1
|
Yan B, Ma A. PriA is involved in Pleurotus ostreatus development and defense against Pseudomonas tolaasii. Antonie Van Leeuwenhoek 2023; 117:1. [PMID: 38095768 DOI: 10.1007/s10482-023-01900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
Pleurotus ostreatus is a crucial commercial mushroom widely cultivated for diverse uses. Scientists have worked on breeding disease-resistant and high-yielding varieties to secure food supply. Studies on the molecular genetic mechanism of growth and development can provide valuable information to facilitate crop breeding programs by genetic engineering. Aegerolysins are pore-forming proteins widely distributed in both prokaryotes and eukaryotes, which are reported to have haemolytic activity and be involved in the early stages of fructification. The present study aimed to explore biological function of a differential expressed aegerolysin gene PriA in P. ostreatus. The expression level of PriA gene was higher in primordium and fruiting body than that in mycelium. The PriA expression in overexpression (OE) and RNAi interference (RNAi) strains was detected by qRT-PCR. The RNAi strains grew at slightly slower rates and advanced producing yellow pigments than the wild type, while OE strains showed no prominent phenotypic characteristics. Furthermore, Pseudomonas tolaasii infection assays showed that the PriA OE strains could enhance mycelia and caps resistance to P. tolaasii. These data demonstrate PriA from P. ostreatus play an essential role in mycelial development and increase antagonism against P. tolaasii. Our study provides some reference information on interactions between edible fungi and pathogenic bacteria and offers a new resistance-conferring gene for breeding.
Collapse
Affiliation(s)
- Biyun Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Barh A, Sharma K, Bhatt P, Annepu SK, Nath M, Shirur M, Kumari B, Kaundal K, Kamal S, Sharma VP, Gupta S, Sharma A, Gupta M, Dutta U. Identification of Key Regulatory Pathways of Basidiocarp Formation in Pleurotus spp. Using Modeling, Simulation and System Biology Studies. J Fungi (Basel) 2022; 8:jof8101073. [PMID: 36294638 PMCID: PMC9604897 DOI: 10.3390/jof8101073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
Pleurotus (Oyster mushroom) is an important cultivated edible mushroom across the world. It has several therapeutic effects as it contains various useful bio-molecules. The cultivation and crop management of these basidiomycete fungi depends on many extrinsic and intrinsic factors such as substrate composition, growing environment, enzymatic properties, and the genetic makeup, etc. Moreover, for efficient crop production, a comprehensive understanding of the fundamental properties viz. intrinsic–extrinsic factors and genotype-environment interaction analysis is required. The present study explores the basidiocarp formation biology in Pleurotus mushroom using an in silico response to the environmental factors and involvement of the major regulatory genes. The predictive model developed in this study indicates involvement of the key regulatory pathways in the pinhead to fruit body development process. Notably, the major regulatory pathways involved in the conversion of mycelium aggregation to pinhead formation and White Collar protein (PoWC1) binding flavin-chromophore (FAD) to activate respiratory enzymes. Overall, cell differentiation and higher expression of respiratory enzymes are the two important steps for basidiocarp formation. PoWC1 and pofst genes were participate in the structural changes process. Besides this, the PoWC1 gene is also involved in the respiratory requirement, while the OLYA6 gene is the triggering point of fruiting. The findings of the present study could be utilized to understand the detailed mechanism associated with the basidiocarp formation and to cultivate mushrooms at a sustainable level.
Collapse
Affiliation(s)
- Anupam Barh
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
- Correspondence: (A.B.); (S.K.A.)
| | - Kanika Sharma
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Sudheer Kumar Annepu
- ICAR-Indian Institute of Soil and Water Conservation, Research Center, Udhagamandalam 643 006, India
- Correspondence: (A.B.); (S.K.A.)
| | - Manoj Nath
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Mahantesh Shirur
- National Institute of Agricultural Extension Management (MANAGE), Hyderabad 500 030, India
| | - Babita Kumari
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Kirti Kaundal
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | - Shwet Kamal
- ICAR-Directorate of Mushroom Research, Solan 173 213, India
| | | | - Sachin Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| | - Annu Sharma
- Department of Plant Pathology, College of Horticulture, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan 173 230, India
| | - Moni Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| | - Upma Dutta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180 009, India
| |
Collapse
|
3
|
Towards Understanding the Function of Aegerolysins. Toxins (Basel) 2022; 14:toxins14090629. [PMID: 36136567 PMCID: PMC9505663 DOI: 10.3390/toxins14090629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Aegerolysins are remarkable proteins. They are distributed over the tree of life, being relatively widespread in bacteria and fungi, but also present in some insects, plants, protozoa, and viruses. Despite their abundance in cells of certain developmental stages and their presence in secretomes, only a few aegerolysins have been studied in detail. Their function, in particular, is intriguing. Here, we summarize previously published findings on the distribution, molecular interactions, and function of these versatile aegerolysins. They have very diverse protein sequences but a common fold. The machine learning approach of the AlphaFold2 algorithm, which incorporates physical and biological knowledge of protein structures and multisequence alignments, provides us new insights into the aegerolysins and their pore-forming partners, complemented by additional genomic support. We hypothesize that aegerolysins are involved in the mechanisms of competitive exclusion in the niche.
Collapse
|
4
|
Dubey M, Jensen DF, Karlsson M. Functional characterization of the AGL1 aegerolysin in the mycoparasitic fungus Trichoderma atroviride reveals a role in conidiation and antagonism. Mol Genet Genomics 2020; 296:131-140. [PMID: 33052533 PMCID: PMC7840653 DOI: 10.1007/s00438-020-01732-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
Aegerolysins are small secreted pore-forming proteins that are found in both prokaryotes and eukaryotes. The role of aegerolysins in sporulation, fruit body formation, and in lysis of cellular membrane is suggested in fungi. The aim of the present study was to characterize the biological function of the aegerolysin gene agl1 in the mycoparasitic fungus Trichoderma atroviride, used for biological control of plant diseases. Gene expression analysis showed higher expression of agl1 during conidiation and during growth in medium supplemented with cell wall material from the plant pathogenic fungus Rhizoctonia solani as the sole carbon source. Expression of agl1 was supressed under iron-limiting condition, while agl1 transcript was not detected during T. atroviride interactions with the prey fungi Botrytis cinerea or R. solani. Phenotypic analysis of agl1 deletion strains (Δagl1) showed reduced conidiation compared to T. atroviride wild type, thus suggesting the involvement of AGL1 in conidiation. Furthermore, the Δagl1 strains display reduced antagonism towards B. cinerea and R. solani based on a secretion assay, although no difference was detected during direct interactions. These data demonstrate the role of AGL1 in conidiation and antagonism in the mycoparasitic fungus T. atroviride.
Collapse
Affiliation(s)
- Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007, Uppsala, Sweden.
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala Biocenter, Swedish University of Agricultural Sciences, P.O. Box 7026, 75007, Uppsala, Sweden
| |
Collapse
|
5
|
Novak M, Čepin U, Hodnik V, Narat M, Jamnik M, Kraševec N, Sepčić K, Anderluh G. Functional studies of aegerolysin and MACPF-like proteins in Aspergillus niger. Mol Microbiol 2019; 112:1253-1269. [PMID: 31376198 DOI: 10.1111/mmi.14360] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2019] [Indexed: 12/21/2022]
Abstract
Proteins of the aegerolysin family have a high abundance in Fungi. Due to their specific binding to membrane lipids, and their membrane-permeabilization potential in concert with protein partner(s) belonging to a membrane-attack-complex/perforin (MACPF) superfamily, they were proposed as useful tools in different biotechnological and biomedical applications. In this work, we performed functional studies on expression of the genes encoding aegerolysin and MACPF-like proteins in Aspergillus niger. Our results suggest the sporulation process being crucial for strong induction of the expression of all these genes. However, deletion of either of the aegerolysin genes did not influence the growth, development, sporulation efficiency and phenotype of the mutants, indicating that aegerolysins are not key factors in the sporulation process. In all our expression studies we noticed a strong correlation in the expression of one aegerolysin and MACPF-like gene. Aegerolysins were confirmed to be secreted from the fungus. We also showed the specific interaction of a recombinant A. niger aegerolysin with an invertebrate-specific membrane sphingolipid. Moreover, using this protein labelled with mCherry we successfully stained insect cells membranes containing this particular sphingolipid. Our combined results suggest, that aegerolysins in this species, and probably also in other aspergilli, could be involved in defence against predators.
Collapse
Affiliation(s)
- Maruša Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Čepin
- BioSistemika Ltd and National Institute of Biology, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Narat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Jamnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nada Kraševec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
6
|
Identification and expression analysis of Pofst3 suggests a role during Pleurotus ostreatus primordia formation. Fungal Biol 2019; 123:200-208. [DOI: 10.1016/j.funbio.2018.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/29/2022]
|
7
|
Pharmaceutic Prodigy of Ergosterol and Protein Profile of Ganoderma lucidum. Fungal Biol 2018. [DOI: 10.1007/978-3-030-02622-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Comparative Transcriptome Analysis Identified Candidate Genes Related to Bailinggu Mushroom Formation and Genetic Markers for Genetic Analyses and Breeding. Sci Rep 2017; 7:9266. [PMID: 28839254 PMCID: PMC5571210 DOI: 10.1038/s41598-017-08049-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 07/04/2017] [Indexed: 01/12/2023] Open
Abstract
Bailinggu (Pleurotus tuoliensis) is a major, commercially cultivated mushroom and widely used for nutritional, medicinal, and industrial applications. Yet, the mushroom’s genetic architecture and the molecular mechanisms underlying its formation are largely unknown. Here we performed comparative transcriptomic analysis during Bailinggu’s mycelia, primordia, and fruiting body stages to identify genes regulating fruiting body development and develop EST-SSR markers assessing the genetic value of breeding materials. The stage-specific and differentially expressed unigenes (DEGs) involved in morphogenesis, primary carbohydrate metabolism, cold stimulation and blue-light response were identified using GO and KEGG databases. These unigenes might help Bailinggu adapt to genetic and environmental factors that influence fructification. The most pronounced change in gene expression occurred during the vegetative-to-reproductive transition, suggesting that is most active and key for Bailinggu development. We then developed 26 polymorphic and informative EST-SSR markers to assess the genetic diversity in 82 strains of Bailinggu breeding materials. These EST-SSRs exhibited high transferability in closely related species P. eryngii var. ferulae and var. eryngii. Genetic population structure analysis indicated that China’s Bailinggu has low introgression with these two varieties and likely evolved independently. These findings provide new genes, SSR markers, and germplasm to enhance the breeding of commercially cultivated Bailinggu.
Collapse
|
9
|
Butala M, Novak M, Kraševec N, Skočaj M, Veranič P, Maček P, Sepčić K. Aegerolysins: Lipid-binding proteins with versatile functions. Semin Cell Dev Biol 2017; 72:142-151. [PMID: 28506897 DOI: 10.1016/j.semcdb.2017.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/13/2017] [Accepted: 05/11/2017] [Indexed: 01/21/2023]
Abstract
Proteins of the aegerolysin family span many kingdoms of life. They are relatively widely distributed in bacteria and fungi, but also appear in plants, protozoa and insects. Despite being produced in abundance in cells at specific developmental stages and present in secretomes, only a few aegerolysins have been studied in detail. In particular, their organism-specific physiological roles are intriguing. Here, we review published findings to date on the distribution, molecular interactions and biological activities of this family of structurally and functionally versatile proteins, the aegerolysins.
Collapse
Affiliation(s)
- Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Maruša Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Nada Kraševec
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Matej Skočaj
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Novak M, Kraševec N, Skočaj M, Maček P, Anderluh G, Sepčić K. Fungal aegerolysin-like proteins: distribution, activities, and applications. Appl Microbiol Biotechnol 2014; 99:601-10. [PMID: 25476018 DOI: 10.1007/s00253-014-6239-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
The aegerolysin protein family (from aegerolysin of the mushroom Agrocybe aegerita) comprises proteins of ∼15-20 kDa from various eukaryotic and bacterial taxa. Aegerolysins are inconsistently distributed among fungal species, and variable numbers of homologs have been reported for species within the same genus. As such noncore proteins, without a member of a protein family in each of the sequenced fungi, they can give insight into different species-specific processes. Some aegerolysins have been reported to be hemolytically active against mammalian erythrocytes. However, some function as bi-component proteins that have membrane activity in concert with another protein that contains a membrane attack complex/perforin domain. The function of most of aegerolysins is unknown, although some have been suggested to have a role in development of the organism. Potential biotechnological applications of aegerolysins are already evident, despite the limited scientific knowledge available at present. Some mushroom aegerolysins, for example, can be used as markers to detect and label specific membrane lipids. Others can be used as biomarkers of fungal exposure, where their genes can serve as targets for detection of fungi and their progression during infectious diseases. Antibodies against aegerolysins can also be raised as immuno-diagnostic tools. Aegerolysins have been shown to serve as a species determination tool for fungal phytopathogen isolates in terms of some closely related species, where commonly used internal transcribed spacer barcoding has failed. Moreover, strong promoters that regulate aegerolysin genes can promote secretion of heterologous proteins from fungi and have been successfully applied in simultaneous multi-gene expression techniques.
Collapse
Affiliation(s)
- Maruša Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
11
|
The first set of expressed sequence tags (EST) from the medicinal mushroom Agaricus subrufescens delivers resource for gene discovery and marker development. Appl Microbiol Biotechnol 2014; 98:7879-92. [PMID: 24917377 DOI: 10.1007/s00253-014-5844-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 10/25/2022]
Abstract
Agaricus subrufescens is one of the most important culinary-medicinal cultivable mushrooms with potentially high-added-value products and extended agronomical valorization. The development of A. subrufescens-related technologies is hampered by, among others, the lack of suitable molecular tools. Thus, this mushroom is considered as a genomic orphan species with a very limited number of available molecular markers or sequences. To fill this gap, this study reports the generation and analysis of the first set of expressed sequence tags (EST) for A. subrufescens. cDNA fragments obtained from young sporophores (SP) and vegetative mycelium in liquid culture (CL) were sequenced using 454 pyrosequencing technology. After assembly process, 4,989 and 5,125 sequences were obtained in SP and CL libraries, respectively. About 87% of the EST had significant similarity with Agaricus bisporus-predicted proteins, and 79% correspond to known proteins. Functional categorization according to Gene Ontology could be assigned to 49% of the sequences. Some gene families potentially involved in bioactive compound biosynthesis could be identified. A total of 232 simple sequence repeats (SSRs) were identified, and a set of 40 EST-SSR polymorphic markers were successfully developed. This EST dataset provides a new resource for gene discovery and molecular marker development. It constitutes a solid basis for further genetic and genomic studies in A. subrufescens.
Collapse
|
12
|
Abstract
Proteins with membrane-attack complex/perforin (MACPF) domains are found in almost all kingdoms of life, and they have a variety of biological roles, including defence and attack, organism development, and cell adhesion and signalling. The distribution of these proteins in fungi appears to be restricted to some Pezizomycotina and Basidiomycota species only, in correlation with another group of proteins with unknown biological function, known as aegerolysins. These two protein groups coincide in only a few species, and they might operate in concert as cytolytic bi-component pore-forming agents. Representative proteins here include pleurotolysin B, which has a MACPF domain, and the aegerolysin-like protein pleurotolysin A, and the very similar ostreolysin A, which have been purified from oyster mushroom (Pleurotus ostreatus). These have been shown to act in concert to perforate natural and artificial lipid membranes with high cholesterol and sphingomyelin content. The aegerolysin-like proteins provide the membrane cholesterol/sphingomyelin selectivity and recruit oligomerised pleurotolysin B molecules, to create a membrane-inserted pore complex. The resulting protein structure has been imaged with electron microscopy, and it has a 13-meric rosette-like structure, with a central lumen that is ~4-5 nm in diameter. The opened transmembrane pore is non-selectively permeable for ions and smaller neutral solutes, and is a cause of cytolysis of a colloid-osmotic type. The biological significance of these proteins for the fungal life-style is discussed.
Collapse
|
13
|
Ota K, Leonardi A, Mikelj M, Skočaj M, Wohlschlager T, Künzler M, Aebi M, Narat M, Križaj I, Anderluh G, Sepčić K, Maček P. Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B. Biochimie 2013; 95:1855-64. [DOI: 10.1016/j.biochi.2013.06.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/12/2013] [Indexed: 12/16/2022]
|
14
|
Yun EY, Hwang JS, Yoon YI, Ahn MY, Kim NJ, Kwon OY, Lee WJ, Goo TW. Microarray expression profiling of Spodoptera litura in response to oxidative stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 77:145-162. [PMID: 21678484 DOI: 10.1002/arch.20431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To examine the expression profile of oxidative stress responsive genes in Spodoptera litura, we constructed a cDNA library from S. litura injected with hydrogen peroxide (H(2)O(2)). Using a microarray chip composed of 2,964 cDNAs, we screened gene expression at 1, 3, 5, 7, and 9 h post H(2)O(2) injection. Data were clustered into 15 groups of genes that behave similarly across each time course. Seventy-three genes were identified as being at least twofold up- or downregulated after treatment with H(2)O(2) in S. litura. We constructed expressed sequence tags (ESTs) for genes that changed at least twofold after treatment with H(2)O(2) . The functional classification of these ESTs based on Gene Ontology showed that the ESTs are rich in genes involved in oxidoreductase activity (5.7%), defense (14.3%), cellular process (22.9%), and development (17.1%).
Collapse
Affiliation(s)
- Eun-Young Yun
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Lee SH, Joh JH, Lee JS, Lim JH, Kim KY, Yoo YB, Lee CS, Kim BG. Isolation of Genes Specifically Expressed in Different Developmental Stages of Pleurotus ostreatus Using Macroarray Analysis. MYCOBIOLOGY 2009; 37:230-237. [PMID: 23983539 PMCID: PMC3749394 DOI: 10.4489/myco.2009.37.3.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/17/2009] [Indexed: 06/02/2023]
Abstract
The oyster mushroom (Pleurotus ostreatus) is one of the most important edible mushrooms worldwide. The mechanism of P. ostreatus fruiting body development has been of interest both for the basic understanding of the phenotypic change of the mycelium-fruiting body and to improve breeding of the mushrooms. Based on our previous publication of P. ostreatus expressed sequence tag database, 1,528 unigene clones were used in macroarray analysis of mycelium, fruiting body and basidiospore developmental stages of P. ostreatus. Gene expression profile databases generated by evaluating expression levels showed that 33, 10, and 94 genes were abundantly expressed in mycelium, fruiting body and basidiospore developmental stages, respectively. Among them, the genes specifically expressed in the fruiting body stage were further analyzed by reverse transcription-polymerase chain reaction and Northern blot to investigate temporal and spatial expression patterns. These results provide useful information for future studies of edible mushroom development.
Collapse
Affiliation(s)
- Seung-Ho Lee
- Bio-crops Development Division, National Academy of Agricultural Science, RDA, Suwon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Pires ABL, Gramacho KP, Silva DC, Góes-Neto A, Silva MM, Muniz-Sobrinho JS, Porto RF, Villela-Dias C, Brendel M, Cascardo JCM, Pereira GAG. Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes. BMC Microbiol 2009; 9:158. [PMID: 19653910 PMCID: PMC2782264 DOI: 10.1186/1471-2180-9-158] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 08/04/2009] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The hemibiotrophic fungus Moniliophthora perniciosa is the causal agent of Witches' broom, a disease of Theobroma cacao. The pathogen life cycle ends with the production of basidiocarps in dead tissues of the infected host. This structure generates millions of basidiospores that reinfect young tissues of the same or other plants. A deeper understanding of the mechanisms underlying the sexual phase of this fungus may help develop chemical, biological or genetic strategies to control the disease. RESULTS Mycelium was morphologically analyzed prior to emergence of basidiomata by stereomicroscopy, light microscopy and scanning electron microscopy. The morphological changes in the mycelium before fructification show a pattern similar to other members of the order Agaricales. Changes and appearance of hyphae forming a surface layer by fusion were correlated with primordia emergence. The stages of hyphal nodules, aggregation, initial primordium and differentiated primordium were detected. The morphological analysis also allowed conclusions on morphogenetic aspects. To analyze the genes involved in basidiomata development, the expression of some selected EST genes from a non-normalized cDNA library, representative of the fruiting stage of M. perniciosa, was evaluated. A macroarray analysis was performed with 192 selected clones and hybridized with two distinct RNA pools extracted from mycelium in different phases of basidiomata formation. This analysis showed two groups of up and down-regulated genes in primordial phases of mycelia. Hydrophobin coding, glucose transporter, Rho-GEF, Rheb, extensin precursor and cytochrome p450 monooxygenase genes were grouped among the up-regulated. In the down-regulated group relevant genes clustered coding calmodulin, lanosterol 14 alpha demethylase and PIM1. In addition, 12 genes with more detailed expression profiles were analyzed by RT-qPCR. One aegerolysin gene had a peak of expression in mycelium with primordia and a second in basidiomata, confirming their distinctiveness. The number of transcripts of the gene for plerototolysin B increased in reddish-pink mycelium and indicated an activation of the initial basidiomata production even at this culturing stage. Expression of the glucose transporter gene increased in mycelium after the stress, coinciding with a decrease of adenylate cyclase gene transcription. This indicated that nutrient uptake can be an important signal to trigger fruiting in this fungus. CONCLUSION The identification of genes with increased expression in this phase of the life cycle of M. perniciosa opens up new possibilities of controlling fungus spread as well as of genetic studies of biological processes that lead to basidiomycete fruiting. This is the first comparative morphologic study of the early development both in vivo and in vitro of M. perniciosa basidiomata and the first description of genes expressed at this stage of the fungal life cycle.
Collapse
Affiliation(s)
- Acássia B L Pires
- Centro de Biotecnologia e Genética, Laboratório de Genômica e Expressão Gênica, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, 45662-000, Ilhéus-Bahia, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, Hofrichter M. Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol 2009; 84:885-97. [DOI: 10.1007/s00253-009-2000-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/31/2009] [Accepted: 04/01/2009] [Indexed: 02/08/2023]
|
18
|
Berne S, Lah L, Sepčić K. Aegerolysins: structure, function, and putative biological role. Protein Sci 2009; 18:694-706. [PMID: 19309687 PMCID: PMC2762582 DOI: 10.1002/pro.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/19/2009] [Accepted: 01/26/2009] [Indexed: 12/13/2022]
Abstract
Aegerolysins, discovered in fungi, bacteria and plants, are highly similar proteins with interesting biological properties. Certain aegerolysins possess antitumoral, antiproliferative, and antibacterial activities. Further possible medicinal applications include their use in the prevention of atherosclerosis, or as vaccines. Additional biotechnological value of fungal aegerolysins lies in their involvement in development, which could improve cultivation of commercially important edible mushrooms. Besides, new insights on microheterogeneity of raft-like membrane domains could be gained by using aegerolysins as specific markers in cell and molecular biology. Although the exact function of aegerolysins in their producing organisms remains to be explained, they are biochemically well characterized all-beta structured proteins sharing the following common features: low isoelectric points, similar molecular weights (15-17 kDa), and stability in a wide pH range.
Collapse
Affiliation(s)
- Sabina Berne
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana1000 Ljubljana, Slovenia
| | - Ljerka Lah
- Ljerka Lah, Laboratory for Biosynthesis and Biotransformation, National Institute of Chemistry1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana1000 Ljubljana, Slovenia
| |
Collapse
|
19
|
Identification of Inonotus obliquus and Analysis of Antioxidation and Antitumor Activities of Polysaccharides. Curr Microbiol 2008; 57:454-62. [DOI: 10.1007/s00284-008-9233-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/27/2008] [Accepted: 07/28/2008] [Indexed: 11/25/2022]
|
20
|
Eastwood DC, Mead A, Sergeant MJ, Burton KS. Statistical modelling of transcript profiles of differentially regulated genes. BMC Mol Biol 2008; 9:66. [PMID: 18651954 PMCID: PMC2525656 DOI: 10.1186/1471-2199-9-66] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 07/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA) and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. RESULTS Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t) = A + (B + Ct)Rt + epsilon. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data allowed 11% of the Escherichia coli features to be fitted by an exponential function, and 25% of the Rattus norvegicus features could be described by the critical exponential model, all with statistical significance of p < 0.05. CONCLUSION The statistical non-linear regression approaches presented in this study provide detailed biologically oriented descriptions of individual gene expression profiles, using biologically variable data to generate a set of defining parameters. These approaches have application to the modelling and greater interpretation of profiles obtained across a wide range of platforms, such as microarrays. Through careful choice of appropriate model forms, such statistical regression approaches allow an improved comparison of gene expression profiles, and may provide an approach for the greater understanding of common regulatory mechanisms between genes.
Collapse
Affiliation(s)
- Daniel C Eastwood
- Warwick HRI, University of Warwick, Wellesbourne, Warwickshire, CV35 9EF, UK.
| | | | | | | |
Collapse
|
21
|
Chu FH, Lee YR, Chou SJ, Chang TT, Shaw JF. Isolation and analysis of genes specifically expressed during basidiomatal development in Antrodia cinnamomea by subtractive PCR and cDNA microarray. FEMS Microbiol Lett 2008; 280:150-9. [DOI: 10.1111/j.1574-6968.2008.01052.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
Fazenda ML, Seviour R, McNeil B, Harvey LM. Submerged Culture Fermentation of “Higher Fungi”: The Macrofungi. ADVANCES IN APPLIED MICROBIOLOGY 2008; 63:33-103. [DOI: 10.1016/s0065-2164(07)00002-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Joh JH, Lee SH, Lee JS, Kim KH, Jeong SJ, Youn WH, Kim NK, Son ES, Cho YS, Yoo YB, Lee CS, Kim BG. Isolation of genes expressed during the developmental stages of the oyster mushroom,Pleurotus ostreatus, using expressed sequence tags. FEMS Microbiol Lett 2007; 276:19-25. [DOI: 10.1111/j.1574-6968.2007.00879.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Muller LAH, Craciun AR, Ruytinx J, Lambaerts M, Verbruggen N, Vangronsveld J, Colpaert JV. Gene expression profiling of a Zn-tolerant and a Zn-sensitive Suillus luteus isolate exposed to increased external zinc concentrations. MYCORRHIZA 2007; 17:571-580. [PMID: 17530303 DOI: 10.1007/s00572-007-0134-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 04/27/2007] [Indexed: 05/15/2023]
Abstract
Complementary DNA (cDNA)-amplified fragment-length polymorphism (AFLP) was applied to analyze transcript profiles of a Zn-tolerant and a Zn-sensitive isolate of the ectomycorrhizal basidiomycete Suillus luteus, both cultured with and without increased external zinc concentrations. From the obtained transcript profiles that covered approximately 2% of the total expected complement of genes in S. luteus, 144 nonredundant, differentially expressed transcript-derived fragments (TDFs), falling in different classes of expression pattern, were isolated and sequenced. Thirty-six of the represented genes showed homology to function-known genes, whereas 6 matched unknown protein coding sequences, and 102 were possibly novel. Although relatively few TDFs were found to be responsive to the different zinc treatments, their modulated expression levels may suggest a different transcriptional response to zinc treatments in both isolates. Among the identified genes that could be related to heavy-metal detoxification or the tolerance trait were genes encoding for homologues of a heat-shock protein, a putative metal transporter, a hydrophobin, and several proteins involved in ubiquitin-dependent proteolysis.
Collapse
Affiliation(s)
- L A H Muller
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, DUMC Box 3020, Durham, NC, 27710, USA
| | - A R Craciun
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - J Ruytinx
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium
| | - M Lambaerts
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium
| | - N Verbruggen
- Laboratoire de Physiologie et de Génétique Moléculaire des Plantes, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - J Vangronsveld
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium
| | - J V Colpaert
- Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590, Diepenbeek, Belgium.
| |
Collapse
|
25
|
Berne S, Pohleven J, Vidic I, Rebolj K, Pohleven F, Turk T, Macek P, Sonnenberg A, Sepcić K. Ostreolysin enhances fruiting initiation in the oyster mushroom (Pleurotus ostreatus). ACTA ACUST UNITED AC 2007; 111:1431-6. [PMID: 18037282 DOI: 10.1016/j.mycres.2007.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 06/17/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
Fruiting initiation in mushrooms can be triggered by a variety of environmental and biochemical stimuli, including substances of natural or synthetic origin. In this work ostreolysin, a cytolytic protein specifically expressed during the formation of primordia and fruit bodies of Pleurotus ostreatus, was applied to nutrient media inoculated with mycelium of P. ostreatus, and its effects on mycelial growth and fructification of the mushroom studied. The addition of ostreolysin slightly inhibited the growth of mycelium, but strongly induced the formation of primordia, which appeared 10 d earlier than in control plates supplemented with bovine serum albumin or with the dissolving buffer alone. Moreover, ostreolysin stimulated the subsequent development of primordia into fruit bodies. However, direct involvement of this protein in the sporulation of the mushroom is unlikely, as it was also detected in large amounts in the non-sporulating strain of P. ostreatus.
Collapse
Affiliation(s)
- Sabina Berne
- Medical centre for molecular biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ma A, Shan L, Wang N, Zheng L, Chen L, Xie B. Characterization of aPleurotus ostreatus fruiting body-specific hydrophobin gene,Po.hyd. J Basic Microbiol 2007; 47:317-24. [PMID: 17647210 DOI: 10.1002/jobm.200710317] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrophobins are a family of small, moderately hydrophobic proteins with eight cysteine residues arranged in a conserved pattern. A full-length cDNA, designated Po.hyd, corresponding to a hydrophobin gene of Pleurotus ostreatus was obtained in our previous work. The Po.hyd gene contains a 333 bp open reading frame (ORF), which is interrupted by two typical classI introns. There was no consensus signal for a polyA tail detected in the 3'untranslated region. However, an analogous T- or TG-rich motif was observed that probably influence the formation of the mRNA 3' end. We assign the putative Po.HYD protein to the classI hydrophobins since its sequence arrangement and hydropathy pattern has a high consensus to other known class I hydrophobins. Northern analysis showed that the Po.hyd gene was abundantly expressed throughout the fruiting process (from primordium to mature fruiting body) but silenced during vegetative growth of the mycelium. Southern blot analysis showed Po.hyd to be a single copy gene in the genome of dikaryotic strain likely to locate at the same locus within the two parental genomes.
Collapse
Affiliation(s)
- Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P.R. China.
| | | | | | | | | | | |
Collapse
|
27
|
Hu G, Linning R, McCallum B, Banks T, Cloutier S, Butterfield Y, Liu J, Kirkpatrick R, Stott J, Yang G, Smailus D, Jones S, Marra M, Schein J, Bakkeren G. Generation of a wheat leaf rust, Puccinia triticina, EST database from stage-specific cDNA libraries. MOLECULAR PLANT PATHOLOGY 2007; 8:451-67. [PMID: 20507513 DOI: 10.1111/j.1364-3703.2007.00406.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Thirteen cDNA libraries constructed from small amounts of leaf rust mRNA using optimized methods served as the source for the generation of 25 558 high-quality DNA sequence reads. Five life-cycle stages were sampled: resting urediniospores, urediniospores germinated over water or plant extract, compatible, interactive stages during appressorium or haustorium formation just before sporulation, and an incompatible interaction. mRNA populations were subjected to treatments such as full-length cDNA production, subtractive and normalizing hybridizations, and size selection methods combined with PCR amplification. Pathogen and host sequences from interactive libraries were differentiated in silico using cereal and fungal sequences, codon usage analyses, and by means of a partial prototype cDNA microarray hybridized with genomic DNAs. This yielded a non-redundant unigene set of 9760 putative fungal sequences consisting of 6616 singlets and 3144 contigs, representing 4.7 Mbp. At an E-value 10(-5), 3670 unigenes (38%) matched sequences in various databases and collections but only 694 unigenes (7%) were similar to genes with known functions. In total, 296 unigenes were identified as most probably wheat and ten as rRNA sequences. Annotation rates were low for germinated urediniospores (4%) and appressoria (2%). Gene sets obtained from the various life-cycle stages appear to be remarkably different, suggesting drastic reprogramming of the transcriptome during these major differentiation processes. Redundancy within contigs yielded information about possible expression levels of certain genes among stages. Many sequences were similar to genes from other rusts such as Uromyces and Melampsora species; some of these genes have been implicated in pathogenicity and virulence.
Collapse
Affiliation(s)
- Guanggan Hu
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, Highway 97, Summerland, BC V0H 1Z0, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shim SM, Kim SB, Kim HY, Rho HS, Lee HS, Lee MW, Lee UY, Im KH, Lee TS. Genes Expressed During Fruiting Body Formation of Agrocybe cylindracea. MYCOBIOLOGY 2006; 34:209-213. [PMID: 24039501 PMCID: PMC3769576 DOI: 10.4489/myco.2006.34.4.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Indexed: 06/02/2023]
Abstract
Agrocybe cylindracea, an edible mushroom belonging to Bolbitiaceae, Agaricales, is widely used as invaluable medicinal material in the oriental countries. This study was initiated to find the genes expressed during the fruiting body formation of A. cylindracea. The cDNAs expressed differentially during fruiting body morphogenesis of A. cylindracea were isolated through subtractive hybridization between vegetative mycelia and fruiting bodies. The cDNAs expressed in the fruiting body morphogenesis of A. cylindracea were cloned and twenty genes were identified. Eleven were homologous to genes of known functions, three were homologous to genes in other organism without any function known. Six were completely novel genes specific to A. cylindracea so far examined. Some genes with known functions were a pleurotolysin, a self-assembling poreforming cytolysins; Aa-Pri1 and Pir2p, specifically induced genes during fruiting initiation of other mushroom, Agrocybe aegerita; an amino acid permease; a cytochrome P450; a MADS-box gene; a peptidylprolyl isomerase; and a serine proteinase. For other clones, no clear function was annotated so far. We believe the first report of the differentially expressed genes in fruiting process of A. cylindracea will be great helps for further research.
Collapse
Affiliation(s)
- Sung Mi Shim
- Department of Biology, University of Incheon, Incheon 402-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Park SK, Peñas MM, Ramírez L, Pisabarro AG. Genetic linkage map and expression analysis of genes expressed in the lamellae of the edible basidiomycete Pleurotus ostreatus. Fungal Genet Biol 2006; 43:376-87. [PMID: 16531085 DOI: 10.1016/j.fgb.2006.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/04/2006] [Accepted: 01/16/2006] [Indexed: 10/24/2022]
Abstract
Pleurotus ostreatus is an industrially cultivated basidiomycete with nutritional and environmental applications. Its genome contains 35 Mbp organized in 11 chromosomes. There is currently available a genetic linkage map based predominantly on anonymous molecular markers complemented with the mapping of QTLs controlling growth rate and industrial productivity. To increase the saturation of the existing linkage maps, we have identified and mapped 82 genes expressed in the lamellae. Their manual annotation revealed that 34.1% of the lamellae-expressed and 71.5% of the lamellae-specific genes correspond to previously unknown sequences or to hypothetical proteins without a clearly established function. Furthermore, the expression pattern of some genes provides an experimental basis for studying gene regulation during the change from vegetative to reproductive growth. Finally, the identification of various differentially regulated genes involved in protein metabolism suggests the relevance of these processes in fruit body formation and maturation.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Agrarian Production, Public University of Navarre, E-31006 Pamplona, Spain
| | | | | | | |
Collapse
|
30
|
Yamada M, Sakuraba S, Shibata K, Taguchi G, Inatomi S, Okazaki M, Shimosaka M. Isolation and analysis of genes specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes by fluorescence differential display. FEMS Microbiol Lett 2006; 254:165-72. [PMID: 16451195 DOI: 10.1111/j.1574-6968.2005.00023.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Using fluorescence differential display, cDNAs specifically expressed at the primordial stage of fruiting body development were isolated from the basidiomycete, Flammulina velutipes. Seventy-five cDNAs were sequenced and compared with the amino-acid sequences of proteins in the database by BLASTX search. Significant similarity was found for 29 cDNAs coding for proteins with known function, GTP-binding protein, growth factor, ubiquitin-proteasome, cytochrome P450 and hydrophobin, all of which would be associated with fruiting body development. Seventeen cDNAs were not similar to proteins in the database and may represent unique genes that play specific roles in the process of fruiting in F. velutipes.
Collapse
Affiliation(s)
- Masato Yamada
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Posada-Buitrago ML, Frederick RD. Expressed sequence tag analysis of the soybean rust pathogen Phakopsora pachyrhizi. Fungal Genet Biol 2005; 42:949-62. [PMID: 16291502 DOI: 10.1016/j.fgb.2005.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 05/05/2005] [Accepted: 06/10/2005] [Indexed: 11/15/2022]
Abstract
Soybean rust is caused by the obligate fungal pathogen Phakopsora pachyrhizi Sydow. A unidirectional cDNA library was constructed using mRNA isolated from germinating P. pachyrhizi urediniospores to identify genes expressed at this physiological stage. Single pass sequence analysis of 908 clones revealed 488 unique expressed sequence tags (ESTs, unigenes) of which 107 appeared as multiple copies. BLASTX analysis identified 189 unigenes with significant similarities (Evalue<10(-5)) to sequences deposited in the NCBI non-redundant protein database. A search against the NCBI dbEST using the BLASTN algorithm revealed 32 ESTs with high or moderate similarities to plant and fungal sequences. Using the Expressed Gene Anatomy Classification, 31.7% of these ESTs were involved in primary metabolism, 14.3% in gene/protein expression, 7.4% in cell structure and growth, 6.9% in cell division, 4.8% in cell signaling/cell communication, and 4.8% in cell/organism defense. Approximately 29.6% of the identities were to hypothetical proteins and proteins with unknown function.
Collapse
Affiliation(s)
- Martha Lucia Posada-Buitrago
- USDA-Agricultural Research Service, Foreign Disease-Weed Science Research Unit, 1301 Ditto Avenue, Fort Detrick, MD 21702, USA
| | | |
Collapse
|
32
|
Gabella S, Abbà S, Duplessis S, Montanini B, Martin F, Bonfante P. Transcript profiling reveals novel marker genes involved in fruiting body formation in Tuber borchii. EUKARYOTIC CELL 2005; 4:1599-602. [PMID: 16151254 PMCID: PMC1214200 DOI: 10.1128/ec.4.9.1599-1602.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle Tuber borchii. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.
Collapse
Affiliation(s)
- Silvia Gabella
- Dipartimento di Biologia Vegetale dell'Università di Torino, Istituto per la Protezione delle Piante-CNR, Viale Mattioli 25, 10125 Turin, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Peñas MM, Azparren G, Domínguez A, Sommer H, Ramírez L, Pisabarro AG. Identification and functional characterisation of ctr1, a Pleurotus ostreatus gene coding for a copper transporter. Mol Genet Genomics 2005; 274:402-9. [PMID: 16133162 DOI: 10.1007/s00438-005-0033-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/16/2005] [Indexed: 01/09/2023]
Abstract
Copper homeostasis is crucial for the maintenance of life. In lignin-degrading fungi, copper is essential for the phenol oxidase enzymes that provide this activity. In this paper we report the characterization of a gene (ctr1) coding for a copper transporter in the white rot fungus Pleurotus ostreatus. The gene was identified in a cDNA library constructed from 4-day-old vegetative mycelium grown in liquid culture. The results presented here demonstrate that: (1) ctr1 functionally complements the respiratory deficiency of a yeast mutant defective in copper transport, supporting the idea that the Ctr1 protein is itself a copper transporter; (2) transcription of ctr1 is detectable in P. ostreatus at all developmental stages and in all tissues (with the exception of lamellae), and is negatively regulated by the presence of copper in the culture medium; (3) ctr1 is a single-copy gene that maps to P. ostreatus linkage group III; and (4) the regulatory sequence elements found in the promoter of ctr1 are similar to those found in other copper-related genes described in other systems. These results provide the first description of a copper transporter in this white rot fungus and should be useful for further studies on copper metabolism in higher basidiomycetes.
Collapse
Affiliation(s)
- María M Peñas
- Departamento de Producción Agraria, Universidad Pública de Navarra, 31006, Pamplona, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Sunagawa M, Magae Y. Isolation of genes differentially expressed during the fruit body development ofPleurotus ostreatusby differential display of RAPD. FEMS Microbiol Lett 2005; 246:279-84. [PMID: 15899417 DOI: 10.1016/j.femsle.2005.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 04/12/2005] [Accepted: 04/14/2005] [Indexed: 10/25/2022] Open
Abstract
To analyze genes involved in fruit body development of Pleurotus ostreatus, mRNAs from three different developmental stages: i.e., vegetative mycelium, primordium, and mature fruit body, were isolated and reverse-transcribed to cDNAs. One hundred and twenty random PCR amplifications were performed with the cDNAs, which generated 382, 394, 393 cDNA fragments from each developmental stage. From these fragments, four cDNA clones specifically expressed in primordium or mature fruit body were detected. Sequence analysis and database searches revealed significant similarity with triacylglycerol lipase, cytochrome P450 sterol 14 alpha-demethylase and developmentally regulated genes of other fungi. Northern blot analyses confirmed that all of the four cDNAs were unexpressed in mycelium, thus stage-specific genes for fruit body formation of P. ostreatus were successfully isolated.
Collapse
Affiliation(s)
- Masahide Sunagawa
- Department of Applied Microbiology, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687, Japan.
| | | |
Collapse
|
35
|
Miyazaki Y, Nakamura M, Babasaki K. Molecular cloning of developmentally specific genes by representational difference analysis during the fruiting body formation in the basidiomycete Lentinula edodes. Fungal Genet Biol 2005; 42:493-505. [PMID: 15893253 DOI: 10.1016/j.fgb.2005.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 02/18/2005] [Accepted: 03/01/2005] [Indexed: 11/16/2022]
Abstract
To understand molecular mechanisms of the fruiting body development in basidiomycetes, we attempted to isolate developmentally regulated genes expressed specifically during the fruiting body formation of Lentinula edodes (Shiitake-mushroom). cDNA representational difference analysis (cDNA-RDA) between vegetatively growing mycelium and two developmental substages, primordium and mature fruiting body, resulted in an isolation of 105 individual genes (51 in primordium and 54 in mature fruiting body, respectively). A search of homology with the protein databases and two basidiomycetous genomes in Phanerochaete chrysosporium and Coprinopsis cinerea revealed that the obtained genes encoded various proteins similar to those involved in general metabolism, cell structure, signal transduction, and responses to stress; in addition, there were apparently several metabolic pathways and signal transduction cascades that could be involved in the fruiting body development. The expression products of several genes revealed no significant homologies to those in the databases, implying that those genes are unique in L. edodes and the encoding products may possess possible functions in the course of fruiting body development. RT-PCR analyses revealed that 20 candidates of the obtained genes were specifically or abundantly transcribed in the course of the fruiting body formation, suggesting that the obtained genes in this work play roles in fruiting body development in L. edodes.
Collapse
MESH Headings
- Agaricales/genetics
- Base Sequence
- Cloning, Molecular
- DNA, Complementary
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA, Fungal/isolation & purification
- Gene Expression Profiling
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Molecular Sequence Data
- Phanerochaete/genetics
- RNA, Fungal/analysis
- RNA, Messenger/analysis
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Shiitake Mushrooms/genetics
- Shiitake Mushrooms/growth & development
Collapse
Affiliation(s)
- Yasumasa Miyazaki
- Department of Applied Microbiology, Forestry and Forest Products Research Institute, P.O. Box 16, Tsukuba-Norin 305-8687, Japan.
| | | | | |
Collapse
|
36
|
Liu PG, Yang Q. Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 2005; 156:416-23. [PMID: 15808946 DOI: 10.1016/j.resmic.2004.10.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 10/26/2004] [Accepted: 10/27/2004] [Indexed: 10/26/2022]
Abstract
Species of Trichoderma are commercially applied as biological control agents against plant fungal pathogens based on different mechanisms, such as the production of antifungal metabolites, competition for space and nutrients and mycoparasitism. But the integrated biocontrol mechanism of Trichoderma harzianum is not well explored at the genetic level. This study aimed to initiate the preliminary development of an expressed sequence tag (EST) database for T. harzianum and thereby gain potentially useful information on Trichoderma gene sequences in order to elucidate the integrated biocontrol mechanism. Partial sequencing of anonymous cDNA clones is a widely used technique for gene identification. A directional cDNA library has been constructed from mycelium of T. harzianum and 3298 clones have been randomly selected, subjected to single-pass sequencing from the 5' end of the vector, and identified by sequence similarity searches against gene sequences in international databases. Of the 3298 mycelium clones, 2174 exhibit similarity to known genes and 451 to known ESTs, while 673 represent novel gene sequences. Analysis of the identified clones indicated sequence similarity to a broad diversity of genes encoding proteins such as enzymes, structural proteins, and regulatory factors. A significant proportion of genes identified in the mycelium were involved in processes related to mycoparasitism and fungicidal metabolites, as would be expected in biocontrol fungus. These results present the successful application of EST analysis in T. harzianum and provide a preliminary indication of gene expression in mycelium.
Collapse
Affiliation(s)
- Pi-Gang Liu
- Department of Life Science and Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | | |
Collapse
|
37
|
Temporal and spatial expression of ostreolysin during development of the oyster mushroom (Pleurotus ostreatus). ACTA ACUST UNITED AC 2005. [DOI: 10.1017/s0953756204002187] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Joh JH, Kim BG, Kong WS, Yoo YB, Kim NK, Park HR, Cho BG, Lee CS. Cloning and developmental expression of a metzincin family metalloprotease cDNA from oyster mushroom Pleurotus ostreatus. FEMS Microbiol Lett 2004; 239:57-62. [PMID: 15451101 DOI: 10.1016/j.femsle.2004.08.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 07/24/2004] [Accepted: 08/17/2004] [Indexed: 10/26/2022] Open
Abstract
A cDNA clone, PoMTP, encoding a putative metzincin family metalloprotease was isolated from the expressed sequence tags of a basidiomycete Pleurotus ostreatus. The 5'-end sequence of PoMTP was determined by the 5'-RACE method. Full-length cDNA sequence (1140 bp) of PoMTP contained a 870 bp open reading frame encoding a protein product of 290 amino acids in addition to a 99 bp of 5'-untranslated sequence and a 171 bp of 3'-untranslated sequence with a poly(A) tail. The deduced amino-acid sequences of PoMTP contained an extensive zinc-binding consensus sequence and a so-called Met-turn sequence which are typical for the metzincin family of metalloproteases, indicating that the PoMTP protein belongs to the metzincin metalloproteases. Four cysteine residues were also observed in the zinc-binding region of PoMTP amino-acid sequence, which are known to be important for the structure and the function of some subfamilies of the metzincins. Comparison of the PoMTP in sequence database showed no significant homology with functionally known metalloproteases of Armillaria mellea, Grifola frondosa, Lentinula edodes, Pleurotus ostreatus, Schizophyllum commune and Tricholoma saponaceum in mushroom. Northern blot and qunatitative RT-PCR analyses indicated the PoMTP mRNA to be abundant at primordial and fruit body stages, but scarce at the mycelial stage, suggesting that the PoMTP metalloprotease plays an important role in mushroom fruiting.
Collapse
Affiliation(s)
- Joong-Ho Joh
- Department of Applied Biochemistry, College of Natural Science, Konkuk University, Chung-Ju, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Li R, Rimmer R, Buchwaldt L, Sharpe AG, Séguin-Swartz G, Coutu C, Hegedus DD. Interaction of Sclerotinia sclerotiorum with a resistant Brassica napus cultivar: expressed sequence tag analysis identifies genes associated with fungal pathogenesis. Fungal Genet Biol 2004; 41:735-53. [PMID: 15219559 DOI: 10.1016/j.fgb.2004.03.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2003] [Accepted: 03/07/2004] [Indexed: 11/25/2022]
Abstract
Sclerotinia sclerotiorum is a ubiquitous necrotrophic fungal pathogen capable of infecting a wide range of plants. To identify genes involved in fungal development and pathogenesis we generated 2232 expressed sequence tags (ESTs) from two cDNA libraries constructed using either mycelia grown in pectin medium or tissues from infected Brassica napus stems. A total of 774 individual fungal genes were identified of which 39 were represented only among the infected plant EST collection. Annotation of 534 unigenes was possible following the categories applied to Saccharomyces cerevisiae and the Universal Gene Ontology scheme. cDNAs were identified that encoded potential pathogenicity factors including four endopolygalacturonases, two exopolygalacturonases, and several metabolite transporters. The potential role of these genes, as well as those encoding signal transduction factors, in the infection process is discussed.
Collapse
Affiliation(s)
- Rugang Li
- Agriculture and Agri-Food Canada,107 Science Place, Saskatoon, Sask., Canada S7N 0X2
| | | | | | | | | | | | | |
Collapse
|
40
|
Nugent KG, Choffe K, Saville BJ. Gene expression during Ustilago maydis diploid filamentous growth: EST library creation and analyses. Fungal Genet Biol 2004; 41:349-60. [PMID: 14761795 DOI: 10.1016/j.fgb.2003.11.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 11/09/2003] [Indexed: 11/15/2022]
Abstract
Ustilago maydis is an important model system for the plant pathogenic smut and rust fungi. Critical to the continued development of this model is establishing genomic resources. We have constructed a cDNA library from a forced diploid culture of U. maydis growing as filaments and have generated 7455 ESTs that are assembled into 3074 contiguous sequences. This represents as much as 46% of the coding capacity predicted for U. maydis. BLAST searches with a similarity cutoff of E </= 10(-5), allow us to annotate 59% of the contigs based upon matches in the NCBI nr and dbEST databases. These annotated sequences provide information on mature mRNAs that will aid with gene prediction in the U. maydis genome sequence. Functional categorization and comparative analyses of the sequences provides gene identities, expression information and a solid base for future research in this model fungal pathogen.
Collapse
Affiliation(s)
- Kimberly G Nugent
- Department of Botany, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ont., Canada L5L 1C6
| | | | | |
Collapse
|
41
|
Bakkeren G, Gold S. The path in fungal plant pathogenicity: many opportunities to outwit the intruders? GENETIC ENGINEERING 2004; 26:175-223. [PMID: 15387298 DOI: 10.1007/978-0-306-48573-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
The number of genes implicated in the infection and disease processes of phytopathogenic fungi is increasing rapidly. Forward genetic approaches have identified mutated genes that affect pathogenicity, host range, virulence and general fitness. Likewise, candidate gene approaches have been used to identify genes of interest based on homology and recently through 'comparative genomic approaches' through analysis of large EST databases and whole genome sequences. It is becoming clear that many genes of the fungal genome will be involved in the pathogen-host interaction in its broadest sense, affecting pathogenicity and the disease process in planta. By utilizing the information obtained through these studies, plants may be bred or engineered for effective disease resistance. That is, by trying to disable pathogens by hitting them where it counts.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture & Agri-Food Canada,Pacific Agri-Food Research Centre, Summerland, BC, Canada V0H 1Z0
| | | |
Collapse
|
42
|
Sirand-Pugnet P, Santos C, Labarère J. The Aa-Pri4 gene, specifically expressed during fruiting initiation in the Agrocybe aegerita complex, contains an unusual CT-rich leader intron within the 5' uncoding region. Curr Genet 2003; 44:124-31. [PMID: 13680153 DOI: 10.1007/s00294-003-0435-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2003] [Revised: 07/02/2003] [Accepted: 07/15/2003] [Indexed: 10/26/2022]
Abstract
The Aa1-Pri4 gene was cloned from the edible mushroom Agrocybe aegerita. The gene, specifically expressed during fruiting initiation, encodes a glycine-rich protein of 116 amino acids, with no homology to already known proteins. Homologous genes were amplified from two other strains belonging to the Agr. aegerita complex and originating from South-East Asia; and a comparison of the three genes revealed a high conservation of the coding sequences (72.8-97.8%). The PRI4 putative protein sequences were highly similar (87.5-100.0%); and all of them contained two protein kinase C sites, suggesting a potential supplementary regulation by phosphorylation at the protein level. The 5' uncoding regions all presented a leader intron, very variable in sequence (45.7% identity), but with a high C+T content (74.5-79.0%). The presence of such CT-rich sequences previously described in the promoter of highly expressed fungal genes suggests that the leader intron of the Aa1-Pri4 gene could be involved in the high-level, stage-specific expression.
Collapse
Affiliation(s)
- Pascal Sirand-Pugnet
- Laboratoire de Génétique et d'Amélioration des Champignons Cultivés, University Victor Segalen, Bordeaux 2 INRA, C.R.A. de Bordeaux, B.P. 81, 33883 Villenave d'Ornon Cedex, France
| | | | | |
Collapse
|
43
|
Peter M, Courty PE, Kohler A, Delaruelle C, Martin D, Tagu D, Frey-Klett P, Duplessis S, Chalot M, Podila G, Martin F. Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus. THE NEW PHYTOLOGIST 2003; 159:117-129. [PMID: 33873685 DOI: 10.1046/j.1469-8137.2003.00796.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• In an effort to discover genes that are expressed in the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus, and in P. microcarpus/Eucalyptus globulus ectomycorrhizas, we have sequenced 1519 and 1681 expressed sequence tags (ESTs) from L. bicolor and P. microcarpus cDNA libraries. • Contig analysis resulted in 905 and 806 tentative consensus sequences (unique transcripts) in L. bicolor and P. microcarpus, respectively. For 36% of the ESTs, significant similarities to sequences in databases were detected. The most abundant transcripts showed no similarity to previously identified genes. Sequence redundancy analysis between different developmental stages indicated that several genes were differentially expressed in free-living mycelium and symbiotic tissues of P. microcarpus. • Based on sequence similarity, 11% of L. bicolor unique transcripts were also detected in P. microcarpus. Similarly, L. bicolor and P. microcarpus shared only a low proportion of common transcripts with other basidiomycetous fungi, such as Pleurotus ostreatus and Agaricus bisporus. Such a low proportion of shared transcripts between basidiomycetes suggests, on the one hand, that the variability of expressed transcripts in different fungi and fungal tissues is considerably high. On the other hand, it might reflect the low number of GenBank entries of basidiomycetous origin and stresses the necessity of an additional sequencing effort. • The present ESTs provide a valuable resource for future research on the development and functioning of ectomycorrhizas.
Collapse
Affiliation(s)
- Martina Peter
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
- These authors contributed equally to this work
| | - Pierre-Emmanuel Courty
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
- These authors contributed equally to this work
| | - Annegret Kohler
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Christine Delaruelle
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - David Martin
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Denis Tagu
- INRA Rennes, Unité Mixte de Recherche BiO3P, BP 35327, 35653 Le Rheu Cedex, France
| | - Pascale Frey-Klett
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Sébastien Duplessis
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Michel Chalot
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| | - Gopi Podila
- Dept. of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| | - Francis Martin
- Unité Mixte de Recherche INRA-UHP 1136 'Interactions Arbres/Microorganismes', Centre de Recherches de Nancy, 54280 Champenoux, France
| |
Collapse
|
44
|
Guettler S, Jackson EN, Lucchese SA, Honaas L, Green A, Hittinger CT, Tian Y, Lilly WW, Gathman AC. ESTs from the basidiomycete Schizophyllum commune grown on nitrogen-replete and nitrogen-limited media. Fungal Genet Biol 2003; 39:191-8. [PMID: 12781677 DOI: 10.1016/s1087-1845(03)00017-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Lambda phage cDNA libraries were constructed using mRNAs from the basidiomycete Schizophyllum commune grown on media with high or low nitrogen concentrations. A total of 440 clones were sequenced, representing 373 distinct transcripts. Of these, 166 showed significant similarity to annotated genes in GenBank. Those that could be tentatively identified using BLAST searches were classified by function using the Gene Ontology (GO) database. Genes with products involved in cell-cycle processes were more frequent in the nitrogen-limited libraries, while genes with products involved in protein biosynthesis were more frequent in the nitrogen-replete library. Overall, clones showed much greater similarity to the one publicly available basidiomycete genome, Phanerochaete chrysosporium, than to any of the ascomycete genomes.
Collapse
Affiliation(s)
- S Guettler
- Southeast Missouri State University Biology Department, 1 University Plaza, Cape Girardeau, MO 63701, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sepcić K, Berne S, Potrich C, Turk T, Macek P, Menestrina G. Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipids. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1199-210. [PMID: 12631278 DOI: 10.1046/j.1432-1033.2003.03480.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ostreolysin is a 16-kDa cytolytic protein specifically expressed in primordia and fruiting bodies of the edible mushroom Pleurotus ostreatus. To understand its interaction with lipid membranes, we compared its effects on mammalian cells, on vesicles prepared with either pure lipids or total lipid extracts, and on dispersions of lysophospholipids or fatty acids. At nanomolar concentrations, the protein lysed human, bovine and sheep erythrocytes by a colloid-osmotic mechanism, compatible with the formation of pores of 4 nm diameter, and was cytotoxic to mammalian tumor cells. A search for lipid inhibitors of hemolysis revealed a strong effect of lysophospholipids and fatty acids, occurring below their critical micellar concentration. This effect was distinct from the capacity of ostreolysin to bind to and permeabilize lipid membranes. In fact, permeabilization of vesicles occurred only when they were prepared with lipids extracted from erythrocytes, and not with lipids extracted from P. ostreatus or pure lipid mixtures, even if lysophospholipids or fatty acids were included. Interaction with lipid vesicles, and their permeabilization, correlated with an increase in the intrinsic fluorescence and alpha-helical content of the protein, and with aggregation, which were not detected with lysophospholipids. It appears that either an unknown lipid acceptor or a specific lipid complex is required for binding, aggregation and pore formation. The inhibitory effect of lysophospholipids may reflect a regulatory role for these components on the physiological action of ostreolysin and related proteins during fruiting.
Collapse
Affiliation(s)
- Kristina Sepcić
- CNR-ITC, Istituto di Biofisica - Sezione di Trento, Povo, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Trail F, Xu JR, San Miguel P, Halgren RG, Kistler HC. Analysis of expressed sequence tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genet Biol 2003; 38:187-97. [PMID: 12620255 DOI: 10.1016/s1087-1845(02)00529-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Gibberella zeae is a broad host range pathogen that infects many crop plants, including wheat and barley, and causes head blight and rot diseases throughout the world. To better understand fungal development and pathogenicity, we have generated 7996 ESTs from three cDNA libraries. Two libraries were generated from carbon-(C-) and nitrogen- (N-) starved mycelia and one library was generated from cultures of maturing perithecia (P). In other fungal pathogens, starvation conditions have been shown to act as cues to induce infection-related gene expression. To assign putative function to cDNAs, sequences were initially assembled using StackPack. The estimated total number of genes identified from the three EST databases was 2110: 1088 contigs and 1022 singleton sequences. These 2110 sequences were compared to a yeast protein sequence reference set and to the GenBank nonredundant database using BLASTX. Based on presumptive gene function identified by this process, we found that the two starved cultures had similar, but not identical, patterns of gene expression, whereas the developmental cultures were distinct in their pattern of expression. Of the three libraries, the perithecium library had the greatest percentage (46%) of ESTS falling into the "unclassified" category. Homologues of some known fungal virulence or pathogenicity factors were found primarily in the N- and C-libraries. Comparisons also were made with ESTs from the related fungi, Neurospora crassa and Magnaporthe grisea and the genomic sequence of N. crassa.
Collapse
Affiliation(s)
- Frances Trail
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
47
|
Lacourt I, Duplessis S, Abbà S, Bonfante P, Martin F. Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Tuber borchii. Appl Environ Microbiol 2002; 68:4574-82. [PMID: 12200316 PMCID: PMC124117 DOI: 10.1128/aem.68.9.4574-4582.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transition from vegetative mycelium to fruit body in truffles requires differentiation processes which lead to edible fruit bodies (ascomata) consisting of different cell and tissue types. The identification of genes differentially expressed during these developmental processes can contribute greatly to a better understanding of truffle morphogenesis. A cDNA library was constructed from vegetative mycelium RNAs of the white truffle Tuber borchii, and 214 cDNAs were sequenced. Up to 58% of the expressed sequence tags corresponded to known genes. The majority of the identified sequences represented housekeeping proteins, i.e., proteins involved in gene or protein expression, cell wall formation, primary and secondary metabolism, and signaling pathways. We screened 171 arrayed cDNAs by using cDNA probes constructed from mRNAs of vegetative mycelium and ascomata to identify fruit body-regulated genes. Comparisons of signals from vegetative mycelium and fruit bodies bearing 15 or 70% mature spores revealed significant differences in the expression levels for up to 33% of the investigated genes. The expression levels for six highly regulated genes were confirmed by RNA blot analyses. The expression of glutamine synthetase, 5-aminolevulinic acid synthetase, isocitrate lyase, thioredoxin, glucan 1,3-beta-glucosidase, and UDP-glucose:sterol glucosyl transferase was highly up-regulated, suggesting that amino acid biosynthesis, the glyoxylate cycle pathway, and cell wall synthesis are strikingly altered during morphogenesis.
Collapse
Affiliation(s)
- Isabelle Lacourt
- Dipartimento di Biologia Vegetale, Università di Torino and Sezione di Torino, Istituto di Protezione delle Piante-CNR, 10125 Turin, Italy
| | | | | | | | | |
Collapse
|