1
|
Zhou J, Sun S, Li R, Xu H, Li M, Li Z. Transcriptome analysis of Schizothorax oconnori (Cypriniformes: Cyprinidae) oocytes: The role of K + in promoting yolk globule fusion and regulating oocyte maturation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:435-448. [PMID: 38047980 DOI: 10.1007/s10695-023-01272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/12/2023] [Indexed: 12/05/2023]
Abstract
Schizothorax oconnori (S. oconnori) is an economically important fish in Tibet. Oocyte maturation is a physiological process that is of great significance to reproduction and seed production in S. oconnori, yet little is currently known regarding the molecular mechanisms of oocyte development in this species. To identify candidate genes involved in reproduction of female fish, a combination of PacBio and Illumina HiSeq technologies was employed to provide deep coverage of the oocyte transcriptome. Transcriptome analysis revealed several candidate genes that are potentially involved in the regulation of oocyte maturation in S. oconnori, including GIRK1, CHRM3, NPY2R, GABRA3, GnRH3, mGluR1α, GPER1, GDF9, HSP90, and ESR2. Genes that are significantly expressed during oocyte maturation mainly contribute to the GPCR signaling pathway and the estrogen signaling pathway. Neurotransmitter (Ach, NPY, and GABA) and peptide hormone (GnRH3) binding to G protein-coupled receptors (GPCRs) frees G-protein βγ subunits to interact with the G protein-gated inward rectifier K+ channel 1 (GIRK1). This process helps release K+ from granulosa cells to maturing oocytes, allowing yolk globule fusion. This mechanism may play an important role in oocyte maturation in S. oconnori. In conclusion, this study provides a valuable basis for deciphering the reproductive system in S. oconnori during the oocyte maturation process.
Collapse
Affiliation(s)
- Jianshe Zhou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850032, People's Republic of China
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Province, Zhengzhou, 450046, People's Republic of China
| | - Shuaijie Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Province, Zhengzhou, 450046, People's Republic of China
| | - Ruiting Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Province, Zhengzhou, 450046, People's Republic of China
| | - Huifeng Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Province, Zhengzhou, 450046, People's Republic of China
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Province, Zhengzhou, 450046, People's Republic of China.
| | - Zhichao Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Henan Province, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
2
|
Hagiwara A, Ogiwara K, Sugama N, Yamashita M, Takahashi T. Inhibition of medaka ovulation by gap junction blockers due to its disrupting effect on the transcriptional process of LH-induced Mmp15 expression. Gen Comp Endocrinol 2020; 288:113373. [PMID: 31874135 DOI: 10.1016/j.ygcen.2019.113373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/11/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Using medaka, we found that in vitro follicle ovulation, but not germinal vesicle breakdown, was inhibited by three gap junction blockers, carbenoxolone, mefloquine, and flufenamic acid. The blockers specifically inhibited follicular expression of matrix metalloproteinase-15 mRNA and the protein (mmp15/Mmp15), a protease indispensable for medaka ovulation, indicating that gap junctional communication may be required for successful ovulation and mmp15/Mmp15 expression. Further experiments using carbenoxolone as the representative of the gap junction blockers showed that expression of nuclear progestin receptor (Pgr), a transcription factor required for mmp15 expression, was not affected by carbenoxolone treatment, but the formation of phosphorylated Pgr was considerably suppressed. Carbenoxolone treatment caused a decrease in the Pgr binding to the promoter region of mmp15. mRNA expression of cyclin-dependent protein kinase-9 (cdk9) and cyclin I (ccni), whose translation products are demonstrated to be involved in Pgr phosphorylation in the medaka ovulating follicles, was suppressed by carbenoxolone treatment. Transcripts of connexin 34.5 (cx34.5) and connexin 35.4 (cx35.4) were dominantly expressed in the follicle cells of ovulating follicles. The results indicate that gap junctional communication plays an important role in medaka ovulation.
Collapse
Affiliation(s)
- Akane Hagiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Natsu Sugama
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masakane Yamashita
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
3
|
Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, Sitjà-Bobadilla A. Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). FISH & SHELLFISH IMMUNOLOGY 2015; 44:117-128. [PMID: 25681752 DOI: 10.1016/j.fsi.2015.01.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 06/04/2023]
Abstract
Gilthead sea bream juveniles were fed different doses (0, 50, 100, 200, 300 ppm) of NEXT ENHANCE®150 (NE) for 9 weeks. Feed gain ratio (FGR) was improved by a 10% with all the doses, but feed intake decreased in a dose dependent manner. The optimum inclusion level to achieve maximum growth was set at 100 ppm. The hepatosomatic index did not vary and only at the highest dose, viscerosomatic and splenosomatic indexes were significantly decreased. No significant changes were found in haematological parameters, plasma biochemistry, total antioxidant capacity and respiratory burst. In a second trial, NE was given at 100 ppm alone (D1) or in combination with the prebiotic PREVIDA® (0.5%) (PRE) (D2) for 17 weeks. There were no differences in the growth rates, and FGR was equally improved for D1 and D2. No significant changes in haematology and plasma antioxidant capacity were detected. The histological examination of the liver and the intestine showed no outstanding differences in the liver, but the number of mucosal foldings appeared to be higher in D1 and D2 vs CTRL diet and the density of enterocytes and goblet cells also appeared higher, particularly in the anterior intestine. A 87-gene PCR-array was constructed based on our transcriptomic database (www.nutrigroup-iats.org/seabreamdb) and applied to samples of anterior (AI) and posterior (PI) intestine. It included 54 new gene sequences and other sequences as markers of cell differentiation and proliferation, intestinal architecture and permeability, enterocyte mass and epithelial damage, interleukins and cytokines, pattern recognition receptors (PRR), and mitochondrial function and biogenesis. More than half of the studied genes had significantly different expression between AI and PI segments. The functional significance of this differential tissue expression is discussed. The experimental diets induced significant changes in the expression of 26 genes. The intensity of these changes and the number of genes that were significantly regulated were higher at PI than at AI. At PI, both diets invoked a clear down-regulation of genes involved in cell differentiation and proliferation, some involved in cell to cell communication, cytokines and several PRR. By contrast, up-regulation was mostly found for genes related to enterocyte mass, cell epithelial damage and mitochondrial activity at AI. The changes were of the same order for D1 and D2, except for fatty acid-binding proteins 2 and 6 and the PRR fucolectin, which were higher in D2 and D1 fed fish, respectively. Thus, NE alone or in combination with PRE seems to induce an anti-inflammatory and anti-proliferative transcriptomic profile with probable improvement in the absorptive capacity of the intestine that would explain the improved FGR.
Collapse
Affiliation(s)
- Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Laura Benedito-Palos
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Itziar Estensoro
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Castellón, Spain.
| |
Collapse
|
4
|
Yamamoto Y, Luckenbach JA, Middleton MA, Swanson P. The spatiotemporal expression of multiple coho salmon ovarian connexin genes and their hormonal regulation in vitro during oogenesis. Reprod Biol Endocrinol 2011; 9:52. [PMID: 21501524 PMCID: PMC3094281 DOI: 10.1186/1477-7827-9-52] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 04/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Throughout oogenesis, cell-cell communication via gap junctions (GJs) between oocytes and surrounding follicle cells (theca and granulosa cells), and/or amongst follicle cells is required for successful follicular development. To gain a fundamental understanding of ovarian GJs in teleosts, gene transcripts encoding GJ proteins, connexins (cx), were identified in the coho salmon, Oncorhynchus kisutch, ovary. The spatiotemporal expression of four ovarian cx transcripts was assessed, as well as their potential regulation by follicle-stimulating hormone (FSH), luteinizing hormone (LH) and insulin-like growth factor 1 (IGF1). METHODS Salmonid ovarian transcriptomes were mined for cx genes. Four gene transcripts designated cx30.9, cx34.3, cx43.2, and cx44.9 were identified. Changes in gene expression across major stages of oogenesis were determined with real-time, quantitative RT-PCR (qPCR) and cx transcripts were localized to specific ovary cell-types by in situ hybridization. Further, salmon ovarian follicles were cultured with various concentrations of FSH, LH and IGF1 and effects of each hormone on cx gene expression were determined by qPCR. RESULTS Transcripts for cx30.9 and cx44.9 were highly expressed at the perinucleolus (PN)-stage and decreased thereafter. In contrast, transcripts for cx34.3 and cx43.2 were low at the PN-stage and increased during later stages of oogenesis, peaking at the mid vitellogenic (VIT)-stage and maturing (MAT)-stage, respectively. In situ hybridization revealed that transcripts for cx34.3 were only detected in granulosa cells, but other cx transcripts were detected in both oocytes and follicle cells. Transcripts for cx30.9 and cx44.9 were down-regulated by FSH and IGF1 at the lipid droplet (LD)-stage, whereas transcripts for cx34.3 were up-regulated by FSH and IGF1 at the LD-stage, and LH and IGF1 at the late VIT-stage. Transcripts for cx43.2 were down-regulated by IGF1 at the late VIT-stage and showed no response to gonadotropins. CONCLUSION Our findings demonstrate the presence and hormonal regulation of four different cx transcripts in the salmon ovary. Differences in the spatiotemporal expression profile and hormonal regulation of these cx transcripts likely relate to their different roles during ovarian follicle differentiation and development.
Collapse
Affiliation(s)
- Yoji Yamamoto
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA 98195, USA
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| | - Mollie A Middleton
- School of Aquatic & Fishery Sciences, University of Washington, Seattle, WA 98195, USA
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| | - Penny Swanson
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, WA 98112, USA
| |
Collapse
|
5
|
|
6
|
Yamamoto Y, Yoshizaki G, Takeuchi T, Soyano K, Itoh F, Patiño R. Differential expression and localization of four connexins in the ovary of the ayu (Plecoglossus Altivelis). Mol Reprod Dev 2007; 74:1113-23. [PMID: 17290411 DOI: 10.1002/mrd.20562] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The post-vitellogenic oocytes of teleost fish are generally unresponsive to maturation-inducing hormone (MIH) until a luteinizing hormone (LH) surge stimulates sensitivity via the acquisition of oocyte-maturational competence (OMC). Heterologous gap junctions (GJs) between granulosa cells and the oocyte have been previously implicated in the regulation of oocyte maturation in various vertebrate species. Although heterologous GJ are present in ovarian follicles of ayu (Plecoglossus altivelis), their role in maturation remains unclear. In the present study, we cloned and characterized complementary DNAs for GJ protein connexin (Cx), and examined the expression pattern of Cx messenger RNAs in the ayu ovary. Four Cx cDNAs with predicted molecular masses of 32.1 (Cx32.1), 34.9 (Cx34.9), 44.1 (Cx44.1), and 44.2 (Cx44.2) kDa, respectively, were cloned. Northern blot analysis revealed that the levels of Cx44.1 and Cx44.2 transcripts were similar during the vitellogenic and ovulatory stages. Cx32.1 transcripts were more abundant during the vitellogenic stage, but their levels declined thereafter. Cx34.9 transcript levels increased during the vitellogenic stage and remained high during the acquisition of OMC. In situ hybridization revealed that Cx44.1 and Cx44.2 signals were restricted to the oocyte, whereas the Cx32.1 and Cx34.9 signals were detected in both cellular fractions. Furthermore, a dye-transfer assay revealed the presence of functional GJs between the oocytes and follicle cells. These results suggest that Cx34.9 contributes to the formation of heterologous GJs between oocytes and granulosa cells. Moreover, GJs formed by Cx34.9 may function during the LH-dependent acquisition of OMC and the MIH-dependent resumption of meiosis in ayu.
Collapse
Affiliation(s)
- Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Nunez BS, Evans AN. Hormonal regulation of the steroidogenic acute regulatory protein (StAR) in gonadal tissues of the Atlantic croaker (Micropogonias undulatus). Gen Comp Endocrinol 2007; 150:495-504. [PMID: 17196197 DOI: 10.1016/j.ygcen.2006.11.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 10/30/2006] [Accepted: 11/15/2006] [Indexed: 11/20/2022]
Abstract
The steroidogenic acute regulatory protein (StAR), a member of the StAR-related lipid transfer domain (START) family, is critical to regulated steroidogenesis in vertebrates. We have isolated a cDNA encoding StAR from a well-studied model of teleost physiology, the Atlantic croaker Micropogonias undulatus. This cDNA (1204 nucleotides total length) contains an open reading frame of 858 nucleotides encoding a protein of 286 amino acids. Molecular phylogenetic analysis indicates the putative Atlantic croaker StAR protein is more closely related to StAR proteins (62-85% identity) than to the related START protein MLN-64 (28-31% identity). Green monkey kidney cells (COS-1) cotransfected with Atlantic croaker StAR and human cholesterol side chain cleavage (SCC) expression constructs are able to produce significantly more pregnenolone than cells transfected with SCC alone. StAR mRNA is detected in the Atlantic croaker head kidney by reverse transcriptase-polymerase chain reaction (RT-PCR) and in the kidney and hypothalamus in some individuals. Gonadal StAR gene expression is below the level of detection by RT-PCR in most individuals, but can be detected using fluorescent probes in quantitative RT-PCR. StAR mRNA is not detected in the Atlantic croaker brain. Six hour in vitro treatment of Atlantic croaker ovarian follicles with human chorionic gonadotropin (hCG) is insufficient to significantly alter StAR mRNA levels; however, 24 h hCG treatment induces StAR mRNA levels 17-fold over untreated controls. Neither 6 nor 24 h treatment with hCG significantly alters StAR mRNA levels in Atlantic croaker testicular minces. Likewise, 6h in vitro treatment with estradiol, testosterone or the maturation-inducing steroid 17,20beta,21-trihydroxy-4-pregnen-3-one is without effect on gonadal StAR mRNA levels.
Collapse
Affiliation(s)
- B Scott Nunez
- The University of Texas Marine Science Institute, Port Aransas, TX 78373, USA.
| | | |
Collapse
|
8
|
Patiño R, Bolamba D, Thomas P, Kumakura N. Effects of external pH on hormonally regulated ovarian follicle maturation and ovulation in Atlantic croaker. Gen Comp Endocrinol 2005; 141:126-34. [PMID: 15748713 DOI: 10.1016/j.ygcen.2004.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/13/2004] [Accepted: 12/14/2004] [Indexed: 11/16/2022]
Abstract
In vitro studies of ovarian follicle maturation and ovulation in teleost fishes typically are conducted within a narrow range (7.5-7.8) of constant external (medium) pH, although there is evidence that pH can influence ovulation. Therefore, this study with Atlantic croaker investigated the effects of external pH on hormonally regulated in vitro maturation and ovulation as well as changes in the pH of ovarian fluid during in vivo maturation and ovulation. For the in vitro experiments, follicles were first incubated with human chorionic gonadotropin (hCG) to induce maturational and ovulatory competencies, and then with maturation-inducing hormone (MIH) to induce completion of maturation and ovulation. At a constant external pH within the range of 7.0-8.2, the lower pH levels (7.0-7.3) generally inhibited or slowed down hormonally induced maturation and ovulation whereas higher pH (7.6-8.2) facilitated these processes. When ovarian follicles were incubated at a constant pH of 7.6 during the priming incubation with hCG, changing the external pH during the incubation with MIH had relatively little effect on oocyte maturation or ovulation. Thus, the inhibitory effect of constant low levels of external pH (7.0-7.3) on maturation and ovulation may be primarily due to disruptions in the gonadotropin-dependent acquisition of maturational and ovulatory competencies. The pH of ovarian fluid remained constant at 8.5 during in vivo ovarian follicle maturation and ovulation. Subsequent in vitro tests showed that external pH of 8.5 enhances hormonally induced maturation and ovulation relative to pH of 7.6. These observations suggest that attention should be paid to the pH of incubation media used in basic research and in biotechnological applications relying on in vitro maturation and ovulation in teleosts. Further, an understanding of the physiological significance of the enhancing effect of alkaline pH on maturation and ovulation will require determination of the intrafollicular pH around the oocyte during the periovulatory period.
Collapse
Affiliation(s)
- Reynaldo Patiño
- U.S. Geological Survey Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA.
| | | | | | | |
Collapse
|
9
|
Bolamba D, Patiño R, Yoshizaki G, Thomas P. Changes in homologous and heterologous gap junction contacts during maturation-inducing hormone-dependent meiotic resumption in ovarian follicles of Atlantic croaker. Gen Comp Endocrinol 2003; 131:291-5. [PMID: 12714011 DOI: 10.1016/s0016-6480(03)00015-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Homologous (granulosa cell-granulosa cell) gap junction (GJ) contacts increase in ovarian follicles of Atlantic croaker (Micropogonias undulatus) during the early (first) stage of maturation, but their profile during the second stage [i.e., during maturation-inducing hormone (MIH)-mediated meiotic resumption] is unknown. The profile of homologous GJ contacts during the second stage of maturation in croaker follicles was examined in this study and compared to that of heterologous (granulosa cell-oocyte) GJ, for which changes have been previously documented. Follicles were incubated with human chorionic gonadotropin to induce maturational competence (first stage), and then with MIH to induce meiotic resumption. The follicles were collected for examination immediately before and after different durations of MIH exposure until the oocyte had reached the stage of germinal vesicle breakdown (GVBD; index of meiotic resumption). Ultrathin sections were observed by transmission electron microscopy, and homologous and heterologous GJ contacts were quantified along a 100-microm segment of granulosa cell-zona radiata complex per follicle (three follicles/time/fish, n=3 fish). Relatively high numbers of both types of GJ were observed before and after the first few hours of MIH exposure (up to the stage of oil droplet coalescence). GJ numbers declined during partial yolk globule coalescence (at or near GVBD) and were just under 50% of starting values after the completion of GVBD (P<0.05). These results confirm earlier observations that GVBD temporally correlates with declining heterologous GJ contacts, and for the first time in teleosts show that there is a parallel decline in homologous GJ. The significance of the changes in homologous and heterologous GJ is uncertain and deserves further study.
Collapse
Affiliation(s)
- Digbo Bolamba
- Texas Cooperative Fish and Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | | | | | | |
Collapse
|
10
|
Patiño R, Yoshizaki G, Bolamba D, Thomas P. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker. Biol Reprod 2003; 68:516-23. [PMID: 12533414 DOI: 10.1095/biolreprod.102.009662] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F(2alpha) and PGE(2), whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 microM) and PGF(2alpha) (5 microM) did not induce maturation, and NDGA (10 microM) did not affect MIH-dependent maturation. However, IM (100 microM) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 microg/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 microM; H7, 50 microM) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 microM) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF(2alpha) restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role of COX products of AA during maturation is possible. A novel model of MIH-dependent ovulation is proposed in which 1). LOX and COX metabolites of AA are both required for ovulation, but at upstream and downstream sites of the pathway, respectively, relative to PKC, and 2). PKC is downstream of genomic activation.
Collapse
Affiliation(s)
- Reynaldo Patiño
- U S Geological Survey, Texas Cooperative Fish & Wildlife Research Unit, Texas Tech University, Lubbock, Texas 79409-2120, USA.
| | | | | | | |
Collapse
|
11
|
Yoshizaki G, Patiño R, Thomas P, Bolamba D, Chang X. Effects of maturation-inducing hormone on heterologous gap junctional coupling in ovarian follicles of Atlantic croaker. Gen Comp Endocrinol 2001; 124:359-66. [PMID: 11742519 DOI: 10.1006/gcen.2001.7726] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A previous ultrastructural study of heterologous (granulosa cell-oocyte) gap junction (GJ) contacts in ovarian follicles of Atlantic croaker suggested that these contacts disappear late during the process of resumption of oocyte meiosis. This observation suggested that, unlike scenarios proposed for a number of other species, uncoupling of GJ is not necessary for the onset of meiotic resumption in croaker follicles. However, the functionality of heterologous GJ contacts and the temporal association between maturation-inducing hormone (MIH)-induced changes in heterologous coupling and resumption of oocyte meiosis have not been examined in Atlantic croaker. These questions were addressed with a cell-cell coupling assay that is based on the transfer of a GJ marker, Lucifer Yellow, from oocytes to granulosa cells. Follicle-enclosed oocytes injected with Lucifer Yellow allowed transfer of the dye into the follicle cell layer, thus confirming that there is functional heterologous coupling between the oocyte and the granulosa cells. Dye transfer was observed in vitellogenic, full-grown/maturation-incompetent, and full-grown/maturation-competent follicles. Treatment of maturation-competent follicles with MIH caused a time-dependent decline in the number of follicles transferring dye. However, although GJ uncoupling in some of the follicles was observed before germinal vesicle breakdown (GVBD, index of meiotic resumption), about 50% of the follicles maintained the ability to transfer dye even after GVBD had occurred. Further, a known GJ inhibitor (phorbol 12-myristate 13-acetate) blocked heterologous GJ within a time frame similar to that seen with MIH but without inducing any of the morphological changes (including GVBD) associated with follicular maturation. In conclusion, uncoupling of heterologous GJ seems insufficient and unnecessary for the onset of meiotic resumption in ovarian follicles of Atlantic croaker.
Collapse
Affiliation(s)
- G Yoshizaki
- Department of Aquatic Biosciences, Tokyo University of Fisheries, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | |
Collapse
|
12
|
Wu C, Patiño R, Davis KB, Chang X. Localization of estrogen receptor alpha and beta RNA in germinal and nongerminal epithelia of the channel catfish testis. Gen Comp Endocrinol 2001; 124:12-20. [PMID: 11703067 DOI: 10.1006/gcen.2001.7668] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The germinal epithelium of the anterior region of the channel catfish testis is the site of spermatogenesis, whereas the nongerminal epithelium of the posterior region (seminal vesicle) may play a role in the regulation of seminal fluid composition. The available information indicates that estrogens play a physiological role in the regulation of spermatogenesis and seminal fluid composition in vertebrates. However, the cellular distribution of estrogen receptor (ER) gene expression in the teleost testis is poorly understood. Therefore, the objective of this study was to determine the presence and cellular distribution of ERalpha and ERbeta transcripts in germinal and nongerminal epithelia of the mature testis of channel catfish. RT-PCR of whole-testis RNA extracts showed that ERalpha and ERbeta RNAs are present in the mature testis. In situ hybridization of histological sections of the germinal epithelium showed that primary spermatocytes contain little or no ERalpha or ERbeta RNA. However, both ER transcripts were present in secondary spermatocytes and spermatids and their levels were relatively high in mature sperm. The columnar epithelium of the seminal vesicle also contained ERalpha and ERbeta RNA. The ER RNAs in epithelial cells of the seminal vesicle were not evenly distributed throughout the cytoplasm but seemed to concentrate in their apical region, near the nucleus. In conclusion, ERalpha and ERbeta genes are coexpressed in germinal and nongerminal epithelia of the mature testis of channel catfish and seem to be developmentally regulated in spermatocytes. These observations are consistent with the concept that estrogens, via interaction with ERalpha and ERbeta, participate in the regulation of male gamete development and fertility.
Collapse
Affiliation(s)
- C Wu
- Texas Cooperative Fish & Wildlife Research Unit, Texas Tech University, Lubbock, TX 79409-2120, USA
| | | | | | | |
Collapse
|
13
|
Patiño R, Yoshizaki G, Thomas P, Kagawa H. Gonadotropic control of ovarian follicle maturation: the two-stage concept and its mechanisms. Comp Biochem Physiol B Biochem Mol Biol 2001; 129:427-39. [PMID: 11399477 DOI: 10.1016/s1096-4959(01)00344-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most research on the control of oocyte maturation by luteinizing hormone (LH) in teleosts and amphibians has focused on the production and action of maturation-inducing hormone (MIH), the follicular hormone that directly triggers the resumption of oocyte meiosis. However, current information indicates that LH regulates maturation in two stages, and that 'oocyte maturation' can be appropriately described within the broader context of 'ovarian follicle maturation'. During the first stage of maturation the follicle (somatic) cells acquire the ability to produce MIH and the oocyte to respond to MIH (i.e. oocyte maturational competence, OMC), whereas in the second stage the follicle cells produce MIH and, consequently, the oocyte is released from meiotic arrest. A number of factors such as insulin-like growth factor-I, serotonin, and others may mediate or modulate the OMC-inducing action of LH. Like the acquisition of MIH-producing ability, the acquisition of OMC requires activation of the protein kinase A pathway. Two major cellular events associated with OMC acquisition are increases in homologous and heterologous gap junction contacts and in oocyte MIH receptor activity. The increased oocyte MIH receptor activity is presumably associated with OMC acquisition, but the significance of changes in gap junction contacts is at present uncertain. To eliminate inconsistency and ambiguity associated with current terminology we propose that the term, ovarian follicle (or oocyte) maturation be used for teleosts without qualifiers such as 'final' to define the first and second stages of follicular maturation.
Collapse
Affiliation(s)
- R Patiño
- U.S. Geological Survey Texas Cooperative Fish & Wildlife Research Unit, Texas Tech University, 79409-2120, Lubbock, TX, USA.
| | | | | | | |
Collapse
|
14
|
Patiño R, Xia Z, Gale WL, Wu C, Maule AG, Chang X. Novel transcripts of the estrogen receptor alpha gene in channel catfish. Gen Comp Endocrinol 2000; 120:314-25. [PMID: 11121296 DOI: 10.1006/gcen.2000.7566] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complementary DNA libraries from liver and ovary of an immature female channel catfish were screened with a homologous ERalpha cDNA probe. The hepatic library yielded two new channel catfish ER cDNAs that encode N-terminal ERalpha variants of different sizes. Relative to the catfish ERalpha (medium size; 581 residues) previously reported, these new cDNAs encode Long-ERalpha (36 residues longer) and Short-ERalpha (389 residues shorter). The 5'-end of Long-ERalpha cDNA is identical to that of Medium-ERalpha but has an additional 503-bp segment with an upstream, in-frame translation-start codon. Recombinant Long-ERalpha binds estrogen with high affinity (K(d) = 3. 4 nM), similar to that previously reported for Medium-ERalpha but lower than reported for catfish ERbeta. Short-ERalpha cDNA encodes a protein that lacks most of the receptor protein and does not bind estrogen. Northern hybridization confirmed the existence of multiple hepatic ERalpha RNAs that include the size range of the ERalpha cDNAs obtained from the libraries as well as additional sizes. Using primers for RT-PCR that target locations internal to the protein-coding sequence, we also established the presence of several ERalpha cDNA variants with in-frame insertions in the ligand-binding and DNA-binding domains and in-frame or out-of-frame deletions in the ligand-binding domain. These internal variants showed patterns of expression that differed between the ovary and liver. Further, the ovarian library yielded a full-length, ERalpha antisense cDNA containing a poly(A) signal and tail. A limited survey of histological preparations from juvenile catfish by in situ hybridization using directionally synthesized cRNA probes also suggested the expression of ERalpha antisense RNA in a tissue-specific manner. In conclusion, channel catfish seemingly have three broad classes of ERalpha mRNA variants: those encoding N-terminal truncated variants, those encoding internal variants (including C-terminal truncated variants), and antisense mRNA. The sense variants may encode functional ERalpha or related proteins that modulate ERalpha or ERbeta activity. The existence of ER antisense mRNA is reported in this study for the first time. Its role may be to participate in the regulation of ER gene expression.
Collapse
Affiliation(s)
- R Patiño
- Texas Cooperative Fish & Wildlife Research Unit, Texas Tech University, Lubbock, Texas 79409-2120, USA.
| | | | | | | | | | | |
Collapse
|