1
|
Bunnoy A, Na-Nakorn U, Srisapoome P. Mystifying Molecular Structure, Expression and Repertoire Diversity of IgM Heavy Chain Genes (Ighμ) in Clarias Catfish and Hybrids: Two Novel Transcripts in Vertebrates. Front Immunol 2022; 13:884434. [PMID: 35784299 PMCID: PMC9247300 DOI: 10.3389/fimmu.2022.884434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022] Open
Abstract
Two novel immunoglobulin heavy chain (Ighμ) transcripts encoding membrane-bound forms of IgM (mIgM) were discovered in bighead catfish, Clarias macrocephalus. The first transcript contains four constant and two transmembrane domains [Cμ1-Cμ2-Cμ3-Cμ4-TM1-TM2] that have never been reported in teleosts, and the second transcript is an unusual mIgM that has never been identified in any vertebrate [Cμ1-(Cδ2-Cδ3-Cδ4-Cδ5)-Cμ2-Cμ3-TM1-TM2]. Fluorescence in situ hybridization (FISH) in bighead catfish, North African catfish (C. gariepinus) and hybrid catfish revealed a single copy of Ighμ in individual parent catfish, while two gene copies were found in diploid hybrid catfish. Intensive sequence analysis demonstrated multiple distinct structural variabilities in the VH domain in Clarias, and hybrid catfish were defined and used to generate diversity with various mechanisms. Expression analysis of Ighμ in Aeromonas hydrophila infection of the head kidney, peripheral blood leukocytes and spleen revealed significantly higher levels in North African catfish and hybrid catfish than in bighead catfish.
Collapse
Affiliation(s)
- Anurak Bunnoy
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Uthairat Na-Nakorn
- Laboratory of Aquatic Animal Genetics, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
- *Correspondence: Prapansak Srisapoome,
| |
Collapse
|
2
|
Oreste U, Ametrano A, Coscia MR. On Origin and Evolution of the Antibody Molecule. BIOLOGY 2021; 10:biology10020140. [PMID: 33578914 PMCID: PMC7916673 DOI: 10.3390/biology10020140] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/29/2022]
Abstract
Simple Summary Like many other molecules playing vital functions in animals, the antibody molecule possesses a complex structure with distinctive features. The structure of the basic unit, i.e., the immunoglobulin domain of very ancient origin is substantially simple. However, high complexity resides in the types and numbers of the domains composing the whole molecule. The emergence of the antibody molecule during evolution overturned the effectiveness of the organisms’ defense system. The particular organization of the coding genes, the mechanisms generating antibody diversity, and the plasticity of the overall protein structure, attest to an extraordinary successful evolutionary history. Here, we attempt to trace, across the evolutionary scale, the very early origins of the most significant features characterizing the structure of the antibody molecule and of the molecular mechanisms underlying its major role in recognizing an almost unlimited number of pathogens. Abstract The vertebrate immune system provides a powerful defense because of the ability to potentially recognize an unlimited number of pathogens. The antibody molecule, also termed immunoglobulin (Ig) is one of the major mediators of the immune response. It is built up from two types of Ig domains: the variable domain, which provides the capability to recognize and bind a potentially infinite range of foreign substances, and the constant domains, which exert the effector functions. In the last 20 years, advances in our understanding of the molecular mechanisms and structural features of antibody in mammals and in a variety of other organisms have uncovered the underlying principles and complexity of this fundamental molecule. One notable evolutionary topic is the origin and evolution of antibody. Many aspects have been clearly stated, but some others remain limited or obscure. By considering a wide range of prokaryotic and eukaryotic organisms through a literature survey about the topic, we have provided an integrated view of the emergence of antibodies in evolution and underlined the very ancient origins.
Collapse
Affiliation(s)
- Umberto Oreste
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
| | - Alessia Ametrano
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, Via P. Castellino, 111, 80131 Naples, Italy; (U.O.); (A.A.)
- Correspondence: ; Tel.: +39-081-6132556
| |
Collapse
|
3
|
Benichou JIC, van Heijst JWJ, Glanville J, Louzoun Y. Converging evolution leads to near maximal junction diversity through parallel mechanisms in B and T cell receptors. Phys Biol 2017; 14:045003. [PMID: 28510537 DOI: 10.1088/1478-3975/aa7366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
T and B cell receptor (TCR and BCR) complementarity determining region 3 (CDR3) genetic diversity is produced through multiple diversification and selection stages. Potential holes in the CDR3 repertoire were argued to be linked to immunodeficiencies and diseases. In contrast with BCRs, TCRs have practically no Dβ germline genetic diversity, and the question emerges as to whether they can produce a diverse CDR3 repertoire. In order to address the genetic diversity of the adaptive immune system, appropriate quantitative measures for diversity and large-scale sequencing are required. Such a diversity method should incorporate the complex diversification mechanisms of the adaptive immune response and the BCR and TCR loci structure. We combined large-scale sequencing and diversity measures to show that TCRs have a near maximal CDR3 genetic diversity. Specifically, TCR have a larger junctional and V germline diversity, which starts more 5' in Vβ than BCRs. Selection decreases the TCR repertoire diversity, but does not affect BCR repertoire. As a result, TCR is as diverse as BCR repertoire, with a biased CDR3 length toward short TCRs and long BCRs. These differences suggest parallel converging evolutionary tracks to reach the required diversity to avoid holes in the CDR3 repertoire.
Collapse
|
4
|
Buonocore F, Bernini C, Coscia MR, Giacomelli S, de Pascale D, Randelli E, Stocchi V, Scapigliati G. Immune response of the Antarctic teleost Trematomus bernacchii to immunization with Psychrobacter sp. (TAD1). FISH & SHELLFISH IMMUNOLOGY 2016; 56:192-198. [PMID: 27417227 DOI: 10.1016/j.fsi.2016.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/28/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Adult Trematomus bernacchii have been immunized intraperitoneally with heat-killed cells of the Antarctic marine bacterium Psychrobacter sp. (TAD1) up to 60 days. After immunizations and sampling at various times, fish sera were tested for specific IgM by ELISA, and different tissues (head kidney and spleen) were investigated for transcription of master genes of the acquired immune response (IgM, IgT, TRβ, TRγ). Results from ELISA assays showed a time-dependent induction of specific serum anti-TAD1 IgM, and western blot analysis of TAD1 lysates probed with fish sera revealed enhanced immunoreactivity in immunized animals compared to controls. Quantitative PCR analysis of transcripts coding for IgM, IgT, TRβ, TRγ was performed in T. bernacchii tissues to assess basal expression, and then on cDNAs of cells from head kidney and spleen of fish injected for 8, 24, and 72 h with inactivated TAD1. The results showed a differential basal expression of transcripts in the examined tissues, and a time-dependent strong up-regulation of IgT, TRβ, TRγ genes upon in vivo stimulation with TAD1. These results represent a first in vivo study on the mounting of a specific immune response in an Antarctic teleost species.
Collapse
Affiliation(s)
- Francesco Buonocore
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Chiara Bernini
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Maria Rosaria Coscia
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Stefano Giacomelli
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Donatella de Pascale
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Napoli, Italy
| | - Elisa Randelli
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Valentina Stocchi
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy
| | - Giuseppe Scapigliati
- Università della Tuscia, Dipartimento per l'Innovazione Biologica, Agroalimentare e Forestale, Viterbo, Italy.
| |
Collapse
|
5
|
New insights into evolution of IgT genes coming from Antarctic teleosts. Mar Genomics 2015; 24 Pt 1:55-68. [DOI: 10.1016/j.margen.2015.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 01/29/2023]
|
6
|
Chiraporn P, Sasimanas U, Prapansak S. Diversity analysis of the immunoglobulin M heavy chain gene in Nile tilapia, Oreochromis niloticus (Linnaeus). ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2014.14001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P. The astonishing diversity of Ig classes and B cell repertoires in teleost fish. Front Immunol 2013; 4:28. [PMID: 23408183 PMCID: PMC3570791 DOI: 10.3389/fimmu.2013.00028] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/24/2013] [Indexed: 12/17/2022] Open
Abstract
With lymphoid tissue anatomy different than mammals, and diverse adaptations to all aquatic environments, fish constitute a fascinating group of vertebrate to study the biology of B cell repertoires in a comparative perspective. Fish B lymphocytes express immunoglobulin (Ig) on their surface and secrete antigen-specific antibodies in response to immune challenges. Three antibody classes have been identified in fish, namely IgM, IgD, and IgT, while IgG, IgA, and IgE are absent. IgM and IgD have been found in all fish species analyzed, and thus seem to be primordial antibody classes. IgM and IgD are normally co-expressed from the same mRNA through alternative splicing, as in mammals. Tetrameric IgM is the main antibody class found in serum. Some species of fish also have IgT, which seems to exist only in fish and is specialized in mucosal immunity. IgM/IgD and IgT are expressed by two different sub-populations of B cells. The tools available to investigate B cell responses at the cellular level in fish are limited, but the progress of fish genomics has started to unravel a rich diversity of IgH and immunoglobulin light chain locus organization, which might be related to the succession of genome remodelings that occurred during fish evolution. Moreover, the development of deep sequencing techniques has allowed the investigation of the global features of the expressed fish B cell repertoires in zebrafish and rainbow trout, in steady state or after infection. This review provides a description of the organization of fish Ig loci, with a particular emphasis on their heterogeneity between species, and presents recent data on the structure of the expressed Ig repertoire in healthy and infected fish.
Collapse
Affiliation(s)
- Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, Leibniz Institute Berlin, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Coscia MR, Varriale S, Giacomelli S, Oreste U. Antarctic teleost immunoglobulins: more extreme, more interesting. FISH & SHELLFISH IMMUNOLOGY 2011; 31:688-696. [PMID: 21044686 DOI: 10.1016/j.fsi.2010.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/12/2010] [Accepted: 10/22/2010] [Indexed: 05/30/2023]
Abstract
We have investigated the immunoglobulin molecule and the genes encoding it in teleosts living in the Antarctic seas at the constant temperature of -1.86 °C. The majority of Antarctic teleosts belong to the suborder Notothenioidei (Perciformes), which includes only a few non-Antarctic species. Twenty-one Antarctic and two non-Antarctic Notothenioid species were included in our studies. We sequenced immunoglobulin light chains in two species and μ heavy chains, partially or totally, in twenty species. In the case of heavy chain, genomic DNA and the cDNA encoding the secreted and the membrane form were analyzed. From one species, Trematomus bernacchii, a spleen cDNA library was constructed to evaluate the diversity of VH gene segments. T. bernacchii IgM, purified from the serum and bile, was characterized. Homology Modelling and Molecular Dynamics were used to determine the molecular structure of T. bernacchii and Chionodraco hamatus immunoglobulin domains. This paper sums up the previous results and broadens them with the addition of unpublished data.
Collapse
Affiliation(s)
- Maria Rosaria Coscia
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | | | | | | |
Collapse
|
9
|
Hikima JI, Jung TS, Aoki T. Immunoglobulin genes and their transcriptional control in teleosts. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:924-936. [PMID: 21078341 DOI: 10.1016/j.dci.2010.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 09/27/2010] [Accepted: 10/28/2010] [Indexed: 05/30/2023]
Abstract
Immunoglobulin (Ig), which exists only in jawed vertebrates, is one of the most important molecules in adaptive immunity. In the last two decades, many teleost Ig genes have been identified by in silico data mining from the enormous gene and EST databases of many fish species. In this review, the organization of Ig gene segments, the expressed Ig isotypes and their transcriptional controls are discussed. The Ig heavy chain (IgH) locus in teleosts encodes the variable (V), the diversity (D), the joining (J) segments and three different isotypic constant (C) regions including Cμ, Cδ, and Cζ/τ genes, and is organized as a "translocon" type like the IgH loci of higher vertebrates. In contrast, the Ig light (L) chain locus is arranged in a "multicluster" or repeating set of VL, JL, and CL segments. The IgL chains have four isotypes; two κ L1/G and L3/F), σ (L2) and λ. The transcription of IgH genes in teleosts is regulated by a VH promoter and the Eμ3' enhancer, which both function in a B cell-specific manner. The location of the IgH locus, structure and transcriptional function of the Eμ3' enhancer are important to our understanding of the evolutional changes that have occurred in the IgH gene locus.
Collapse
Affiliation(s)
- Jun-ichi Hikima
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongnam, South Korea
| | | | | |
Collapse
|
10
|
Coscia MR, Varriale S, De Santi C, Giacomelli S, Oreste U. Evolution of the Antarctic teleost immunoglobulin heavy chain gene. Mol Phylogenet Evol 2009; 55:226-233. [PMID: 19800977 DOI: 10.1016/j.ympev.2009.09.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 11/19/2022]
Abstract
Notothenioid teleosts underwent major modifications of their genome to adapt to the cooling of the Antarctic environment. In order to identify specific features of the Antarctic teleost immunoglobulin, transcripts encoding the constant region of the IgM heavy chain from 13 Antarctic and non-Antarctic notothenioid species were sequenced. The primary mRNA splicing for the membrane form was found to be atypical in the majority of Antarctic species, because it led to exclusion of two entire constant exons, and to inclusion of 39-nucleotide exons encoding an unusually long Extracellular Membrane-Proximal Domain (EMPD). Genomic DNA analysis revealed that each 39-nucleotide exon fell within a long sequence that was the reverse complement of an upstream region. Deduced amino acid sequence analysis lead to the identification of cysteine encoding codons in the 39-nucleotide exons, but not in the respective sequence counterpart, suggesting that these residues might play an important role in the folding of the EMPD.
Collapse
Affiliation(s)
- Maria Rosaria Coscia
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy.
| | - Sonia Varriale
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Concetta De Santi
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Stefano Giacomelli
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | - Umberto Oreste
- Institute of Protein Biochemistry, CNR, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
11
|
Rosaria Coscia M, Oreste U. Exploring Antarctic teleost immunoglobulin genes. Mar Genomics 2009; 2:19-25. [DOI: 10.1016/j.margen.2009.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/26/2009] [Accepted: 03/02/2009] [Indexed: 10/20/2022]
|
12
|
Pisano E, Coscia MR, Mazzei F, Ghigliotti L, Coutanceau JP, Ozouf-Costaz C, Oreste U. Cytogenetic mapping of immunoglobulin heavy chain genes in Antarctic fish. Genetica 2006; 130:9-17. [PMID: 16909334 DOI: 10.1007/s10709-006-0015-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/27/2006] [Indexed: 11/30/2022]
Abstract
The chromosomal location of the IgH locus has been analyzed in several bony fish of the Antarctic perciform group Notothenioidei. Two IgH probes were prepared from the species Trematomus bernacchii (family Nototheniidae, tribe Trematominae) and mapped onto the chromosomes of ten species belonging to the same genus (Trematomus) and in two outgroups, through one-color and two-color FISH. A single location of the IgH locus was found in the majority of the species examined, including the outgroups, whereas in four of them the IgH genes splited to two chromosomal loci. RT-PCR experiments revealed the presence of three allelic sequences in T. newnesi, a species in which the IgH genes were organized in two chromosomal loci. Possible pathways leading to IgH genes duplication during the diversification of trematomine fishes were inferred from the analysis of the FISH patterns in a phylogenetic context. The present work provides the first comprehensive picture of IgH genes organization at chromosomal level in a bony fish group.
Collapse
Affiliation(s)
- Eva Pisano
- Department of Biology, University of Genova, Viale Benedetto XV 5, Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Solem ST, Stenvik J. Antibody repertoire development in teleosts--a review with emphasis on salmonids and Gadus morhua L. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:57-76. [PMID: 16084588 DOI: 10.1016/j.dci.2005.06.007] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The group of teleosts is highly diverse, comprising more than 23000 extant species. Studies of the teleost antibody repertoire have been conducted in many different species within different orders, though some species and families have been better characterised than others. The Atlantic cod (Gadus morhua L.) and several species within the Salmoninae (e.g. Salmo salar and Oncorynchus mykiss) are among the best-studied teleosts in terms of the antibody repertoire. The estimated size of the repertoire, the organisation of immunoglobulin (IG) gene segments, the expressed IG repertoire, the IgM serum concentration, and the serum antibody responses reveal some fundamental differences between these species. The serum IgM concentration of G. morhua is some ten times higher than that of S. salar, though G. morhua is characterised as a 'low' (or 'non') responder in terms of specific antibody production. In contrast, an antibody response is readily induced in S. salar, although the response is strongly regulated by antigen induced suppression. The IGHD gene of G. morhua has a unique structure, while the IGHM and IGHD genes of S. salar have a characteristic genomic organisation in two parallel loci. In addition, salmonids, express a broad repertoire of IGH and IGI V-region gene segments, while a single V gene family dominates the expressed heavy and light chain repertoire of G. morhua. Little is known about the developing antibody repertoire during ontogeny, in different stages of B-cell maturation, or in separate B-cell subsets. Information on the establishment of the preimmune repertoire, and the possible role of environmental antigens is also sparse.
Collapse
Affiliation(s)
- Stein Tore Solem
- Department of Marine Biotechnology, Norwegian College of Fishery Science, Breivika, N-9037 Tromsø, Norway.
| | | |
Collapse
|