1
|
Sillo F, Vergine M, Luvisi A, Calvo A, Petruzzelli G, Balestrini R, Mancuso S, De Bellis L, Vita F. Bacterial Communities in the Fruiting Bodies and Background Soils of the White Truffle Tuber magnatum. Front Microbiol 2022; 13:864434. [PMID: 35651491 PMCID: PMC9149314 DOI: 10.3389/fmicb.2022.864434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/25/2022] [Indexed: 01/09/2023] Open
Abstract
Tuber magnatum Picco is a greatly appreciated truffle species mainly distributed in Italy. Its price and characteristics mostly depend on its geographical origin. Truffles represent a fundamental step of the life cycle of Tuber species promoting spore dissemination. They consist of two main parts, gleba, the inner part, and peridium, which is in direct contact with ground soil. Within the truffle and around in the growing soil, both the occurrence and abundance of different microbial species seem to play an essential role in truffle production. The development of the next-generation sequencing (NGS) based technology has greatly improved to deepen the role of the composition of microbial communities, thus improving the knowledge of the existing relationships between microbial taxa in a specific condition. Here, we applied a metabarcoding approach to assess the differences in T. magnatum samples collected from three areas in Tuscany (Italy). Peridium and gleba were analyzed separately with the aim to distinguish them based on their microbial composition. Also, soil samples were collected and analyzed to compare productive and unproductive truffle grounds to confirm the presence of specific patterns linked to truffle production. Results indicate that differences occurred between truffle compartments (gleba and peridium) as well as between analyzed soils (productive and unproductive), with distinctive taxa associated. Furthermore, findings also demonstrated specific characteristics associated with truffle collection areas, thus indicating a degree of microbial selection related to different environments.
Collapse
Affiliation(s)
- Fabiano Sillo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Alice Calvo
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | | | - Raffaella Balestrini
- National Research Council-Institute for Sustainable Plant Protection (CNR-IPSP), Turin, Italy
| | - Stefano Mancuso
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Federico Vita
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy.,Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
2
|
Elliott T, Truong C, Jackson S, Zúñiga C, Trappe J, Vernes K. Mammalian mycophagy: A global review of ecosystem interactions between mammals and fungi. Fungal Syst Evol 2022; 9:99-159. [PMID: 36072820 PMCID: PMC9402283 DOI: 10.3114/fuse.2022.09.07] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/02/2022] [Indexed: 11/07/2022] Open
Abstract
The consumption of fungi by animals is a significant trophic interaction in most terrestrial ecosystems, yet the role mammals play in these associations has been incompletely studied. In this review, we compile 1 154 references published over the last 146 years and provide the first comprehensive global review of mammal species known to eat fungi (508 species in 15 orders). We review experimental studies that found viable fungal inoculum in the scats of at least 40 mammal species, including spores from at least 58 mycorrhizal fungal species that remained viable after ingestion by mammals. We provide a summary of mammal behaviours relating to the consumption of fungi, the nutritional importance of fungi for mammals, and the role of mammals in fungal spore dispersal. We also provide evidence to suggest that the morphological evolution of sequestrate fungal sporocarps (fruiting bodies) has likely been driven in part by the dispersal advantages provided by mammals. Finally, we demonstrate how these interconnected associations are widespread globally and have far-reaching ecological implications for mammals, fungi and associated plants in most terrestrial ecosystems. Citation: Elliott TF, Truong C, Jackson S, Zúñiga CL, Trappe JM, Vernes K (2022). Mammalian mycophagy: a global review of ecosystem interactions between mammals and fungi. Fungal Systematics and Evolution 9: 99-159. doi: 10.3114/fuse.2022.09.07.
Collapse
Affiliation(s)
- T.F. Elliott
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - C. Truong
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - S.M. Jackson
- Australian Museum Research Institute, Australian Museum, 1 William St., Sydney, NSW 2010, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Division of Mammals, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - C.L. Zúñiga
- Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - J.M. Trappe
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - K. Vernes
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
3
|
Ori F, Menotta M, Leonardi M, Amicucci A, Zambonelli A, Covès H, Selosse MA, Schneider-Maunoury L, Pacioni G, Iotti M. Effect of slug mycophagy on Tuber aestivum spores. Fungal Biol 2021; 125:796-805. [PMID: 34537175 DOI: 10.1016/j.funbio.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
Truffles in the genus Tuber produce subterranean fruiting bodies that are not able to actively discharge their spores in the environment. For this reason, truffles depend on mycophagous animals for reproduction. Fungus consumption (mycophagy) is a behaviour typical of both vertebrates and invertebrates. Mammals, especially rodents, are the most studied group of mycophagists and have been found to consume a great variety of fungi. Among invertebrates, mycophagy is documented in arthropods, but rarely in molluscs. In our study we assessed the effect on the morphology and mycorrhizal colonization of Tuber aestivum spores after passage through the gut of slugs (Deroceras invadens) and, for comparison, of a house mouse (Mus musculus). Light, scanning electron and atomic force microscopy revealed that the digestion, especially by slugs, freed spores from the asci and modified their morphology. These are believed to be the reasons why we observed an improvement in oak mycorrhization with the slug and rodent ingested spores in comparison to a fresh spore inoculation. We also demonstrated by molecular barcoding that slugs' guts sampled on a Tuber melanosporum truffle ground contain spores from this species and Tuber brumale, further suggesting that some invertebrates are efficient Tuber spore dispersers.
Collapse
Affiliation(s)
- Francesca Ori
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino, Italy.
| | - Marco Leonardi
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Antonella Amicucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029, Urbino, Italy.
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy.
| | - Hervé Covès
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France; Arbre et Paysage 32, 93 Route de Pessan, 32000, Auch, France.
| | - Marc-André Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France; Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308, Gdansk, Poland.
| | - Laure Schneider-Maunoury
- Institut de Systématique, Évolution, Biodiversité (UMR 7205 - CNRS, MNHN, UPMC, EPHE), Muséum national d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005, Paris, France.
| | - Giovanni Pacioni
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy.
| |
Collapse
|
4
|
Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom Coprinopsis cinerea. Appl Environ Microbiol 2019; 85:AEM.00532-19. [PMID: 31126941 DOI: 10.1128/aem.00532-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022] Open
Abstract
The elongation growth of the mushroom stipe is a characteristic but not well-understood morphogenetic event of basidiomycetes. We found that extending native stipe cell walls of Coprinopsis cinerea were associated with the release of N-acetylglucosamine and chitinbiose and with chitinase activity. Two chitinases among all detected chitinases from C. cinerea, ChiE1 and ChiIII, reconstituted heat-inactivated stipe wall extension and released N-acetylglucosamine and chitinbiose. Interestingly, both ChiE1 and ChiIII hydrolyze insoluble crystalline chitin powder, while other C. cinerea chitinases do not, suggesting that crystalline chitin components of the stipe cell wall are the target of action for ChiE1 and ChiIII. ChiE1- or ChiIII-reconstituted heat-inactivated stipe walls showed maximal extension activity at pH 4.5, consistent with the optimal pH for native stipe wall extension in vitro; ChiE1- or ChiIII-reconstituted heat-inactivated stipe wall extension activities were associated with stipe elongation growth regions; and the combination of ChiE1 and ChiIII showed a synergism to reconstitute heat-inactivated stipe wall extension at a low action concentration. Field emission scanning electron microscopy (FESEM) images showed that the inner surface of acid-induced extended native stipe cell walls and ChiE1- or ChiIII-reconstituted extended heat-inactivated stipe cell walls exhibited a partially broken parallel microfibril architecture; however, these broken transversely arranged microfibrils were not observed in the unextended stipe cell walls that were induced by neutral pH buffer or heat inactivation. Double knockdown of ChiE1 and ChiIII resulted in the reduction of stipe elongation, mycelium growth, and heat-sensitive cell wall extension of native stipes. These results indicate a chitinase-hydrolyzing mechanism for stipe cell wall extension.IMPORTANCE A remarkable feature in the development of basidiomycete fruiting bodies is stipe elongation growth that results primarily from manifold cell elongation. Some scientists have suggested that stipe elongation is the result of enzymatic hydrolysis of cell wall polysaccharides, while other scientists have proposed the possibility that stipe elongation results from nonhydrolytic disruption of the hydrogen bonds between cell wall polysaccharides. Here, we show direct evidence for a chitinase-hydrolyzing mechanism of stipe cell wall elongation in the model mushroom Coprinopsis cinerea that is different from the expansin nonhydrolysis mechanism of plant cell wall extension. We presumed that in the growing stipe cell walls, parallel chitin microfibrils are tethered by β-1,6-branched β-1,3-glucans, and that the breaking of the tether by chitinases leads to separation of these microfibrils to increase their spacing for insertion of new synthesized chitin and β-1,3-glucans under turgor pressure in vivo.
Collapse
|
5
|
|
6
|
|
7
|
Zampieri E, Guzzo F, Commisso M, Mello A, Bonfante P, Balestrini R. Gene expression and metabolite changes during Tuber magnatum fruiting body storage. Curr Genet 2014; 60:285-94. [PMID: 24981976 DOI: 10.1007/s00294-014-0434-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/24/2014] [Accepted: 06/10/2014] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the impact of different 4 °C post-harvest storage periods on the quality of the white truffle Tuber magnatum. The expression of selected genes and the profiles of non-volatile metabolites have been analyzed. The up-regulation of genes related to cell wall metabolism and to a putative laccase points to cell wall modifications and browning events during cold storage. Time course RT-qPCR experiments have demonstrated that such transcription events probably depend on the ripening status, since this is delayed in partially ripe fruiting bodies. Changes in the concentrations of linoleate-derived metabolites occur during the first 3 days of considered cold storage, while the other metabolites, such as the amino acids, do not change. Taken together, the results demonstrate that complex molecular events occur in white truffles in the post-harvest period and before they are used as fresh products.
Collapse
Affiliation(s)
- Elisa Zampieri
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale Mattioli 25, 10125, Torino, Italy
| | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Sillo F, Gissi C, Chignoli D, Ragni E, Popolo L, Balestrini R. Expression and phylogenetic analyses of the Gel/Gas proteins of Tuber melanosporum provide insights into the function and evolution of glucan remodeling enzymes in fungi. Fungal Genet Biol 2013; 53:10-21. [PMID: 23454547 DOI: 10.1016/j.fgb.2013.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Abstract
The β(1,3)-glucanosyltransferases of the GH72 family are redundant enzymes that are essential for the formation and dynamic remodeling of the fungal wall during different stages of the life cycle. Four putative genes encoding glycosylphosphatidylinositol (GPI)-anchored β(1,3)-glucanosyltransferases, designated TmelGEL1, TmelGEL2, TmelGEL4 and TmelGAS4, have been annotated in the genome of Tuber melanosporum, an ectomycorrhizal fungus that also produces a hypogeous fruiting body (FB) of great commercial value (black truffle). This work focuses on the characterization and expression of this multigene family by taking advantage of a laser microdissection (LMD) technology that has been used to separate two distinct compartments in the FB, the hyphae and the asci containing the ascospores. Of the four genes, TmelGEL1 was the most up-regulated in the FB compared to the free-living mycelium. Inside the FB, the expression of TmelGEL1 was restricted to the hyphal compartment. A phylogenetic analysis of the Gel/Gas protein family of T. melanosporum was also carried out. A total of 237 GH72 proteins from 51 Ascomycotina and 3 Basidiomycota (outgroup) species were analyzed. The resulting tree provides insight into the evolution of the T. melanosporum proteins and identifies new GH72 paralogs/subfamilies. Moreover, it represents a starting point to formulate new hypotheses on the significance of the striking GH72 gene redundancy in fungal biology.
Collapse
Affiliation(s)
- Fabiano Sillo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, 10125 Torino, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Perrone I, Gambino G, Chitarra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini R, Kaldenhoff R, Uehlein N, Gribaudo I, Schubert A, Lovisolo C. The grapevine root-specific aquaporin VvPIP2;4N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. PLANT PHYSIOLOGY 2012; 160:965-77. [PMID: 22923680 PMCID: PMC3461569 DOI: 10.1104/pp.112.203455] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 08/21/2012] [Indexed: 05/04/2023]
Abstract
We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.
Collapse
Affiliation(s)
| | | | - Walter Chitarra
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Marco Vitali
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Chiara Pagliarani
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Nadia Riccomagno
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Raffaella Balestrini
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Ralf Kaldenhoff
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Norbert Uehlein
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Ivana Gribaudo
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Andrea Schubert
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| | - Claudio Lovisolo
- Department of Agricultural, Forestry, and Food Sciences, University of Turin, 10095 Grugliasco, Italy (I.P., W.C., M.V., C.P., N.R., A.S., C.L.); Plant Virology Institute, National Research Council, Grugliasco Unit, 10095 Grugliasco, Italy (G.G., I.G., C.L.); Plant Protection Institute, National Research Council, Torino Unit, 10125 Turin, Italy (R.B.); and Darmstadt University of Technology, Applied Plant Science, D–64287 Darmstadt, Germany (R.K., N.U.)
| |
Collapse
|
11
|
Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Curr Genet 2012; 58:165-77. [PMID: 22481122 DOI: 10.1007/s00294-012-0374-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/15/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
A genome-wide inventory of proteins involved in cell wall synthesis and remodeling has been obtained by taking advantage of the recently released genome sequence of the ectomycorrhizal Tuber melanosporum black truffle. Genes that encode cell wall biosynthetic enzymes, enzymes involved in cell wall polysaccharide synthesis or modification, GPI-anchored proteins and other cell wall proteins were identified in the black truffle genome. As a second step, array data were validated and the symbiotic stage was chosen as the main focus. Quantitative RT-PCR experiments were performed on 29 selected genes to verify their expression during ectomycorrhizal formation. The results confirmed the array data, and this suggests that cell wall-related genes are required for morphogenetic transition from mycelium growth to the ectomycorrhizal branched hyphae. Labeling experiments were also performed on T. melanosporum mycelium and ectomycorrhizae to localize cell wall components.
Collapse
|
12
|
Montanini B, Levati E, Bolchi A, Kohler A, Morin E, Tisserant E, Martin F, Ottonello S. Genome-wide search and functional identification of transcription factors in the mycorrhizal fungus Tuber melanosporum. THE NEW PHYTOLOGIST 2011; 189:736-750. [PMID: 21058951 DOI: 10.1111/j.1469-8137.2010.03525.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• Developmental transitions associated with the life cycle of plant-symbiotic fungi, such as the ascomycete Tuber melanosporum, are likely to require an extensive reprogramming of gene expression brought about by transcription factors (TFs). To date, little is known about the transcriptome alterations that accompany developmental shifts associated with symbiosis or fruiting body formation. • Taking advantage of the black truffle genome sequence, we used a bioinformatic approach, coupled with functional analysis in yeast and transcriptome profiling, to identify and catalogue T. melanosporum TFs, the so-called 'regulome'. • The T. melanosporum regulome contains 102 homologs of previously characterized TFs, 57 homologs of hypothetical TFs, and 42 putative TFs apparently unique to Tuber. The yeast screen allowed the functional discovery of four TFs and the validation of about one-fifth of the in silico predicted TFs. Truffle proteins apparently unrelated to transcription were also identified as potential transcriptional regulators, together with a number of plant TFs. • Twenty-nine TFs, some of which associated with particular developmental stages, were found to be up-regulated in ECMs or fruiting bodies. About one-quarter of these up-regulated TFs are expressed at surprisingly high levels, thus pointing to a striking functional specialization of the different stages of the Tuber life cycle.
Collapse
Affiliation(s)
- Barbara Montanini
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | - Elisabetta Levati
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | - Angelo Bolchi
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| | - Annegret Kohler
- Ecogenomics of Interactions Lab, UMR 'Interactions Arbres/Micro-Organismes', INRA-Nancy, 54280 Champenoux, France
| | - Emmanuelle Morin
- Ecogenomics of Interactions Lab, UMR 'Interactions Arbres/Micro-Organismes', INRA-Nancy, 54280 Champenoux, France
| | - Emilie Tisserant
- Ecogenomics of Interactions Lab, UMR 'Interactions Arbres/Micro-Organismes', INRA-Nancy, 54280 Champenoux, France
| | - Francis Martin
- Ecogenomics of Interactions Lab, UMR 'Interactions Arbres/Micro-Organismes', INRA-Nancy, 54280 Champenoux, France
| | - Simone Ottonello
- Department of Biochemistry and Molecular Biology, University of Parma, 43100 Parma, Italy
| |
Collapse
|
13
|
Menotta M, Amicucci A, Basili G, Polidori E, Stocchi V, Rivero F. Molecular and functional characterization of a Rho GDP dissociation inhibitor in the filamentous fungus Tuber borchii. BMC Microbiol 2008; 8:57. [PMID: 18400087 PMCID: PMC2362126 DOI: 10.1186/1471-2180-8-57] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 04/09/2008] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Small GTPases of the Rho family function as tightly regulated molecular switches that govern important cellular functions in eukaryotes. Several families of regulatory proteins control their activation cycle and subcellular localization. Members of the guanine nucleotide dissociation inhibitor (GDI) family sequester Rho GTPases from the plasma membrane and keep them in an inactive form. RESULTS We report on the characterization the RhoGDI homolog of Tuber borchii Vittad., an ascomycetous ectomycorrhizal fungus. The Tbgdi gene is present in two copies in the T. borchii genome. The predicted amino acid sequence shows high similarity to other known RhoGDIs. Real time PCR analyses revealed an increased expression of Tbgdi during the phase preparative to the symbiosis instauration, in particular after stimulation with root exudates extracts, that correlates with expression of Tbcdc42. In a translocation assay TbRhoGDI was able to solubilize TbCdc42 from membranes. Surprisingly, TbRhoGDI appeared not to interact with S. cerevisiae Cdc42, precluding the use of yeast as a surrogate model for functional studies. To study the role of TbRhoGDI we performed complementation experiments using a RhoGDI null strain of Dictyostelium discoideum, a model organism where the roles of Rho signaling pathways are well established. For comparison, complementation with mammalian RhoGDI1 and LyGDI was also studied in the null strain. Although interacting with Rac1 isoforms, TbRhoGDI was not able to revert the defects of the D. discoideum RhoGDI null strain, but displayed an additional negative effect on the cAMP-stimulated actin polymerization response. CONCLUSION T. borchii expresses a functional RhoGDI homolog that appears as an important modulator of cytoskeleton reorganization during polarized apical growth that antecedes symbiosis instauration. The specificity of TbRhoGDI actions was underscored by its inability to elicit a growth defect in S. cerevisiae or to compensate the loss of a D. discoideum RhoGDI. Knowledge of the cell signaling at the basis of cytoskeleton reorganization of ectomycorrhizal fungi is essential for improvements in the production of mycorrhized plant seedlings used in timberland extension programs and fruit body production.
Collapse
Affiliation(s)
- Michele Menotta
- Istituto di Chimica Biologica "G. Fornaini," Università degli Studi di Urbino "Carlo Bo," Via Saffi 2, 61029 Urbino (PU), Italy
| | - Antonella Amicucci
- Istituto di Chimica Biologica "G. Fornaini," Università degli Studi di Urbino "Carlo Bo," Via Saffi 2, 61029 Urbino (PU), Italy
| | - Giorgio Basili
- Istituto di Chimica Biologica "G. Fornaini," Università degli Studi di Urbino "Carlo Bo," Via Saffi 2, 61029 Urbino (PU), Italy
| | - Emanuela Polidori
- Istituto di Ricerca sull'Attività Motoria, Università degli Studi di Urbino "Carlo Bo," Via I Maggetti 26, 61029 Urbino (PU), Italy
| | - Vilberto Stocchi
- Istituto di Chimica Biologica "G. Fornaini," Università degli Studi di Urbino "Carlo Bo," Via Saffi 2, 61029 Urbino (PU), Italy
| | - Francisco Rivero
- Center for Biochemistry, Medical Faculty, University of Cologne. Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
- The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull HU6 7RX, UK
| |
Collapse
|
14
|
Gabella S, Abbà S, Duplessis S, Montanini B, Martin F, Bonfante P. Transcript profiling reveals novel marker genes involved in fruiting body formation in Tuber borchii. EUKARYOTIC CELL 2005; 4:1599-602. [PMID: 16151254 PMCID: PMC1214200 DOI: 10.1128/ec.4.9.1599-1602.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle Tuber borchii. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.
Collapse
Affiliation(s)
- Silvia Gabella
- Dipartimento di Biologia Vegetale dell'Università di Torino, Istituto per la Protezione delle Piante-CNR, Viale Mattioli 25, 10125 Turin, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Choquer M, Boccara M, Gonçalves IR, Soulié MC, Vidal-Cros A. Survey of the Botrytis cinerea chitin synthase multigenic family through the analysis of six euascomycetes genomes. ACTA ACUST UNITED AC 2004; 271:2153-64. [PMID: 15153106 DOI: 10.1111/j.1432-1033.2004.04135.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe a strategy for systematic amplification of chitin synthase genes (chs) in the filamentous ascomycetes plant-pathogen Botrytis cinerea using PCR with multiple degenerate primers designed on specific and conserved sequence motifs. Eight distinct chs genes were isolated, named Bcchs I, II, IIIa, IIIb, IV, V, VI and VII. They probably constitute the entire chs multigenic family of this fungus, as revealed by careful analysis of six euascomycetes genomes. Bcchs I, IIIa, IIIb, IV and VI genes were subjected to DNA walking and their deduced amino acid sequences were compared by hydrophobic cluster analysis (HCA) to localize putative residues critical for CHS activity. HCA also enabled us to highlight three different transmembrane topologies of the CHS membranous isoenzymes. We found that the N-terminal region of the BcCHSI isoenzyme, and its orthologues in other euascomycetes, probably contain folded peptide motifs with conserved tyrosine residues. Their putative role is discussed. The BcCHSVII isoenzyme appeared to belong to a new class of CHS orthologues that was demonstrated by phylogenetic study to branch apart from division 1 and 2 of CHS.
Collapse
Affiliation(s)
- Mathias Choquer
- UMR 7613 CNRS/Université Paris VI, 4 place Jussieu, 75005 Paris, France
| | | | | | | | | |
Collapse
|
16
|
Pierleoni R, Buffalini M, Vallorani L, Guidi C, Zeppa S, Sacconi C, Pucci P, Amoresano A, Casbarra A, Stocchi V. Tuber borchii fruit body: 2-dimensional profile and protein identification. PHYTOCHEMISTRY 2004; 65:813-820. [PMID: 15081280 DOI: 10.1016/j.phytochem.2004.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/30/2004] [Indexed: 05/24/2023]
Abstract
The formation of the fruit body represents the final phase of the ectomycorrhizal fungus T. borchii life cycle. Very little is known concerning the molecular and biochemical processes involved in the fructification phase. 2-DE maps of unripe and ripe ascocarps revealed different protein expression levels and the comparison of the electropherograms led to the identification of specific proteins for each developmental phase. Associating micropreparative 2-DE to microchemical approaches, such as N-terminal sequencing and 2-D gel-electrophoresis mass-spectrometry, proteins playing pivotal roles in truffle physiology were identified.
Collapse
Affiliation(s)
- Raffaella Pierleoni
- Istituto di Chimica Biologica Giorgio Fornaini, Università degli Studi di Urbino Carlo Bo, Via A. Saffi, 2, I-61029 Urbino (PU), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Guidi C, Zeppa S, Barbieri E, Zambonelli A, Polidori E, Potenza L, Stocchi V. A putative mitochondrial fission gene from the ectomycorrhizal ascomycete Tuber borchii Vittad.: cloning, characterisation and phylogeny. Curr Genet 2003; 44:148-54. [PMID: 12910371 DOI: 10.1007/s00294-003-0430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2003] [Revised: 07/03/2003] [Accepted: 07/05/2003] [Indexed: 11/28/2022]
Abstract
Mitochondrial binary division is a complex process occurring in multiple steps, mediated by several proteins. In Saccharomyces cerevisiae, a mitochondrial membrane protein, Fis1p, is required for the proper assembly of the mitochondrial division apparatus. In this study, we report the cloning, characterisation and phylogenetic analysis of Tbfis1, a gene from the ectomycorrhizal ascomycetous truffle Tuber borchii, encoding for an orthologue of S. cerevisiae Fis1p. The Tbfis1 coding region consists of a 468-nucleotide open reading frame interrupted by four introns, which encodes for a polypeptide of 155 amino acids, having a predicted transmembrane domain structure typical of the Fis1p Family. Southern blot analysis revealed that Tbfis1 is a single-copy gene in the T. borchii genome. Tbfis1 is highly expressed during the first stages of T. borchii fruit body ripening, while its expression decreases during T. borchii mycelium ageing. Also, Virtual Northern blot analysis revealed Tbfis1 expression in the symbiotic phase of the fungus life cycle. Phylogenetic analysis allowed the identification of Tbfis1 orthologues in filamentous fungi, yeasts, plants, worms, flies and mammals, indicating that the function of the protein coded by this gene has been conserved during evolution.
Collapse
Affiliation(s)
- C Guidi
- Istituto di Chimica Biologica Giorgio Fornaini, Università degli Studi di Urbino Carlo Bo, via Saffi 2, PU 61029 Urbino, Italy
| | | | | | | | | | | | | |
Collapse
|
18
|
Montanini B, Betti M, Márquez AJ, Balestrini R, Bonfante P, Ottonello S. Distinctive properties and expression profiles of glutamine synthetase from a plant symbiotic fungus. Biochem J 2003; 373:357-68. [PMID: 12683951 PMCID: PMC1223491 DOI: 10.1042/bj20030152] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Revised: 03/28/2003] [Accepted: 04/08/2003] [Indexed: 11/17/2022]
Abstract
The nucleotide sequences reported in this paper have been submitted to the GenBank(R)/EBI Nucleotide Sequence Databases with accession numbers AF462037 (glutamine synthetase) and AF462032 (glutamate synthase). Nitrogen retrieval and assimilation by symbiotic ectomycorrhizal fungi is thought to play a central role in the mutualistic interaction between these organisms and their plant hosts. Here we report on the molecular characterization of the key N-assimilation enzyme glutamine synthetase from the mycorrhizal ascomycete Tuber borchii (TbGS). TbGS displayed a strong positive co-operativity ( n =1.7+/-0.29) and an unusually high S(0.5) value (54+/-16 mM; S(0.5) is the substrate concentration value at which v =(1/2) V (max)) for glutamate, and a correspondingly low sensitivity towards inhibition by the glutamate analogue herbicide phosphinothricin. The TbGS mRNA, which is encoded by a single-copy gene in the Tuber genome, was up-regulated in N-starved mycelia and returned to basal levels upon resupplementation of various forms of N, the most effective of which was nitrate. Both responses were accompanied by parallel variations of TbGS protein amount and glutamine synthetase activity, thus indicating that TbGS levels are primarily controlled at the pre-translational level. As revealed by a comparative analysis of the TbGS mRNA and of the mRNAs for the metabolically related enzymes glutamate dehydrogenase and glutamate synthase, TbGS is not only the sole messenger that positively responds to N starvation, but also the most abundant under N-limiting conditions. A similar, but even more discriminating expression pattern, with practically undetectable glutamate dehydrogenase mRNA levels, was observed in fruitbodies. The TbGS mRNA was also found to be expressed in symbiosis-engaged hyphae, with distinctively higher hybridization signals in hyphae that were penetrating among and within root cells.
Collapse
Affiliation(s)
- Barbara Montanini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Lacourt I, Duplessis S, Abbà S, Bonfante P, Martin F. Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Tuber borchii. Appl Environ Microbiol 2002; 68:4574-82. [PMID: 12200316 PMCID: PMC124117 DOI: 10.1128/aem.68.9.4574-4582.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transition from vegetative mycelium to fruit body in truffles requires differentiation processes which lead to edible fruit bodies (ascomata) consisting of different cell and tissue types. The identification of genes differentially expressed during these developmental processes can contribute greatly to a better understanding of truffle morphogenesis. A cDNA library was constructed from vegetative mycelium RNAs of the white truffle Tuber borchii, and 214 cDNAs were sequenced. Up to 58% of the expressed sequence tags corresponded to known genes. The majority of the identified sequences represented housekeeping proteins, i.e., proteins involved in gene or protein expression, cell wall formation, primary and secondary metabolism, and signaling pathways. We screened 171 arrayed cDNAs by using cDNA probes constructed from mRNAs of vegetative mycelium and ascomata to identify fruit body-regulated genes. Comparisons of signals from vegetative mycelium and fruit bodies bearing 15 or 70% mature spores revealed significant differences in the expression levels for up to 33% of the investigated genes. The expression levels for six highly regulated genes were confirmed by RNA blot analyses. The expression of glutamine synthetase, 5-aminolevulinic acid synthetase, isocitrate lyase, thioredoxin, glucan 1,3-beta-glucosidase, and UDP-glucose:sterol glucosyl transferase was highly up-regulated, suggesting that amino acid biosynthesis, the glyoxylate cycle pathway, and cell wall synthesis are strikingly altered during morphogenesis.
Collapse
Affiliation(s)
- Isabelle Lacourt
- Dipartimento di Biologia Vegetale, Università di Torino and Sezione di Torino, Istituto di Protezione delle Piante-CNR, 10125 Turin, Italy
| | | | | | | | | |
Collapse
|
20
|
Montanini B, Moretto N, Soragni E, Percudani R, Ottonello S. A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 2002; 36:22-34. [PMID: 12051892 DOI: 10.1016/s1087-1845(02)00001-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An ammonium transporter cDNA, named TbAMT1, was isolated from the ectomycorrhizal ascomycetous truffle Tuber borchii. The polypeptide encoded by TbAMT1 (52 kDa) functionally complements ammonium uptake-defective yeast mutants and shares sequence similarity with previously characterized ammonium transporters from Saccharomyces (Mep) and Arabidopsis (AtAMT1). Structural characteristics common to the Mep/Amt family and peculiar features of the Tuber transporter have been evidenced by a detailed topological model of the TbAMT1 protein, which predicts 11 transmembrane helices with an N terminus(OUT)/C terminus(IN) orientation. As revealed by uptake/competition experiments conducted in yeast, TbAMT1 is a high-affinity transporter with an apparent K(m) for ammonium of 2 microM. The TbAMT1 mRNA was very slowly, yet specifically upregulated in nitrogen-deprived T. borchii mycelia. Instead, a much faster return to basal expression levels was observed upon resupplementation of either ammonium or nitrate, which thus appear to be utilized as equally effective nitrogen sources by Tuber mycelia.
Collapse
MESH Headings
- Amino Acid Sequence
- Ascomycota/genetics
- Ascomycota/metabolism
- Base Sequence
- Carrier Proteins/genetics
- Carrier Proteins/isolation & purification
- Carrier Proteins/metabolism
- Cation Transport Proteins
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- Fungal Proteins/metabolism
- Genes, Fungal
- Genetic Complementation Test
- Kinetics
- Models, Molecular
- Molecular Sequence Data
- Phylogeny
- Plant Proteins
- Protein Structure, Secondary
- Quaternary Ammonium Compounds/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Barbara Montanini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma, Italy
| | | | | | | | | |
Collapse
|
21
|
Vallorani L, Polidori E, Sacconi C, Agostini D, Pierleoni R, Piccoli G, Zeppa S, Stocchi V. Biochemical and molecular characterization of NADP-glutamate dehydrogenase from the ectomycorrhizal fungus Tuber borchii. THE NEW PHYTOLOGIST 2002; 154:779-790. [PMID: 33873467 DOI: 10.1046/j.1469-8137.2002.00409.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• NADP-glutamate dehydrogenase (NADP-GDH) from Tuber borchii was purified and the corresponding gene was cloned in order to elucidate the physiological role of the enzyme in this ectomycorrhizal fungus. • NADP-GDH was purified using an anion-exchange column followed by affinity chromatography. The complete gene was cloned from a 30-d-old-mycelium cDNA library and characterized. • T. borchii NADP-GDH appears to be physically and kinetically similar to those from other fungi and the deduced amino acid sequence of the gdh gene showed a significant similarity to other fungal NADP-dependent GDHs. Biochemical and Northern blotting analyses carried out with mycelia grown on different nitrogen sources clearly showed that the regulation of T. borchii NADP-GDH in response to different nitrogen sources was markedly different from the responses of the NADP-GDHs of other ascomycetes. Northern blotting analyses highlighted that the gdh gene was also expressed in the symbiotic phase. • The biochemical and molecular data suggest that the fungal NADP-GDH contributes to the primary nitrogen metabolism in the ectomycorrhizal tissues.
Collapse
Affiliation(s)
- Luciana Vallorani
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi, 2-61029 Urbino (PU), Italy
| | - Emanuela Polidori
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi, 2-61029 Urbino (PU), Italy
| | - Cinzia Sacconi
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi, 2-61029 Urbino (PU), Italy
| | - Deborah Agostini
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi, 2-61029 Urbino (PU), Italy
| | - Raffaella Pierleoni
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi, 2-61029 Urbino (PU), Italy
| | - Giovanni Piccoli
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi, 2-61029 Urbino (PU), Italy
| | - Sabrina Zeppa
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi, 2-61029 Urbino (PU), Italy
| | - Vilberto Stocchi
- Istituto di Chimica Biologica 'Giorgio Fornaini', Università degli Studi di Urbino, via Saffi, 2-61029 Urbino (PU), Italy
| |
Collapse
|
22
|
Soragni E, Bolchi A, Balestrini R, Gambaretto C, Percudani R, Bonfante P, Ottonello S. A nutrient-regulated, dual localization phospholipase A(2) in the symbiotic fungus Tuber borchii. EMBO J 2001; 20:5079-90. [PMID: 11566873 PMCID: PMC125632 DOI: 10.1093/emboj/20.18.5079] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Important morphogenetic transitions in fungi are triggered by starvation-induced changes in the expression of structural surface proteins. Here, we report that nutrient deprivation causes a strong and reversible up-regulation of TbSP1, a surface-associated, Ca(2+)-dependent phospholipase from the mycorrhizal fungus Tuber borchii. TbSP1 is the first phospholipase A(2) to be described in fungi and identifies a novel class of phospholipid-hydrolyzing enzymes. The TbSP1 phospholipase, which is synthesized initially as a pre-protein, is processed efficiently and secreted during the mycelial phase. The mature protein, however, also localizes to the inner cell wall layer, close to the plasma membrane, in both free-living and symbiosis-engaged hyphae. It thus appears that a dual localization phospholipase A(2) is involved in the adaptation of a symbiotic fungus to conditions of persistent nutritional limitation. Moreover, the fact that TbSP1-related sequences are present in Streptomyces and Neurospora, and not in wholly sequenced non-filamentous microorganisms, points to a general role for TbSP1 phospholipases A(2) in the organization of multicellular filamentous structures in bacteria and fungi.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | | | - Raffaella Balestrini
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | | | | | - Paola Bonfante
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| | - Simone Ottonello
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, Parco Area delle Scienze 23/A, I-43100 Parma and
Centro di Studio sulla Micologia del Terreno (CNR) and Dipartimento di Biologia Vegetale, Università di Torino, Vialle Mattioli 25, I-10125 Torino, Italy Present address: Center for Molecular Genetics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA Corresponding author e-mail:
| |
Collapse
|
23
|
|