained with human neuron specific enolase and human specific neural cell adhesion molecule.Results:Immunohistochemical evidence of graft survival was displayed in 66.7% of the surviving, grafted animals. Fibre outgrowth, greatest in the bridge and triple grafts, was observed in both rostral and caudal directions essentially bridging the lesion. Double grafts were smaller, displaying less fibre outgrowth, which did not cross the lesion. Long fibre outgrowth was evident up to 2 cm from the graft as assessed by tracing and immunohistochemical studies.Conclusion:Bridge and triple grafts displayed greater growth and enabled the hNT graft to essentially bridge the lesion. This suggests that hNT neurons have the potential to structurally reconnect the proximal and distal spinal cord across the region of injury.
Collapse
Affiliation(s)
- Sean Dennis Christie
- Department of Surgery (Neurosurgery), Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
48
|
Georgiou M, Golding JP, Loughlin AJ, Kingham PJ, Phillips JB. Engineered neural tissue with aligned, differentiated adipose-derived stem cells promotes peripheral nerve regeneration across a critical sized defect in rat sciatic nerve. Biomaterials 2014; 37:242-51. [PMID: 25453954 DOI: 10.1016/j.biomaterials.2014.10.009] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/02/2014] [Indexed: 01/12/2023]
Abstract
Adipose-derived stem cells were isolated from rats and differentiated to a Schwann cell-like phenotype in vitro. The differentiated cells (dADSCs) underwent self-alignment in a tethered type-1 collagen gel, followed by stabilisation to generate engineered neural tissue (EngNT-dADSC). The pro-regenerative phenotype of dADSCs was enhanced by this process, and the columns of aligned dADSCs in the aligned collagen matrix supported and guided neurite extension in vitro. EngNT-dADSC sheets were rolled to form peripheral nerve repair constructs that were implanted within NeuraWrap conduits to bridge a 15 mm gap in rat sciatic nerve. After 8 weeks regeneration was assessed using immunofluorescence imaging and transmission electron microscopy and compared to empty conduit and nerve graft controls. The proportion of axons detected in the distal stump was 3.5 fold greater in constructs containing EngNT-dADSC than empty tube controls. Our novel combination of technologies that can organise autologous therapeutic cells within an artificial tissue construct provides a promising new cellular biomaterial for peripheral nerve repair.
Collapse
Affiliation(s)
- Melanie Georgiou
- Advanced Centre for Biochemical Engineering, Bernard Katz Building, University College London, Gordon Street, London WC1H 0AH, UK; Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Jon P Golding
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Alison J Loughlin
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
| | - Paul J Kingham
- Department of Integrative Medical Biology, Umeå University, SE 901 87 Umeå, Sweden
| | - James B Phillips
- Department of Life Health & Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK; Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X 8LD, UK.
| |
Collapse
|
49
|
A role for neuropilins in the interaction between Schwann cells and meningeal cells. PLoS One 2014; 9:e109401. [PMID: 25314276 PMCID: PMC4196904 DOI: 10.1371/journal.pone.0109401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 09/10/2014] [Indexed: 11/28/2022] Open
Abstract
In their natural habitat, the peripheral nerve, Schwann cells (SCs) form nicely aligned pathways (also known as the bands of Büngner) that guide regenerating axons to their targets. Schwann cells that are implanted in the lesioned spinal cord fail to align in pathways that could support axon growth but form cellular clusters that exhibit only limited intermingling with the astrocytes and meningeal cells (MCs) that are present in the neural scar. The formation of cell clusters can be studied in co-cultures of SCs and MCs. In these co-cultures SCs form cluster-like non-overlapping cell aggregates with well-defined boundaries. There are several indications that neuropilins (NRPs) play an important role in MC-induced SC aggregation. Both SCs and MCs express NRP1 and NRP2 and SCs express the NRP ligands Sema3B, C and E while MCs express Sema3A, C, E and F. We now demonstrate that in SC-MC co-cultures, siRNA mediated knockdown of NRP2 in SCs decreased the formation of SC clusters while these SCs maintained their capacity to align in bands of Büngner-like columnar arrays. Unexpectedly, knockdown of NRP1 expression resulted in a significant increase in SC aggregation. These results suggest that a reduction in NRP2 expression may enhance the capacity of implanted SCs to interact with MCs that invade a neural scar formed after a lesion of the spinal cord.
Collapse
|
50
|
Deng LX, Walker C, Xu XM. Schwann cell transplantation and descending propriospinal regeneration after spinal cord injury. Brain Res 2014; 1619:104-14. [PMID: 25257034 DOI: 10.1016/j.brainres.2014.09.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/08/2014] [Accepted: 09/15/2014] [Indexed: 01/15/2023]
Abstract
After spinal cord injury (SCI), poor ability of damaged axons of the central nervous system (CNS) to regenerate causes very limited functional recovery. Schwann cells (SCs) have been widely explored as promising donors for transplantation to promote axonal regeneration in the CNS including the spinal cord. Compared with other CNS axonal pathways, injured propriospinal tracts display the strongest regenerative response to SC transplantation. Even without providing additional neurotrophic factors, propriospinal axons can grow into the SC environment which is rarely seen in supraspinal tracts. Propriospinal tract has been found to respond to several important neurotrophic factors secreted by SCs. Therefore, the SC is considered to be one of the most promising candidates for cell-based therapies for SCI. Since many reviews have already appeared on topics of SC transplantation in SCI repair, this review will focus particularly on the rationale of SC transplantation in mediating descending propriospinal axonal regeneration as well as optimizing such regeneration by using different combinatorial strategies. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Ling-Xiao Deng
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Chandler Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Xiao-Ming Xu
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Goodman and Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|