1
|
Nantel A. The long hard road to a completed Candida albicans genome. Fungal Genet Biol 2006; 43:311-5. [PMID: 16517185 DOI: 10.1016/j.fgb.2006.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 01/11/2006] [Accepted: 01/13/2006] [Indexed: 11/21/2022]
Abstract
After almost a decade of work, the sequencing, assembly, and annotation of the genome of the fungal pathogen Candida albicans is finally close at hand. This review covers the early history of the C. albicans genome project, from the release of early assemblies that provided the impetus for an explosion in functional genomics research, to a community-based annotation and a preview of the work that was necessary for the production of a final genome assembly.
Collapse
Affiliation(s)
- André Nantel
- Biotechnology Research Institute, National Research Council, 6100 Royalmount, Montreal, PQ, Canada H4P 2R2.
| |
Collapse
|
2
|
Morris-Jones R, Gomez BL, Diez S, Uran M, Morris-Jones SD, Casadevall A, Nosanchuk JD, Hamilton AJ. Synthesis of melanin pigment by Candida albicans in vitro and during infection. Infect Immun 2005; 73:6147-50. [PMID: 16113337 PMCID: PMC1231073 DOI: 10.1128/iai.73.9.6147-6150.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melanins are implicated in the pathogenesis of several important human diseases. This study confirmed the presence of melanin particles in Candida albicans in vitro and during infection. Dark particles were isolated from the digestion of C. albicans cultures and from infected tissue, as established by electron microscopy and immunofluorescence techniques.
Collapse
Affiliation(s)
- Rachael Morris-Jones
- St. John's Institute of Dermatology, St. Thomas' Hospital, London SE1 9RT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Chibana H, Oka N, Nakayama H, Aoyama T, Magee BB, Magee PT, Mikami Y. Sequence finishing and gene mapping for Candida albicans chromosome 7 and syntenic analysis against the Saccharomyces cerevisiae genome. Genetics 2005; 170:1525-37. [PMID: 15937140 PMCID: PMC1449773 DOI: 10.1534/genetics.104.034652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The size of the genome in the opportunistic fungus Candida albicans is 15.6 Mb. Whole-genome shotgun sequencing was carried out at Stanford University where the sequences were assembled into 412 contigs. C. albicans is a diploid basically, and analysis of the sequence is complicated due to repeated sequences and to sequence polymorphism between homologous chromosomes. Chromosome 7 is 1 Mb in size and the best characterized of the 8 chromosomes in C. albicans. We assigned 16 of the contigs, ranging in length from 7309 to 267,590 bp, to chromosome 7 and determined sequences of 16 regions. These regions included four gaps, a misassembled sequence, and two major repeat sequences (MRS) of >16 kb. The length of the continuous sequence attained was 949,626 bp and provided complete coverage of chromosome 7 except for telomeric regions. Sequence analysis was carried out and predicted 404 genes, 11 of which included at least one intron. A 7-kb indel, which might be caused by a retrotransposon, was identified as the largest difference between the homologous chromosomes. Synteny analysis revealed that the degree of synteny between C. albicans and Saccharomyces cerevisiae is too weak to use for completion of the genomic sequence in C. albicans.
Collapse
Affiliation(s)
- Hiroji Chibana
- Research Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University, Chiba 260-8673, Japan.
| | | | | | | | | | | | | |
Collapse
|
4
|
Beggs KT, Holmes AR, Cannon RD, Rich AM. Detection of Candida albicans mRNA in archival histopathology samples by reverse transcription-PCR. J Clin Microbiol 2004; 42:2275-8. [PMID: 15131211 PMCID: PMC404655 DOI: 10.1128/jcm.42.5.2275-2278.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The feasibility of detecting Candida albicans mRNA in formalin-fixed paraffin-embedded archival human histopathology specimens by reverse transcription-PCR (RT-PCR) was investigated. RT with gene-specific primers was used to detect five single-copy C. albicans gene transcripts, including those of two housekeeping genes, in oral candidiasis samples up to 8 years of age.
Collapse
Affiliation(s)
- Kyle T Beggs
- Department of Oral Sciences, School of Dentistry, University of Otago, Dunedin 9001, New Zealand
| | | | | | | |
Collapse
|
5
|
Bahn YS, Staab J, Sundstrom P. Increased high-affinity phosphodiesterase PDE2 gene expression in germ tubes counteracts CAP1-dependent synthesis of cyclic AMP, limits hypha production and promotes virulence of Candida albicans. Mol Microbiol 2004; 50:391-409. [PMID: 14617167 DOI: 10.1046/j.1365-2958.2003.03692.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Frequent interconversion between yeasts, pseudohyphae and true hyphae is a hallmark of Candida albicans growth in mammalian tissues. The requirement for transient CAP1-dependent pulses of cAMP for generating true hyphae, Hwp1 and virulence raises questions about the role of yeast and pseudohyphal forms in the pathogenesis of candidiasis. In this study, hyperfilamentous mutants, limited in their capacity to produce buds, were generated by disrupting the high-affinity phosphodiesterase gene PDE2. Degradation of cAMP by the PDE2 gene product was confirmed by higher basal cAMP levels in the pde2/pde2 mutant and by accumulation of cAMP to levels permitting germ tube formation upon disrupting PDE2 in the cap1/cap1 mutant. Similar phenotypes of the C. albicans and Saccharomyces cerevisiae pde2/pde2 mutants were found, including sensitivity to nutritional starvation and exogenous cAMP and defective entry into stationary phase. Importantly, the hyperfilamentous mutants were as avirulent as hypofilamentous mutants in a systemic model of candidiasis. Growth in a multiplicity of forms appears to be a virulence attribute that is controlled by tight coupling of cAMP synthesis and degradation. Delayed increases in PDE2 mRNA in cAMP-deficient cap1/cap1 mutants during germ tube-inducing conditions suggested a mechanism of control involving cAMP-dependent induction of PDE2 mRNA.
Collapse
Affiliation(s)
- Yong-Sun Bahn
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University College of Medicine, 333 W. 10th Avenue, Columbus, OH 43210-1239, USA
| | | | | |
Collapse
|
6
|
Jung WH, Stateva LI. The cAMP phosphodiesterase encoded by CaPDE2 is required for hyphal development in Candida albicans. MICROBIOLOGY-SGM 2003; 149:2961-2976. [PMID: 14523128 DOI: 10.1099/mic.0.26517-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The cAMP-dependent pathway, which regulates yeast-to-hypha morphogenesis in Candida albicans, is controlled by changes in cAMP levels determined by the processes of synthesis and hydrolysis. Both low- and high-affinity cAMP phosphodiesterases are encoded in the C. albicans genome. CaPDE2, encoding the high-affinity cAMP phosphodiesterase, has been cloned and shown to be toxic in Saccharomyces cerevisiae upon overexpression under pGAL1, but functional under the moderate pMET3. Deletion of CaPDE2 causes elevated cAMP levels and responsiveness to exogenous cAMP, higher sensitivity to heat shock, severe growth defects at 42 degrees C and highly reduced levels of EFG1 transcription. In vitro in hypha-inducing liquid medium CaPDE2, deletion prohibits normal hyphal, but not pseudohyphal growth. On solid medium capde2 mutants form aberrant hyphae, with fewer branches and almost no lateral buds, which are deficient in hypha-to-yeast reversion. The phenotypic defects of capde2 mutants show that the cAMP-dependent pathway plays specific roles in hyphal and pseudohyphal development, its regulatory role however, being greater in liquid than on solid medium in vitro. The increased expression of CaPDE2 after serum addition correlates well with a drop in cAMP levels following the initial rise in response to the hyphal inducer. These results suggest that Capde2p mediates a desensitization mechanism by lowering basal cAMP levels in response to environmental stimuli in C. albicans.
Collapse
Affiliation(s)
- Won Hee Jung
- Department of Biomolecular Sciences, UMIST, PO Box 88, Manchester M60 1QD, UK
| | - Lubomira I Stateva
- Department of Biomolecular Sciences, UMIST, PO Box 88, Manchester M60 1QD, UK
| |
Collapse
|
7
|
Lee SA, Wormsley S, Kamoun S, Lee AFS, Joiner K, Wong B. An analysis of the Candida albicans genome database for soluble secreted proteins using computer-based prediction algorithms. Yeast 2003; 20:595-610. [PMID: 12734798 DOI: 10.1002/yea.988] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We sought to identify all genes in the Candida albicans genome database whose deduced proteins would likely be soluble secreted proteins (the secretome). While certain C. albicans secretory proteins have been studied in detail, more data on the entire secretome is needed. One approach to rapidly predict the functions of an entire proteome is to utilize genomic database information and prediction algorithms. Thus, we used a set of prediction algorithms to computationally define a potential C. albicans secretome. We first assembled a validation set of 47 C. albicans proteins that are known to be secreted and 47 that are known not to be secreted. The presence or absence of an N-terminal signal peptide was correctly predicted by SignalP version 2.0 in 47 of 47 known secreted proteins and in 47 of 47 known non-secreted proteins. When all 6165 C. albicans ORFs from CandidaDB were analysed with SignalP, 495 ORFs were predicted to encode proteins with N-terminal signal peptides. In the set of 495 deduced proteins with N-terminal signal peptides, 350 were predicted to have no transmembrane domains (or a single transmembrane domain at the extreme N-terminus) and 300 of these were predicted not to be GPI-anchored. TargetP was used to eliminate proteins with mitochondrial targeting signals, and the final computationally-predicted C. albicans secretome was estimated to consist of up to 283 ORFs. The C. albicans secretome database is available at http://info.med.yale.edu/intmed/infdis/candida/
Collapse
Affiliation(s)
- Samuel A Lee
- Infectious Diseases Section, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Kajiwara S. Molecular cloning and characterization of the Î9 fatty acid desaturase gene and its promoter region from Saccharomyces kluyveri. FEMS Yeast Res 2002. [DOI: 10.1111/j.1567-1364.2002.tb00102.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Tao Q, Chang YL, Wang J, Chen H, Islam-Faridi MN, Scheuring C, Wang B, Stelly DM, Zhang HB. Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 2001; 158:1711-24. [PMID: 11514457 PMCID: PMC1461754 DOI: 10.1093/genetics/158.4.1711] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genome-wide physical mapping with bacteria-based large-insert clones (e.g., BACs, PACs, and PBCs) promises to revolutionize genomics of large, complex genomes. To accelerate rice and other grass species genome research, we developed a genome-wide BAC-based map of the rice genome. The map consists of 298 BAC contigs and covers 419 Mb of the 430-Mb rice genome. Subsequent analysis indicated that the contigs constituting the map are accurate and reliable. Particularly important to proficiency were (1) a high-resolution, high-throughput DNA sequencing gel-based electrophoretic method for BAC fingerprinting, (2) the use of several complementary large-insert BAC libraries, and (3) computer-aided contig assembly. It has been demonstrated that the fingerprinting method is not significantly influenced by repeated sequences, genome size, and genome complexity. Use of several complementary libraries developed with different restriction enzymes minimized the "gaps" in the physical map. In contrast to previous estimates, a clonal coverage of 6.0-8.0 genome equivalents seems to be sufficient for development of a genome-wide physical map of approximately 95% genome coverage. This study indicates that genome-wide BAC-based physical maps can be developed quickly and economically for a variety of plant and animal species by restriction fingerprint analysis via DNA sequencing gel-based electrophoresis.
Collapse
Affiliation(s)
- Q Tao
- Department of Soil and Crop Sciences and Crop Biotechnology Center, Texas A&M University, College Station, TX 77843-2123, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bernard F, André B. Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Mol Microbiol 2001; 41:489-502. [PMID: 11489133 DOI: 10.1046/j.1365-2958.2001.02538.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The permease-like amino acid sensor Ssy1p of Saccharomyces cerevisiae is required for transcriptional induction, in response to external amino acids, of several genes encoding peptide and amino acid permeases. Among them is AGP1 encoding a low-affinity, broad-specificity amino acid permease important for the utilization of amino acids as a nitrogen source. We report here data from experiments aimed at identifying components of the signalling pathway activated by Ssy1p. Overproduction of the large amino-terminal tail of Ssy1p interferes negatively with the induction of AGP1 in wild-type cells. Furthermore, overproduction of this domain can relieve growth defects of a ssy1 null strain, indicating that the N-terminal tail of Ssy1p is an important functional element of the pathway. Consistent with a role for Ssy1p in the recognition of amino acids, a mutant form of the protein with a Thr to Ile substitution in the eighth predicted transmembrane domain is competent for the induction of AGP1 by leucine but not by other amino acids. In a screen for other mutants defective in the Ssy1p pathway, we confirmed that PTR3 and SSY5 encode additional factors essential for AGP1 expression in response to multiple amino acids. Data obtained by overproducing Ptr3p and Ssy5p in ssy1Delta, ptr3Delta and ssy5Delta mutants suggest that Ptr3p acts downstream from Ssy1p and Ssy5p downstream from Ptr3p in the transduction pathway. Furthermore, two-hybrid experiments indicated that Ptr3p interacts with Ssy5p and that Ptr3p can self-associate. Finally, the Cys-6-Zn2 transcription factor Uga35p/Dal81p required for the induction of AGP1 is also essential for the expression of two other genes under Ssy1p-Ptr3p-Ssy5p control, namely BAP2 and PTR2, suggesting that the protein is yet another component of the amino acid signalling pathway.
Collapse
Affiliation(s)
- F Bernard
- Laboratoire de Physiologie Cellulaire, Université Libre de Bruxelles CP300, Institut de Biologie et de Médecine Moléculaires, rue des Pr. Jeener et Brachet, 12, 6041 Gosselies, Belgium
| | | |
Collapse
|
11
|
Munro CA, Winter K, Buchan A, Henry K, Becker JM, Brown AJ, Bulawa CE, Gow NA. Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 2001; 39:1414-26. [PMID: 11251855 DOI: 10.1046/j.1365-2958.2001.02347.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CaCHS1 of the fungal pathogen Candida albicans encodes an essential chitin synthase that is required for septum formation, viability, cell shape and integrity. The CaCHS1 gene was inactivated by first disrupting one allele using the ura-blaster protocol, then placing the remaining allele under the control of the maltose-inducible, glucose-repressible MRP1 promoter. Under repressing conditions, yeast cell growth continued temporarily, but daughter buds failed to detach from parents, resulting in septumless chains of cells with constrictions defining contiguous compartments. After several generations, a proportion of the distal compartments lysed. The conditional Deltachs1 mutant also failed to form primary septa in hyphae; after several generations, growth stopped, and hyphae developed swollen balloon-like features or lysed at one of a number of sites including the hyphal apex and other locations that would not normally be associated with septum formation. CHS1 therefore synthesizes the septum of both yeast and hyphae and also maintains the integrity of the lateral cell wall. The conditional mutant was avirulent under repressing conditions in an experimental model of systemic infection. Because this gene is essential in vitro and in vivo and is not present in humans, it represents an attractive target for the development of antifungal compounds.
Collapse
Affiliation(s)
- C A Munro
- Department of Molecular and Cell Biology, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Seoighe C, Federspiel N, Jones T, Hansen N, Bivolarovic V, Surzycki R, Tamse R, Komp C, Huizar L, Davis RW, Scherer S, Tait E, Shaw DJ, Harris D, Murphy L, Oliver K, Taylor K, Rajandream MA, Barrell BG, Wolfe KH. Prevalence of small inversions in yeast gene order evolution. Proc Natl Acad Sci U S A 2000; 97:14433-7. [PMID: 11087826 PMCID: PMC18936 DOI: 10.1073/pnas.240462997] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gene order evolution in two eukaryotes was studied by comparing the Saccharomyces cerevisiae genome sequence to extensive new data from whole-genome shotgun and cosmid sequencing of Candida albicans. Gene order is substantially different between these two yeasts, with only 9% of gene pairs that are adjacent in one species being conserved as adjacent in the other. Inversion of small segments of DNA, less than 10 genes long, has been a major cause of rearrangement, which means that even where a pair of genes has been conserved as adjacent, the transcriptional orientations of the two genes relative to one another are often different. We estimate that about 1,100 single-gene inversions have occurred since the divergence between these species. Other genes that are adjacent in one species are in the same neighborhood in the other, but their precise arrangement has been disrupted, probably by multiple successive multigene inversions. We estimate that gene adjacencies have been broken as frequently by local rearrangements as by chromosomal translocations or long-distance transpositions. A bias toward small inversions has been suggested by other studies on animals and plants and may be general among eukaryotes.
Collapse
Affiliation(s)
- C Seoighe
- Department of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland; Stanford DNA Sequencing and Technology Center, 855 California Avenue, Palo Alto, CA 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Payne WE, Kaiser CA, Bevis BJ, Soderholm J, Fu D, Sears IB, Glick BS. Isolation of Pichia pastoris genes involved in ER-to-Golgi transport. Yeast 2000; 16:979-93. [PMID: 10923020 DOI: 10.1002/1097-0061(200008)16:11<979::aid-yea594>3.0.co;2-c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Pichia pastoris has discrete transitional ER sites and coherent Golgi stacks, making this yeast an ideal system for studying the organization of the early secretory pathway. To provide molecular tools for this endeavour, we isolated P. pastoris homologues of the SEC12, SEC13, SEC17, SEC18 and SAR1 genes. The P. pastoris SEC12, SEC13, SEC17 and SEC18 genes were shown to complement the corresponding S. cerevisiae mutants. The SEC17 and SAR1 genes contain introns at the same relative positions in both P. pastoris and S. cerevisiae, whereas the SEC13 gene contains an intron in P. pastoris but not in S. cerevisiae. Intron structure is similar in the two yeasts, although the favoured 5' splice sequence appears to be GTAAGT in P. pastoris vs. GTATGT in S. cerevisiae. The predicted amino acid sequences of Sec13p, Sec17p, Sec18p and Sar1p show strong conservation in the two yeasts. By contrast, the predicted lumenal domain of Sec12p is much larger in P. pastoris, suggesting that this domain may help localize Sec12p to transitional ER sites. A comparison of the SEC12 loci in various budding yeasts indicates that the SEC12-related gene SED4 is probably unique to the Saccharomyces lineage.
Collapse
Affiliation(s)
- W E Payne
- Department of Biology, 68-533, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Murad AM, Lee PR, Broadbent ID, Barelle CJ, Brown AJ. CIp10, an efficient and convenient integrating vector for Candida albicans. Yeast 2000; 16:325-7. [PMID: 10669870 DOI: 10.1002/1097-0061(20000315)16:4<325::aid-yea538>3.0.co;2-#] [Citation(s) in RCA: 281] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- A M Murad
- Department of Molecular and Cell Biology, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | |
Collapse
|
15
|
Abstract
The Saccharomyces cerevisiae genome sequence, augmented by new data on gene expression and function, continues to yield new findings about eukaryote genome evolution. Analysis of the duplicate gene pairs formed by whole-genome duplication indicates that selection for increased levels of gene expression was a significant factor determining which genes were retained as duplicates and which were returned to a single-copy state, possibly in addition to selection for novel gene functions. Proteome comparisons between worm and yeast show that genes for core metabolic processes are shared among eukaryotes and unchanging in function, while comparisons between different yeast species identify 'orphan' genes as the most rapidly evolving fraction of the proteome. Natural hybridisation among yeast species is frequent, but its long-term evolutionary significance is unknown.
Collapse
Affiliation(s)
- C Seoighe
- Department of Genetics University of Dublin Trinity College Dublin 2, Ireland
| | | |
Collapse
|
16
|
Zhu H, Blackmon BP, Sasinowski M, Dean RA. Physical Map and Organization of Chromosome 7 in the Rice Blast Fungus, Magnaporthe grisea. Genome Res 1999. [DOI: 10.1101/gr.9.8.739] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rice blast fungus Magnaporthe grisea is a highly destructive plant pathogen and one of the most important for studying various aspects of host-plant interactions. It has been widely adopted as a model organism because it is ideally suited for genetic and biological studies. To facilitate map-based cloning, chromosome walking, and genome organization studies of M. grisea, a complete physical map of chromosome 7 was constructed using a large-insert (130 kb) bacterial artificial chromosome (BAC) library. Using 147 chromosome 7-specific single-copy BAC clones and 20 RFLP markers on chromosome 7, 625 BAC clones were identified by hybridization. BAC clones were digested with HindIII, and fragments were size separated on analytical agarose gels to create DNA fingerprints. Hybridization contigs were constructed using a random cost algorithm, whereas fingerprinting contigs were constructed using the software package FPC. Results from both methods were generally in agreement, but numerous anomalies were observed. The combined data produced five robust anchored contigs after gap closure by chromosomal walking. The genetic and physical maps agreed closely. The final physical map was estimated to cover >95% of the 4.2 Mb of chromosome 7. Based on the contig maps, a minimum BAC tile containing 42 BAC clones was created, and organization of repetitive elements and expressed genes of the chromosome was investigated.
Collapse
|
17
|
|
18
|
Spaltmann F, Blunck M, Ziegelbauer K. Computer-aided target selection-prioritizing targets for antifungal drug discovery. Drug Discov Today 1999; 4:17-26. [PMID: 10234146 DOI: 10.1016/s1359-6446(98)01278-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The entire DNA sequence of the Saccharomyces cerevisiae genome was completed in 1996 and represents the first entirely decoded eukaryotic genome. Because major human pathogenic fungi such as Candida albicans are closely related to S. cerevisiae on a molecular level, the question arises as to how this new information can be used to identify and prioritize those genes that are most suitable as targets for antimycotic drug discovery. To tackle this challenge, a software tool called CATS (computer-aided target selection) was developed. The authors describe how it allows an automated and periodically updated assessment of all S. cerevisiae genes to be carried out with regard to their suitability as antifungal targets.
Collapse
Affiliation(s)
- F Spaltmann
- Institute for Antiinfective Research, Bayer AG, D-42096 Wuppertal, Germany
| | | | | |
Collapse
|
19
|
Chibana H, Magee BB, Grindle S, Ran Y, Scherer S, Magee PT. A physical map of chromosome 7 of Candida albicans. Genetics 1998; 149:1739-52. [PMID: 9691033 PMCID: PMC1460290 DOI: 10.1093/genetics/149.4.1739] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As part of the ongoing Candida albicans Genome Project, we have constructed a complete sequence-tagged site contig map of chromosome 7, using a library of 3840 clones made in fosmids to promote the stability of repeated DNA. The map was constructed by hybridizing markers to the library, to a blot of the electrophoretic karyotype, and to a blot of the pulsed-field separation of the SfiI restriction fragments of the genome. The map includes 149 fosmids and was constructed using 79 markers, of which 34 were shown to be genes via determination of function or comparison of the DNA sequence to the public databases. Twenty-five of these genes were identified for the first time. The absolute position of several markers was determined using random breakage mapping. Each of the homologues of chromosome 7 is approximately 1 Mb long; the two differ by about 20 kb. Each contains two major repeat sequences, oriented so that they form an inverted repeat separated by 370 kb of unique DNA. The repeated sequence CARE2/Rel2 is a subtelomeric repeat on chromosome 7 and possibly on the other chromosomes as well. Genes located on chromosome 7 in Candida are found on 12 different chromosomes in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- H Chibana
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|