1
|
Cedeno FRP, Olubiyo OJ, Ferreira S. From microbial proteins to cultivated meat for alternative meat-like products: a review on sustainable fermentation approaches. J Biol Eng 2025; 19:44. [PMID: 40369620 PMCID: PMC12077041 DOI: 10.1186/s13036-025-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025] Open
Abstract
The global demand for protein is rapidly increasing due to population growth and changing dietary preferences, highlighting the need for sustainable alternatives to traditional animal-based proteins. This review explores cultivated meat and microbial alternative proteins, focusing on their potential to meet nutritional needs while mitigating environmental impacts. It also examines the production of cultivated meat as well as various sources of microbial proteins, including mycoproteins, bacterial proteins, and microalgae, highlighting their nutritional profiles, production methods, and commercial applications. This includes an evaluation of the state of commercialization of mycoproteins and the innovative use of agricultural and industrial by-products as substrates for microbial fermentation. The integration of microbial protein production with the bioenergy sector is evaluated as a relevant alternative to attain a synergetic effect between energy and food production systems. Ultimately, this work aims to underscore the importance of microbial proteins in advancing towards a more sustainable protein production system, offering insights into current challenges and future opportunities in the field of fermentation to produce alternative proteins.
Collapse
Affiliation(s)
- Fernando Roberto Paz Cedeno
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Olumide Joseph Olubiyo
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA
| | - Sungil Ferreira
- Department of Food Science, The University of ArkansasSystem - Division of Agriculture (UADA), , Fayetteville, AR, 72704, USA.
| |
Collapse
|
2
|
Schäfer A, Kempken F. A rapid PCR-based method to determine the Neurospora crassa mating type. J Basic Microbiol 2024; 64:e2300495. [PMID: 37907429 DOI: 10.1002/jobm.202300495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
So far mating type determination in Neurospora crassa requires test crosses with strains of known mating type. We present a simple, quick, and reliable polymerase chain reaction-based method for mating type determination in N. crassa.
Collapse
Affiliation(s)
- Anke Schäfer
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Kiel, Germany
| | - Frank Kempken
- Abteilung Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Kiel, Germany
| |
Collapse
|
3
|
Montenegro-Montero A, Goity A, Canessa PF, Larrondo LF. Identification of a common secondary mutation in the Neurospora crassa knockout collection conferring a cell fusion-defective phenotype. Microbiol Spectr 2023; 11:e0208723. [PMID: 37623742 PMCID: PMC10580951 DOI: 10.1128/spectrum.02087-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023] Open
Abstract
Gene-deletion mutants represent a powerful tool to study gene function. The filamentous fungus Neurospora crassa is a well-established model organism, and features a comprehensive gene knockout strain collection. While these mutant strains have been used in numerous studies, resulting in the functional annotation of many Neurospora genes, direct confirmation of gene-phenotype relationships is often lacking, which is particularly relevant given the possibility of background mutations, sample contamination, and/or strain mislabeling. Indeed, spontaneous mutations resulting in phenotypes resembling many cell fusion mutants have long been known to occur at relatively high frequency in N. crassa, and these secondary mutations are common in the Neurospora deletion collection. The identity of these mutations, however, is largely unknown. Here, we report that the Δada-3 strain from the N. crassa knockout collection, which exhibits a cell fusion defect, harbors a secondary mutation responsible for this phenotype. Through whole-genome sequencing and genetic analyses, we found a ~30-Kb deletion in this strain affecting a known cell fusion-related gene, so/ham-1, and show that it is the absence of this gene-and not of ada-3-that underlies its cell fusion defect. We additionally found three other knockout strains harboring the same deletion, suggesting that this mutation may be common in the collection and could have impacted previous studies. Our findings provide a cautionary note and highlight the importance of proper functional validation of strains from mutant collections. We discuss our results in the context of the spread of cell fusion-defective cheater variants in N. crassa cultures. IMPORTANCE This study emphasizes the need for careful and detailed characterization of strains from mutant collections. Specifically, we found a common deletion in various strains from the Neurospora crassa gene knockout collection that results in a cell fusion-defective phenotype. This is noteworthy because this collection is known to contain background mutations-of a largely unclear nature-that produce cell fusion-defective phenotypes. Our results describe an example of such mutations, and highlight how this common genetic defect could have impacted previous studies that have used the affected strains. Furthermore, they provide a cautionary note about the use of Neurospora strains with similar phenotypes. Lastly, these findings offer additional details relevant to our understanding of the origin and spread of cell fusion-defective cheater variants in N. crassa cultures.
Collapse
Affiliation(s)
- Alejandro Montenegro-Montero
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - Alejandra Goity
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - Paulo F. Canessa
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Luis F. Larrondo
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Agencia Nacional de Investigación y Desarrollo-Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| |
Collapse
|
4
|
Lan N, Ye S, Hu C, Chen Z, Huang J, Xue W, Li S, Sun X. Coordinated Regulation of Protoperithecium Development by MAP Kinases MAK-1 and MAK-2 in Neurospora crassa. Front Microbiol 2021; 12:769615. [PMID: 34899653 PMCID: PMC8662359 DOI: 10.3389/fmicb.2021.769615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein (MAP) kinase pathways function as signaling hubs that are integral for many essential cellular processes, including sexual development. The molecular mechanisms and cross-talk between PR and CWI MAP kinase pathways have been extensively studied during asexual development. However, if these can be extended to sexual development remains elusive. By analyzing genome-wide transcriptional responses to deletion of each of two MAP kinase coding genes mak-2 (PR-MAP kinase pathway) and mak-1 (CWI-MAP kinase pathway) in Neurospora crassa during protoperithecium formation, 430 genes co-regulated by the MAK-1 and MAK-2 proteins were found, functionally enriched at integral components of membrane and oxidoreductase. These genes include 13 functionally known genes participating in sexual development (app, poi-2, stk-17, fsd-1, vsd-8, and NCU03863) and melanin synthesis (per-1, pkh-1, pkh-2, mld-1, scy-1, trn-2, and trn-1), as well as a set of functionally unknown genes. Phenotypic analysis of deletion mutants for the functionally unknown genes revealed that 12 genes were essential for female fertility. Among them, single-gene deletion mutants for NCU07743 (named as pfd-1), NCU02250 (oli), and NCU05948 (named as pfd-2) displayed similar protoperithecium development defects as the Δmak-1 and Δmak-2 mutants, failing to form protoperithecium. Western blotting analysis showed that both phosphorylated and total MAK-1 proteins were virtually abolished in the Δnrc-1, Δmek-2, and Δmak-2 mutants, suggesting that the posttranscriptional regulation of MAK-1 is dependent on the PR-MAP kinase pathway during the protoperithecium development. Taken together, this study revealed the regulatory roles and cross-talk between PR and CWI-MAP kinase pathways during protoperithecium development.
Collapse
Affiliation(s)
- Nan Lan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuting Ye
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Hu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiling Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jun Huang
- Shandong Jinniu Group Company, Ltd., Jinan, China
| | - Wei Xue
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shaojie Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianyun Sun
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Conidiation in Neurospora crassa: vegetative reproduction by a model fungus. Int Microbiol 2019; 23:97-105. [DOI: 10.1007/s10123-019-00085-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 12/13/2022]
|
6
|
Sun X, Wang F, Lan N, Liu B, Hu C, Xue W, Zhang Z, Li S. The Zn(II)2Cys6-Type Transcription Factor ADA-6 Regulates Conidiation, Sexual Development, and Oxidative Stress Response in Neurospora crassa. Front Microbiol 2019; 10:750. [PMID: 31024511 PMCID: PMC6468284 DOI: 10.3389/fmicb.2019.00750] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 01/02/2023] Open
Abstract
Conidiation and sexual development are critical for reproduction, dispersal and better-adapted survival in many filamentous fungi. The Neurospora crassa gene ada-6 encodes a Zn(II)2Cys6-type transcription factor, whose deletion resulted in reduced conidial production and female sterility. In this study, we confirmed the positive contribution of ada-6 to conidiation and sexual development by detailed phenotypic characterization of its deletion mutant and the complemented mutant. To understand the regulatory mechanisms of ADA-6 in conidiation and sexual development, transcriptomic profiles generated by RNA-seq from the Δada-6 mutant and wild type during conidiation and sexual development were compared. During conidial development, differential expressed genes (DEGs) between the Δada-6 mutant and wild type are mainly involved in oxidation-reduction process and single-organism metabolic process. Several conidiation related genes are positively regulated by ADA-6, including genes that positively regulate conidiation (fluffy and acon-3), and genes preferentially expressed during conidial development (eas, con-6, con-8, con-10, con-13, pcp-1, and NCU9357), as the expression of these genes were lower in the Δada-6 mutant compared to wild type during conidial development. Phenotypic observation of deletion mutants for other genes with unknown function down-regulated by ada-6 deletion revealed that deletion mutants for four genes (NCU00929, NCU05260, NCU00116, and NCU04813) produced less conidia than wild type. Deletion of ada-6 resulted in female sterility, which might be due to that ADA-6 affects oxidation-reduction process and transmembrane transport process, and positively regulates the transcription of pre-2, poi-2, and NCU05832, three key genes participating in sexual development. In both conidiation and the sexual development process, ADA-6 regulates the transcription of cat-3 and other genes participating in reactive oxygen species production according to RNA-seq data, indicating a role of ADA-6 in oxidative stress response. This was further confirmed by the results that deletion of ada-6 led to hypersensitivity to oxidants H2O2 and menadione. Together, these results proved that ADA-6, as a global regulator, plays a crucial role in conidiation, sexual development, and oxidative stress response of N. crassa.
Collapse
Affiliation(s)
- Xianyun Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Nan Lan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bo Liu
- College of Food Science and Engineering, Qilu University of Technology, Jinan, China
| | - Chengcheng Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Xue
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Jacobson DJ, Powell AJ, Dettman JR, Saenz GS, Barton MM, Hiltz MD, Dvorachek WH, Glass NL, Taylor JW, Natvig DO. Neurosporain temperate forests of western North America. Mycologia 2017. [DOI: 10.1080/15572536.2005.11832998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- David J. Jacobson
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, and Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Amy J. Powell
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | - Jeremy R. Dettman
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Gregory S. Saenz
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| | | | - Megan D. Hiltz
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | | | | | - John W. Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102
| | - Donald O. Natvig
- Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131
| |
Collapse
|
8
|
McCluskey K. Boosting Research and Industry by Providing Extensive Resources for Fungal Research. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Biotechnological production of ethanol from renewable resources by Neurospora crassa: an alternative to conventional yeast fermentations? Appl Microbiol Biotechnol 2013; 97:1457-73. [DOI: 10.1007/s00253-012-4655-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 12/21/2022]
|
10
|
|
11
|
Luque EM, Gutiérrez G, Navarro-Sampedro L, Olmedo M, Rodríguez-Romero J, Ruger-Herreros C, Tagua VG, Corrochano LM. A relationship between carotenoid accumulation and the distribution of species of the fungus Neurospora in Spain. PLoS One 2012; 7:e33658. [PMID: 22448263 PMCID: PMC3309001 DOI: 10.1371/journal.pone.0033658] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 02/17/2012] [Indexed: 01/21/2023] Open
Abstract
The ascomycete fungus Neurospora is present in many parts of the world, in particular in tropical and subtropical areas, where it is found growing on recently burned vegetation. We have sampled the Neurospora population across Spain. The sampling sites were located in the region of Galicia (northwestern corner of the Iberian peninsula), the province of Cáceres, the city of Seville, and the two major islands of the Canary Islands archipelago (Tenerife and Gran Canaria, west coast of Africa). The sites covered a latitude interval between 27.88° and 42.74°. We have identified wild-type strains of N. discreta, N. tetrasperma, N. crassa, and N. sitophila and the frequency of each species varied from site to site. It has been shown that after exposure to light Neurospora accumulates the orange carotenoid neurosporaxanthin, presumably for protection from UV radiation. We have found that each Neurospora species accumulates a different amount of carotenoids after exposure to light, but these differences did not correlate with the expression of the carotenogenic genes al-1 or al-2. The accumulation of carotenoids in Neurospora shows a correlation with latitude, as Neurospora strains isolated from lower latitudes accumulate more carotenoids than strains isolated from higher latitudes. Since regions of low latitude receive high UV irradiation we propose that the increased carotenoid accumulation may protect Neurospora from high UV exposure. In support of this hypothesis, we have found that N. crassa, the species that accumulates more carotenoids, is more resistant to UV radiation than N. discreta or N. tetrasperma. The photoprotection provided by carotenoids and the capability to accumulate different amounts of carotenoids may be responsible, at least in part, for the distribution of Neurospora species that we have observed across a range of latitudes.
Collapse
|
12
|
|
13
|
Lakin-Thomas PL, Bell-Pedersen D, Brody S. The genetics of circadian rhythms in Neurospora. ADVANCES IN GENETICS 2011; 74:55-103. [PMID: 21924975 DOI: 10.1016/b978-0-12-387690-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes our current understanding of the genetics of the Neurospora clock and summarizes the important findings in this area in the past decade. Neurospora is the most intensively studied clock system, and the reasons for this are listed. A discussion of the genetic interactions between clock mutants is included, highlighting the utility of dissecting complex mechanisms by genetic means. The molecular details of the Neurospora circadian clock mechanism are described, as well as the mutations that affect the key clock proteins, FRQ, WC-1, and WC-2, with an emphasis on the roles of protein phosphorylation. Studies on additional genes affecting clock properties are described and place these genes into two categories: those that affect the FRQ/WCC oscillator and those that do not. A discussion of temperature compensation and the mutants affecting this property is included. A section is devoted to the observations pertinent to the existence of other oscillators in this organism with respect to their properties, their effects, and their preliminary characterization. The output of the clock and the control of clock-controlled genes are discussed, emphasizing the phasing of these genes and the layers of control. In conclusion, the authors provide an outlook summarizing their suggestions for areas that would be fruitful for further exploration.
Collapse
|
14
|
Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. PLoS One 2009; 4:e5863. [PMID: 19516898 PMCID: PMC2689623 DOI: 10.1371/journal.pone.0005863] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/27/2009] [Indexed: 11/24/2022] Open
Abstract
Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15–20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.
Collapse
|
15
|
Burnham DR, Wright GD, Read ND, McGloin D. Holographic and single beam optical manipulation of hyphal growth in filamentous fungi. ACTA ACUST UNITED AC 2007. [DOI: 10.1088/1464-4258/9/8/s09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
16
|
McCluskey K. The Fungal Genetics Stock Center: from molds to molecules. ADVANCES IN APPLIED MICROBIOLOGY 2003; 52:245-62. [PMID: 12964247 DOI: 10.1016/s0065-2164(03)01010-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The FGSC, which began as a specialized repository for Neurospora and Aspergillus mutants, has grown to hold over 16,000 fungal strains as well as a variety of molecular genetics tools. The FGSC has expanded to include a variety of different fungi including Magnaporthe and Fusarium and is part of the Magnaporthe genome and knockout projects. The FGSC serves as a central clearing house for information in fungal genetics and has a role in facilitating the meetings of the Neurospora and fungal genetics communities. The FGSC is a model for the development of a culture collection much as Neurospora serves as a model organism.
Collapse
Affiliation(s)
- Kevin McCluskey
- FGSC, Department of Microbiology University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
17
|
Mannhaupt G, Montrone C, Haase D, Mewes HW, Aign V, Hoheisel JD, Fartmann B, Nyakatura G, Kempken F, Maier J, Schulte U. What's in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res 2003; 31:1944-54. [PMID: 12655011 PMCID: PMC152809 DOI: 10.1093/nar/gkg293] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2002] [Accepted: 02/07/2003] [Indexed: 11/14/2022] Open
Abstract
The German Neurospora Genome Project has assembled sequences from ordered cosmid and BAC clones of linkage groups II and V of the genome of Neurospora crassa in 13 and 12 contigs, respectively. Including additional sequences located on other linkage groups a total of 12 Mb were subjected to a manual gene extraction and annotation process. The genome comprises a small number of repetitive elements, a low degree of segmental duplications and very few paralogous genes. The analysis of the 3218 identified open reading frames provides a first overview of the protein equipment of a filamentous fungus. Significantly, N.crassa possesses a large variety of metabolic enzymes including a substantial number of enzymes involved in the degradation of complex substrates as well as secondary metabolism. While several of these enzymes are specific for filamentous fungi many are shared exclusively with prokaryotes.
Collapse
Affiliation(s)
- Gertrud Mannhaupt
- Technical University of Munich, Department of Genome Oriented Bioinformatics, Freising-Weihenstephan, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Biogenesis of mitochondria requires import of several hundreds of different nuclear-encoded preproteins needed for mitochondrial structure and function. Import and sorting of these preproteins is a multistep process facilitated by complex proteinaceous machineries located in the mitochondrial outer and inner membranes. The translocase of the mitochondrial outer membrane, the TOM complex, comprises receptors which specifically recognize mitochondrial preproteins and a protein conducting channel formed by TOM40. The TOM complex is able to insert resident proteins into the outer membrane and to translocate proteins into the intermembrane space. For import of inner membrane or matrix proteins, the TOM complex cooperates with translocases of the inner membrane, the TIM complexes. During the past 30 years, intense research on fungi enabled the identification and mechanistic characterization of a number of different proteins involved in protein translocation. This review focuses on the contributions of the filamentous fungus Neurospora crassa to our current understanding of mitochondrial protein import, with special emphasis on the structure and function of the TOM complex.
Collapse
Affiliation(s)
- Holger Prokisch
- Institut für Physiologische Chemie, Universität München, Butenandtstr. 5, 81377 Munich, Germany.
| | | | | |
Collapse
|
19
|
Muirhead CA, Glass NL, Slatkin M. Multilocus self-recognition systems in fungi as a cause of trans-species polymorphism. Genetics 2002; 161:633-41. [PMID: 12072460 PMCID: PMC1462126 DOI: 10.1093/genetics/161.2.633] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trans-species polymorphism, meaning the presence of alleles in different species that are more similar to each other than they are to alleles in the same species, has been found at loci associated with vegetative incompatibility in filamentous fungi. If individuals differ at one or more of these loci (termed het for heterokaryon), they cannot form stable heterokaryons after vegetative fusion. At the het-c locus in Neurospora crassa and related species there is clear evidence of trans-species polymorphism: three alleles have persisted for approximately 30 million years. We analyze a population genetic model of multilocus vegetative incompatibility and find the conditions under which trans-species polymorphism will occur. In the model, several unlinked loci determine the vegetative compatibility group (VCG) of an individual. Individuals of different VCGs fail to form productive heterokaryons, while those of the same VCG form viable heterokaryons. However, viable heterokaryon formation between individuals of the same VCG results in a loss in fitness, presumably via transfer of infectious agents by hyphal fusion or exploitation by aggressive genotypes. The result is a form of balancing selection on all loci affecting an individual's VCG. We analyze this model by making use of a Markov chain/strong selection, weak mutation (SSWM) approximation. We find that trans-species polymorphism of the type that has been found at the het-c locus is expected to occur only when the appearance of new incompatibility alleles is strongly constrained, because the rate of mutation to such alleles is very low, because the number of possible incompatibility alleles at each locus is restricted, or because the number of incompatibility loci is limited.
Collapse
Affiliation(s)
- Christina A Muirhead
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA
| | | | | |
Collapse
|
20
|
Abstract
In the 1940s, studies with Neurospora pioneered the use of microorganisms in genetic analysis and provided the foundations for biochemical genetics and molecular biology. What has happened since this orange mould was used to show that genes control metabolic reactions? How did it come to be the fungal counterpart of Drosophila? We describe its continued use during the heyday of research with Escherichia coli and yeast, and its emergence as a biological model for higher fungi.
Collapse
Affiliation(s)
- Rowland H Davis
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA.
| | | |
Collapse
|