1
|
Chen D, Rehfeld JF, Watts AG, Rorsman P, Gundlach AL. History of key regulatory peptide systems and perspectives for future research. J Neuroendocrinol 2023; 35:e13251. [PMID: 37053148 DOI: 10.1111/jne.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Throughout the 20th Century, regulatory peptide discovery advanced from the identification of gut hormones to the extraction and characterization of hypothalamic hypophysiotropic factors, and to the isolation and cloning of multiple brain neuropeptides. These discoveries were followed by the discovery of G-protein-coupled and other membrane receptors for these peptides. Subsequently, the systems physiology associated with some of these multiple regulatory peptides and receptors has been comprehensively elucidated and has led to improved therapeutics and diagnostics and their approval by the US Food and Drug Administration. In light of this wealth of information and further potential, it is truly a time of renaissance for regulatory peptides. In this perspective, we review what we have learned from the pioneers in exemplified fields of gut peptides, such as cholecystokinin, enterochromaffin-like-cell peptides, and glucagon, from the trailblazing studies on the key stress hormone, corticotropin-releasing factor, as well as from more recently characterized relaxin-family peptides and receptors. The historical viewpoints are based on our understanding of these topics in light of the earliest phases of research and on subsequent studies and the evolution of knowledge, aiming to sharpen our vision of the current state-of-the-art and those studies that should be prioritized in the future.
Collapse
Affiliation(s)
- Duan Chen
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Alan G Watts
- Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California, USA
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Slater PG, Gutierrez-Maldonado SE, Gysling K, Lagos CF. Molecular Modeling of Structures and Interaction of Human Corticotropin-Releasing Factor (CRF) Binding Protein and CRF Type-2 Receptor. Front Endocrinol (Lausanne) 2018; 9:43. [PMID: 29515519 PMCID: PMC5826306 DOI: 10.3389/fendo.2018.00043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The corticotropin-releasing factor (CRF) system is a key mediator of the stress response and addictive behavior. The CRF system includes four peptides: The CRF system includes four peptides: CRF, urocortins I-III, CRF binding protein (CRF-BP) that binds CRF with high affinity, and two class B G-protein coupled receptors CRF1R and CRF2R. CRF-BP is a secreted protein without significant sequence homology to CRF receptors or to any other known class of protein. Recently, it has been described a potentiation role of CRF-BP over CRF signaling through CRF2R in addictive-related neuronal plasticity and behavior. In addition, it has been described that CRF-BP is capable to physically interact specifically with the α isoform of CRF2R and acts like an escort protein increasing the amount of the receptor in the plasma membrane. At present, there are no available structures for CRF-BP or for full-length CRFR. Knowing and studying the structure of these proteins could be beneficial in order to characterize the CRF-BP/CRF2αR interaction. In this work, we report the modeling of CRF-BP and of full-length CRF2αR and CRF2βR based on the recently solved crystal structures of the transmembrane domains of the human glucagon receptor and human CRF1R, in addition with the resolved N-terminal extracellular domain of CRFRs. These models were further studied using molecular dynamics simulations and protein-protein docking. The results predicted a higher possibility of interaction of CRF-BP with CRF2αR than CRF2βR and yielded the possible residues conforming the interacting interface. Thus, the present study provides a framework for further investigation of the CRF-BP/CRF2αR interaction.
Collapse
Affiliation(s)
- Paula G. Slater
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Katia Gysling, ; Carlos F. Lagos,
| | - Carlos F. Lagos
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Katia Gysling, ; Carlos F. Lagos,
| |
Collapse
|
5
|
Abstract
Stress is an integral part of life. Activation of the hypothalamus-pituitary-adrenal (HPA) axis in the adult can be viewed as mostly adaptive to restore homeostasis in the short term. When stress occurs during development, and specifically during periods of vulnerability in maturing systems, it can significantly reprogram function, leading to pathologies in the adult. Thus, it is critical to understand how the HPA axis is regulated during developmental periods and what are the factors contributing to shape its activity and reactivity to environmental stressors. The HPA axis is not a passive system. It can actively participate in critical physiological regulation, inducing parturition in the sheep for instance or being a center stage actor in the preparation of the fetus to aerobic life (lung maturation). It is also a major player in orchestrating mental function, metabolic, and cardiovascular function often reprogrammed by stressors even prior to conception through epigenetic modifications of gametes. In this review, we review the ontogeny of the HPA axis with an emphasis on two species that have been widely studied-sheep and rodents-because they each share many similar regulatory mechanism applicable to our understanding of the human HPA axis. The studies discussed in this review should ultimately inform us about windows of susceptibility in the developing brain and the crucial importance of early preconception, prenatal, and postnatal interventions designed to improve parental competence and offspring outcome. Only through informed studies will our public health system be able to curb the expansion of many stress-related or stress-induced pathologies and forge a better future for upcoming generations.
Collapse
Affiliation(s)
- Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Manuel R, Metz JR, Flik G, Vale WW, Huising MO. Corticotropin-releasing factor-binding protein (CRF-BP) inhibits CRF- and urotensin-I-mediated activation of CRF receptor-1 and -2 in common carp. Gen Comp Endocrinol 2014; 202:69-75. [PMID: 24769042 DOI: 10.1016/j.ygcen.2014.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/17/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Corticotropin-releasing factor-binding protein (CRF-BP) is considered a key determinant for CRF receptor (CRF-R) activation by CRF and several related peptides. Earlier studies have shown that the CRF system is highly conserved in gene structures throughout evolution, yet little is known about the evolutionary conservation of its biological functions. Therefore, we address the functional properties of CRF-BP and CRF-Rs in a teleost fish (common carp; Cyprinus carpio L.). We report the finding of two similar, yet distinct, genes for both CRF-R1 and CRF-R2 in this species. The four receptors are differentially responsive to CRF, urotensin-I (UI), sauvagine, and urocortin-2 (Ucn-2) and -3 (Ucn-3) as shown by luciferase assays. In vitro, carp CRF-BP inhibits CRF- and UI-mediated activation of the newfound CRF-Rs, but its potency to do so varies between receptor and peptide ligand. This is the first paper to establish the functionality and physiological interplay between CRF-BP, CRF-Rs and CRF-family peptides in a teleostean species.
Collapse
Affiliation(s)
- Remy Manuel
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Juriaan R Metz
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gert Flik
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Wylie W Vale
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark O Huising
- The Salk Institute for Biological Studies, Clayton Foundation Laboratories for Peptide Biology, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Corticotropin releasing factor: a key role in the neurobiology of addiction. Front Neuroendocrinol 2014; 35:234-44. [PMID: 24456850 PMCID: PMC4213066 DOI: 10.1016/j.yfrne.2014.01.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/20/2022]
Abstract
Drug addiction is a chronically relapsing disorder characterized by loss of control over intake and dysregulation of stress-related brain emotional systems. Since the discovery by Wylie Vale and his colleagues of corticotropin-releasing factor (CRF) and the structurally-related urocortins, CRF systems have emerged as mediators of the body's response to stress. Relatedly, CRF systems have a prominent role in driving addiction via actions in the central extended amygdala, producing anxiety-like behavior, reward deficits, excessive, compulsive-like drug self-administration and stress-induced reinstatement of drug seeking. CRF neuron activation in the medial prefrontal cortex may also contribute to the loss of control. Polymorphisms in CRF system molecules are associated with drug use phenotypes in humans, often in interaction with stress history. Drug discovery efforts have yielded brain-penetrant CRF1 antagonists with activity in preclinical models of addiction. The results support the hypothesis that brain CRF-CRF1 systems contribute to the etiology and maintenance of addiction.
Collapse
|
8
|
Byerly MS, Swanson RD, Wong GW, Blackshaw S. Estrogen-related receptor β deficiency alters body composition and response to restraint stress. BMC PHYSIOLOGY 2013; 13:10. [PMID: 24053666 PMCID: PMC3850731 DOI: 10.1186/1472-6793-13-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/17/2013] [Indexed: 12/29/2022]
Abstract
Background Estrogen-related receptors (ERRs) are orphan nuclear hormone receptors expressed in metabolically active tissues and modulate numerous homeostatic processes. ERRs do not bind the ligand estrogen, but they are able to bind the estrogen response element (ERE) embedded within the ERR response elements (ERREs) to regulate transcription of genes. Previous work has demonstrated that adult mice lacking Errβ have altered metabolism and meal patterns. To further understand the biological role of Errβ, we characterized the stress response of mice deficient for one or both alleles of Errβ. Results Sox2-Cre:Errβ mice lack Errβ expression in all tissues of the developing embryo. Sox2-Cre:Errβ+/lox heterozygotes were obese, had increased Npy and Agrp gene expression in the arcuate nucleus of the hypothalamus, and secreted more corticosterone in response to stress. In contrast, Sox2-Cre:Errβlox/lox homozygotes were lean and, despite increased Npy and Agrp gene expression, did not secrete more corticosterone in response to stress. Sox2-Cre:Errβ+/lox and Sox2-Cre:Errβlox/lox mice treated with the Errβ and Errγ agonist DY131 demonstrated increased corticotropin-releasing hormone (Crh) expression in the paraventricular nucleus of the hypothalamus, although corticosterone levels were not affected. Nes-Cre:Errβlox/lox mice, which selectively lack Errβ expression in the nervous system, also demonstrated elevated stress response during an acoustic startle response test and decreased expression of both Crh and corticotropin-releasing hormone receptor 2 (Crhr2). Conclusions Loss of Errβ affects body composition, neuropeptide levels, stress hormones, and centrally-modulated startle responses of mice. These results indicate that Errβ alters the function of the hypothalamic-pituitary-adrenocortical axis and indicates a role for Errβ in regulating stress response.
Collapse
Affiliation(s)
- Mardi S Byerly
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
9
|
Wan R, Zhu C, Guo R, Jin L, Liu Y, Li L, Zhang H, Li S. Dihydrotestosterone alters urocortin levels in human umbilical vein endothelial cells. J Endocrinol 2013; 218:321-30. [PMID: 23801677 DOI: 10.1530/joe-13-0138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Urocortin (UCN1) is a member of corticotrophin-releasing factor (CRF) family, which has been proven to participate in inflammation. Previous work showed that dihydrotestosterone (DHT) could promote the inflammatory process. Little is known about the effect of DHT on UCN1 expression. The aim of our study is to investigate the effects and underlying mechanisms of DHT on endothelial UCN1 expression in the absence and presence of induced inflammation. Therefore, we tested the alterations of endothelial UCN1 expression treated with DHT in the presence or absence of lipopolysaccharide (LPS). Our data showed that DHT alone decreased UCN1 levels, which were attenuated in the presence of the androgen receptor (AR) antagonist flutamide. Conversely, in the presence of LPS, DHT augmented the LPS-induced increase in UCN1 expression, which was, interestingly, not affected by flutamide. When cells were treated with DHT alone, AR was upregulated and translocated into the nuclei, which might repress UCN1 expression via a potential androgen-responsive element found in human CRF family promoter. In the presence of LPS, DHT did not influence AR expression and location while it increased toll-like receptor 4 expression and activation, which was not altered by flutamide. DHT enhanced LPS-induced p38MAPK, ERK1/2, and nuclear factor κB pathway activation, which may contribute to the elevated expression of UCN1. These data suggest that DHT differentially influences UCN1 levels under normal and inflammatory conditions in human umbilical vein endothelial cells, which involves AR-dependent and -independent mechanisms respectively.
Collapse
Affiliation(s)
- Rong Wan
- Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Department of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Bosch OG, Seifritz E, Wetter TC. Stress-related depression: neuroendocrine, genetic, and therapeutical aspects. World J Biol Psychiatry 2012; 13:556-68. [PMID: 22676799 DOI: 10.3109/15622975.2012.665477] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To summarize current concepts on neuroendocrine and genetic principles underlying stress-related depression and to discuss the challenges of personalized treatment in depression. METHODS Review of the literature pertaining to genetic and neuroendocrine basis of stress-related depression including aspects of treatment response with a focus on the hypothalamus-pituitary-adrenal (HPA) axis. RESULTS There is increasing evidence that genetic polymorphisms and dysregulation of the HPA axis are associated with the pathophysiology of stress-related depression. Individual stress hormone reactivity seems to be determined by a combination of genetic and environmental factors, contributing to both, resilience or vulnerability. CONCLUSIONS Although substantial progress has been made, current knowledge is still limited. Further basic and clinical research is needed to identify specific subgroups and to minimize heterogeneity of the depression phenotype. A better characterization is essential to detect genetic and functional predictors of antidepressant treatment response to follow the vision of personalized therapy in psychiatry.
Collapse
Affiliation(s)
- Oliver G Bosch
- Clinic of Affective Disorders and General Psychiatry, University Hospital of Psychiatry, Zurich, Switzerland
| | | | | |
Collapse
|
11
|
Gammie SC, Seasholtz AF, Stevenson SA. Deletion of corticotropin-releasing factor binding protein selectively impairs maternal, but not intermale aggression. Neuroscience 2008; 157:502-12. [PMID: 18929624 DOI: 10.1016/j.neuroscience.2008.09.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 11/25/2022]
Abstract
Corticotropin-releasing factor (CRF) binding protein (CRF-BP) is a secreted protein that acts to bind and limit the activity of the neuropeptides, CRF and urocortin (Ucn) 1. We previously selected for high maternal defense (protection of offspring) in mice and found CRF-BP to be elevated in the CNS of selected mice. We also previously determined that both CRF and Ucn 1 are potent inhibitors of offspring protection when administered centrally. Thus, elevated CRF-BP could promote defense by limiting endogenous actions of CRF or Ucn 1. To test this hypothesis, we crossed the deletion for CRF-BP into the mice selected for high maternal defense and evaluated offspring protection and other maternal behaviors. CRF-BP knockout (KO) mice exhibited significant deficits in maternal aggression relative to wild-type (WT) mice in three different measures. Other maternal features were almost identical between groups, including dam and pup weight, litter size, nursing time, and pup retrieval. Both groups performed similarly in a forced swim stress test and aggression in both groups was reduced following the swim test. Virgin KO female mice exhibited higher levels of anxiety-like behavior in terms of decreased time in the light portion of the light/dark box test. For males, no differences in light/dark box or swim test were found. However, increased anxiety-like behavior in male KO mice was identified in terms of contact and approach to a novel object both with and without previous exposure to the swim test. No differences in isolation induced resident intruder male aggression were found between groups. Together, these results indicate that loss of CRF-BP selectively impairs maternal, but not intermale aggression and that loss of the gene induces anxiety-like behavior in males and females, but there are sex differences in terms of how that anxiety is revealed.
Collapse
Affiliation(s)
- S C Gammie
- Department of Zoology, University of Wisconsin, 1117 West Johnson Street, Madison, WI 53706, USA.
| | | | | |
Collapse
|
12
|
Alderman SL, Raine JC, Bernier NJ. Distribution and regional stressor-induced regulation of corticotrophin-releasing factor binding protein in rainbow trout (Oncorhynchus mykiss). J Neuroendocrinol 2008; 20:347-58. [PMID: 18208552 DOI: 10.1111/j.1365-2826.2008.01655.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The corticotrophin-releasing factor (CRF) system plays a key role in the co-ordination of the physiological response to stress in vertebrates. Although the binding protein (BP) for CRF-related peptides, CRF-BP, is an important player in the many functions of the CRF system, the distribution of CRF-BP and the impact of stressors on its expression in fish are poorly understood. In the present study, we describe the distribution of CRF-BP in the brain and peripheral tissues of rainbow trout (Oncorhynchus mykiss) using a combination of real-time reverse transcriptase-polymerase chain reaction, in situ hybridisation and immunohistochemistry. Our results indicate a widespread and highly localised distribution of CRF-BP in the central nervous system, but do not support a significant peripheral production of the protein. Major expression sites in the brain include the area ventralis telencephali, nucleus preopticus, anterior and lateral tuberal nuclei, and the posterior region of the pituitary pars distalis. We further characterise changes in CRF-BP gene expression in three discrete brain regions after exposure to 8 h and 24 h of social stress or hypoxia. The plasma cortisol concentration in subordinate fish was much higher than in dominant fish and controls, and was indicative of a relatively severe stressor. By contrast, the increase in plasma cortisol concentration in fish exposed to hypoxia was characteristic of the response to a mild stressor. Changes in CRF-BP gene expression were only observed after 24 h of either stressor, and were region-specific. CRF-BP mRNA in the telencephalon increased in both subordinate fish and fish exposed to hypoxia, but CRF-BP in the preoptic area only increased after 24 h of hypoxia exposure. In the hypothalamus, CRF-BP mRNA levels decreased in dominant fish relative to controls after 24 h. Taken together, our results support a diverse role for CRF-BP in the central actions of the fish CRF system, but a negligible role in the peripheral functions of circulating CRF-related peptides. Furthermore, the differential changes in forebrain CRF-BP mRNA appear to occur independently of the hypothalamic-pituitary-inter-renal axis.
Collapse
Affiliation(s)
- S L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | | | | |
Collapse
|
13
|
Grigoriadis DE. The corticotropin-releasing factor receptor: a novel target for the treatment of depression and anxiety-related disorders. Expert Opin Ther Targets 2007; 9:651-84. [PMID: 16083336 DOI: 10.1517/14728222.9.4.651] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The treatment of mood disorders has been the subject of intense study for more than half a century and has resulted in the discovery and availability of a number of compounds that have seen tremendous success in the management of major depression and anxiety-related disorders. In spite of this success, these drugs have not provided a complete therapeutic solution for all patients and this has revitalised the need for a greater understanding of the underlying molecular mechanisms and targets involved in these disorders. Elucidation of these novel targets will enable the development of a better class of compounds which could benefit a greater majority of the patient population and be devoid of the current side effect liabilities. Towards that end, this review examines, in detail, the prospect of one such target, the corticotropin-releasing factor system, as having an enhanced therapeutic profile with the potential of a broader range of efficacy with reduced side effect liabilities.
Collapse
Affiliation(s)
- Dimitri E Grigoriadis
- Department of Pharmacology and Lead Discovery, Neurocrine Biosciences, Inc., 12790 El Camino Real, San Diego, CA 92130, USA.
| |
Collapse
|
14
|
Alderman SL, Bernier NJ. Localization of corticotropin-releasing factor, urotensin I, and CRF-binding protein gene expression in the brain of the zebrafish,Danio rerio. J Comp Neurol 2007; 502:783-93. [PMID: 17436299 DOI: 10.1002/cne.21332] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our current understanding of the corticotropin-releasing factor (CRF) system distribution in the teleost brain is restricted by limited immunohistochemical studies and a lack of complete transcriptional distribution maps. The present study used in situ hybridization to localize and compare CRF, urotensin I (UI), and CRF-binding protein (CRF-BP) expression in the brain of adult zebrafish (Danio rerio). All three peptides were localized in the preoptic area, periventricular hypothalamic and tectal regions, and dorsal part of the trigeminal motor nucleus. CRF and UI were both expressed in several nuclei of the dorsal telencephalon, whereas CRF and CRF-BP were both expressed in the ventral nucleus of the ventral telencephalon. Sole expression of CRF and CRF-BP was apparent in the olfactory bulbs and superior raphe nucleus, respectively, whereas only UI was observed in the corpus mamillare, nucleus of the medial longitudinal fascicle, dorsal tegmental nucleus, nucleus lateralis valvulae, and nucleus interpeduncularis. A major finding of this study was the general regional overlapping of CRF-BP with its ligands and a tendency to be expressed in tandem with CRF rather than UI. Overall, the mRNA expression patterns outlined in this study support the stress-related neuroendocrine, autonomic, and behavioral functions generally ascribed to the vertebrate CRF system and suggest some unique functional roles for CRF and UI in the teleost brain.
Collapse
Affiliation(s)
- Sarah L Alderman
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
15
|
Herringa RJ, Roseboom PH, Kalin NH. Decreased amygdala CRF-binding protein mRNA in post-mortem tissue from male but not female bipolar and schizophrenic subjects. Neuropsychopharmacology 2006; 31:1822-31. [PMID: 16482088 DOI: 10.1038/sj.npp.1301038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stressful life events are commonly associated with the onset and maintenance of psychopathology and much research has focused on the role of the corticotropin-releasing factor (CRF) system in mediating psychopathology. Since CRF serves to integrate the stress response, it is possible that the CRF system plays a role as a neurochemical linkage between stress and psychopathology. CRF-binding protein (CRF-BP) is thought to modulate CRF activity by decreasing its actions. Therefore, in some psychopathological states, alterations in CRF-BP function may contribute to dysregulation of the CRF system. Since the amygdala CRF system mediates stress- and anxiety-related behaviors and alterations in amygdala function are associated with psychopathology, we examined amygdala CRF-BP gene expression in post-mortem brains from subjects with major depression, bipolar disorder, and schizophrenia as well as in controls. In addition to characterizing the anatomic distribution of CRF-BP mRNA in the human amygdala and medial temporal lobe region, we found a significant decrease in CRF-BP mRNA levels in the basolateral amygdala of male bipolar and male schizophrenic subjects and the lateral amygdala of male bipolar subjects. These results raise the possibility that men with decreased amygdala CRF-BP may be more vulnerable to the effects of stress exposure on the etiology or maintenance of bipolar disorder or schizophrenia.
Collapse
Affiliation(s)
- Ryan J Herringa
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | | | | |
Collapse
|
16
|
Westphal NJ, Seasholtz AF. Gonadotropin-releasing hormone (GnRH) positively regulates corticotropin-releasing hormone-binding protein expression via multiple intracellular signaling pathways and a multipartite GnRH response element in alphaT3-1 cells. Mol Endocrinol 2005; 19:2780-97. [PMID: 15976007 DOI: 10.1210/me.2004-0519] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
CRH-binding protein (CRH-BP) binds CRH with high affinity and inhibits CRH-mediated ACTH release from anterior pituitary corticotrope-like cells in vitro. In female mouse pituitary, CRH-BP is localized not only in corticotropes, but is also expressed in gonadotropes and lactotropes. To investigate the functional significance of gonadotrope CRH-BP, we examined the molecular mechanisms underlying GnRH-regulated CRH-BP expression in alphaT3-1 gonadotrope-like cells. CRH-BP is endogenously expressed in alphaT3-1 cells, and quantitative real-time RT-PCR and ribonuclease protection assays demonstrate that GnRH induces a 3.7-fold increase in CRH-BP mRNA levels. GnRH also induces intracellular CRH-BP (2.0-fold) and secreted CRH-BP (5.3-fold) levels, as measured by [125I]CRH:CRH-BP chemical cross-linking. Transient transfection assays using CRH-BP promoter-luciferase constructs indicate that GnRH regulation involves protein kinase C-, ERK- and calcium-dependent signaling pathways and is mediated via a multipartite GnRH response element that includes activator protein 1 and cAMP response element (CRE) sites. The CRE site significantly contributes to GnRH responsiveness, independent of protein kinase A, representing a unique form of multipartite GnRH regulation in alphaT3-1 cells. Furthermore, EMSAs indicate that alphaT3-1 nuclear proteins specifically bind at activator protein 1 and CRE sites. These data demonstrate novel regulation of pituitary CRH-BP, highlighting the importance of the pituitary gonadotrope as a potential interface between the stress and reproductive axes.
Collapse
Affiliation(s)
- Nicole J Westphal
- University of Michigan, Neuroscience Program, Molecular and Behavioral Neuroscience Institute, Ann Arbor, Michigan 48108, USA
| | | |
Collapse
|
17
|
Van Den Eede F, Van Broeckhoven C, Claes SJ. Corticotropin-releasing factor-binding protein, stress and major depression. Ageing Res Rev 2005; 4:213-39. [PMID: 15996902 DOI: 10.1016/j.arr.2005.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 02/22/2005] [Indexed: 11/26/2022]
Abstract
Major depressive disorder (MDD) is characterized by a dysregulation of the stress response system. A corticotropin-releasing factor (CRF) hyperdrive is a consistent and well-documented finding. CRF-binding protein (CRF-BP) may play a role in the pathogenesis of MDD. CRF-BP reduces the availability of CRF by binding free CRF and inhibits CRF function at the pituitary level. Moreover, CRF-BP expression increases in the pituitary and amygdala in response to acute stress, providing an additional feedback mechanism to maintain the homeostasis of the stress response. There are different regulatory elements of the expression of CRF-BP gene that are implicated in the pathophysiology of MDD, including CRF, glucocorticoids, cytokines and estrogens. A specific haplotype within the CRF-BP gene has been associated with MDD, but confirmation of this finding is necessary. Currently, the possible role of CRF-BP in the pathophysiology of conditions that have been associated with a hypofunction of the CRF system and immune dysfunctions is unclear. Implications of the function of CRF-BP for therapeutic strategies in MDD are being discussed. An important advantage of ligands that target CRF-BP is that concentrations of free CRF can be altered without acting directly on the transmission of CRF through its receptor.
Collapse
Affiliation(s)
- Filip Van Den Eede
- Department of Molecular Genetics VIB8, Flanders Interuniversity Institute for Biotechnology, University of Antwerp (UA), Universiteitsplein 1/Building T, B-2610 Antwerpen, Belgium
| | | | | |
Collapse
|
18
|
Heinrichs SC, Koob GF. Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 2004; 311:427-40. [PMID: 15297468 DOI: 10.1124/jpet.103.052092] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organisms exposed to challenging stimuli that alter the status quo inside or outside of the body are required for survival purposes to generate appropriate coping responses that counteract departures from homeostasis. Identification of an executive control mechanism within the brain capable of coordinating the multitude of endocrine, physiological, and functional coping responses has high utility for understanding the response of the organism to stressor exposure under normal or pathological conditions. The corticotropin-releasing factor (CRF)/urocortin family of neuropeptides and receptors constitutes an affective regulatory system due to the integral role it plays in controlling neural substrates of arousal, emotionality, and aversive processes. In particular, available evidence from pharmacological intervention in multiple species and phenotyping of mutant mice shows that CRF/urocortin systems mediate motor and psychic activation, stimulus avoidance, and threat recognition responses to aversive stimulus exposure. It is suggested that affective regulation is exerted by CRF/urocortin systems within the brain based upon the sensitivity of local brain sites to CRF/urocortin ligand administration and the appearance of hypothalamo-pituitary-adrenocortical activation following stressor exposure. Moreover, these same stress neuropeptides may constitute a mechanism for learning to avoid noxious stimuli by facilitating the formation of so-called emotional memories. A conceptual framework is provided for extrapolation of animal model findings to humans and for viewing CRF/urocortin activation as a continuum measure linking normal and pathological states.
Collapse
Affiliation(s)
- Stephen C Heinrichs
- The Scripps Research Institute, Department of Neuropharmacology, CVN-7, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
19
|
Abstract
CRH is the key physiological mediator of the endocrine, autonomic, and behavioral responses to stress. The recent characterization of urocortin, a new mammalian CRH-like ligand, adds to the complexity of the CRH system. Both CRH and urocortin mediate their endocrine and/or synaptic effects via two classes of CRH receptors. Similarly, both CRH and urocortin bind to the CRH-binding protein (CRH-BP). This secreted binding protein is smaller than the CRH receptors, but binds CRH and urocortin with an affinity equal to or greater than that of the receptors, and blocks CRH-mediated ACTH release in vitro. Several regions of CRH-BP expression colocalize with sites of CRH synthesis or release, suggesting that this binding protein may have a profound impact on the biological activity of CRH (or urocortin). While in vitro and in vivo studies have characterized the biochemical properties and regulation of the CRH-BP, animal models of altered CRH-BP expression can provide additional information on the in vivo role of this important modulatory protein. This review focuses on three mouse models of CRH-BP overexpression or deficiency. These animal models show numerous physiological changes in the HPA axis and in energy balance, with additional alterations in anxiogenic behavior. These changes are consistent with the hypothesis that CRH-BP plays an important in vivo modulatory role by regulating levels of "free" CRH and other CRH-like peptides in the pituitary and central nervous system.
Collapse
Affiliation(s)
- A F Seasholtz
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
20
|
Valverde RA, Seasholtz AF, Cortright DN, Denver RJ. Biochemical characterization and expression analysis of the Xenopus laevis corticotropin-releasing hormone binding protein. Mol Cell Endocrinol 2001; 173:29-40. [PMID: 11223175 DOI: 10.1016/s0303-7207(00)00437-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Corticotropin-releasing hormone (CRH) plays a key role in the regulation of responses to stress. The presence of a high affinity binding protein for CRH (CRH-BP) has been reported in mammals. We have characterized the biochemical properties and expression of CRH-BP in the South African clawed frog, Xenopus laevis. Apparent inhibition constants (K(i[app])) for different ligands were determined by competitive binding assay. Xenopus CRH-BP (xCRH-BP) exhibited a high affinity for xCRH (K(i[app])=1.08 nM) and sauvagine (1.36 nM). Similar to rodent and human CRH-BPs, the frog protein binds urotensin I and urocortin with high affinity, and ovine CRH with low affinity. RT-PCR analysis showed that xCRH-BP is expressed in brain, pituitary, liver, tail, and intestine. Brain xCRH-BP mRNA is expressed at a relatively constant level throughout metamorphosis and increases slightly in the metamorphic frog. By contrast, the gene is strongly upregulated in the tail at metamorphic climax. Thus, regulation of xCRH-BP gene expression is tissue specific. Because xCRH-BP binds CRH-like peptides with high affinity the protein may regulated, the bioavailability of CRH in amphibia as it does in mammals.
Collapse
Affiliation(s)
- R A Valverde
- Department of Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | |
Collapse
|
21
|
CHAPTER X Multiple brain corticotropin-releasing factor receptors and binding protein. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Lovejoy DA, Balment RJ. Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides in vertebrates. Gen Comp Endocrinol 1999; 115:1-22. [PMID: 10375459 DOI: 10.1006/gcen.1999.7298] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Corticotropin-releasing factor (CRF), urotensin-I, urocortin and sauvagine belong to a family of related neuropeptides found throughout chordate taxa and likely stem from an ancestral peptide precursor early in metazoan ancestry. In vertebrates, current evidence suggests that CRF on one hand, and urotensin-I, urocortin and sauvagine, on the other, form paralogous lineages. Urocortin and sauvagine appear to represent tetrapod orthologues of fish urotensin-I. Sauvagine's unique structure may reflect the distinctly derived evolutionary history of the anura and the amphibia in general. The physiological actions of these peptides are mediated by at least two receptor subtypes and a soluble binding protein. Although the earliest functions of these peptides may have been associated with osmoregulation and diuresis, a constellation of physiological effects associated with stress and anxiety, vasoregulation, thermoregulation, growth and metabolism, metamorphosis and reproduction have been identified in various vertebrate species. The elaboration of neural circuitry for each of the two paralogous neuropeptide systems appears to have followed distinct pathways in the actinopterygian and sarcopterygian lineages of vertebrates. A comparision of the functional differences between these two lineages predicts additional functions of these peptides.
Collapse
Affiliation(s)
- D A Lovejoy
- School of Biological Sciences, University of Manchester, Manchester, M13 9PT, United Kingdom
| | | |
Collapse
|
23
|
Trainer PJ, Woods RJ, Korbonits M, Popovic V, Stewart PM, Lowry PJ, Grossman AB. The pathophysiology of circulating corticotropin-releasing hormone-binding protein levels in the human. J Clin Endocrinol Metab 1998; 83:1611-4. [PMID: 9589664 DOI: 10.1210/jcem.83.5.4751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To establish the factors that modulate circulating CRH-binding protein (CRH-BP) levels, we measured plasma CRH-BP in patients with a variety of endocrine and systemic disorders. CRH-BP was measured by RIA. Young women have higher plasma levels of CRH-BP than young men [females (n = 18), mean +/- SEM, 145 +/- 7; males (n = 20), 99 +/- 6 ng/mL; P < 0.0001], but levels do not fall with the menopause or vary during the menstrual cycle and are unaffected by estrogen replacement therapy. Levels were lower in patients with liver disease than in healthy men (26 +/- 3 vs. 99 +/- 6; P < 0.0001) and were elevated in chronic renal failure compared to those in healthy women (211 +/- 11.2 vs. 145 +/- 7; P < 0.01). Levels were unaffected by fasting in men or women (male fasted, 97 +/- 11; male fed, 97 +/- 8; female fasted, 136 +/- 9; female fed, 152 +/- 10). Dexamethasone treatment lowered CRH-BP in all subjects (129 +/- 8 vs. 111 +/- 9; P < 0.003). Similarly, CRH-BP levels were lower in patients with Cushing's syndrome (all female) than in healthy female controls (median, 82; range, 53-106; vs. median, 142; range, 101-190; P < 0.0001). In Cushing's patients, an i.v. bolus of 100 micrograms human CRH further lowered plasma CRH-BP at 15 min (81 +/- 5 vs. 50 +/- 4; P < 0.0003). Plasma levels of CRH-BP are higher in women than men, but this is unrelated to circulating estrogen levels. The low levels in liver disease and the high levels in renal failure support its hepatic origin and the kidneys as the route of clearance from plasma. The ability of glucocorticoids and exogenous CRH to lower plasma CRH-BP levels and of CRH-BP to modulate the bioactivity of circulating CRH suggest that the protein may be an important regulator of circulating CRH or related ligands.
Collapse
Affiliation(s)
- P J Trainer
- Department of Endocrinology, St. Bartholomew's Hospital, West Smithfield, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Previously the function of hormone binding proteins has been viewed entirely as one of either sequestering ligand activity or of delivering ligand to target tissues. However, some binding proteins have the ability when complexed with ligand to interact directly with target tissues and can undergo considerable post-translational and post-secretional modifications that serve to modify their action. We propose that for the corticotrophin-releasing factor-binding protein (CRF-BP), this adds a further level at which hormonal action may be regulated. This contrasts with previous concepts of a passive role and shows them as important regulators of hormonal action in their own right.
Collapse
Affiliation(s)
- C F Kemp
- School of Animal & Microbial Sciences, University of Reading, England, United Kingdom
| | | | | |
Collapse
|
25
|
Woods RJ, Kemp CF, David J, Lowry PJ. Heterogeneity of the human corticotropin-releasing factor-binding protein. J Clin Endocrinol Metab 1997; 82:1566-71. [PMID: 9141551 DOI: 10.1210/jcem.82.5.3952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human corticotropin-releasing factor (hCRF), secreted by the placenta, principally in the third trimester, is specifically bound in the peripheral circulation to a 37-kDa binding protein (CRF-BP). This complex is cleared from the circulation. We postulate that the protein may be returned to the blood in a form that is immunologically altered and not well recognized by the reported RIAs. We report that a stable isoform can result from temporary denaturation of recombinant CRF-BP by 8 mol/L urea. This isoform, urea-treated binding protein, which can bind CRF, has been found to bind to an antibody raised against a synthetic peptide comprising the first 24 amino acid residues of CRF-BP, but not to a second similar N-terminal antibody, although it was closely matched in titer. Urea-treated binding protein also cross-reacts poorly in the RIA with CRF-BP. It is proposed that as a result of in vivo post-ligand binding events, isoforms may be susceptible to cleavage. After affinity purification, which involves denaturation, recombinant CRF-BP was often found to be cleaved after storage in the presence of protease inhibitors. Here we present evidence for a C-terminally truncated form of the native binding protein in the plasma of subjects suffering from rheumatoid arthritis, which may parallel the in vitro truncation.
Collapse
Affiliation(s)
- R J Woods
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, United Kingdom
| | | | | | | |
Collapse
|
26
|
Chapter 5. Corticotropin-Releasing Hormone (CRH) Receptors and the Discovery of Selective Non-Peptide CRH1 Antagonists. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0065-7743(08)61463-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
27
|
Abstract
Although the lack of ACTH releasing activity of the high peripheral plasma levels of corticotropin releasing factor (CRF) of human placental origin can now be accounted for by the action of a specific sequestering plasma binding protein (pBP), there are many regions of the brain where the BP is found with little or no overlap with CRF. The existence of a mechanism promoting the rapid disappearance of pBP following bolus injection of exogenous CRF into normal individuals, which is triggered by the formation of a dimer complex (BP2/CRF2), and the elevation of pBP levels found in inflammatory disease, coupled with the lack of unequivocal evidence for endogenous CRF in many of these situations, suggests a role for pBP interaction with ligands other than CRF. We have searched for novel BP ligands in the brain and periphery and have found evidence for them in extracts of sheep brain and in synovial fluid collected from the joints of arthritic patients. These novel BP ligands could, thus, be the peptides responsible for many of the roles currently assigned to brain, peripheral, or immune CRF.
Collapse
Affiliation(s)
- P J Lowry
- School of Animal and Microbial Sciences, University of Reading, Whiteknights, Berkshire, UK.
| | | | | |
Collapse
|
28
|
Chalmers DT, Lovenberg TW, Grigoriadis DE, Behan DP, De Souza EB. Corticotrophin-releasing factor receptors: from molecular biology to drug design. Trends Pharmacol Sci 1996; 17:166-72. [PMID: 8984745 DOI: 10.1016/0165-6147(96)81594-x] [Citation(s) in RCA: 305] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Corticotrophin-releasing factor (CRF) acts within both the brain and the periphery to coordinate the overall response of the body to stress. The involvement of the CRF systems in a variety of both CNS and peripheral disease states has stimulated great interest in this peptide as a potential site of therapeutic intervention. The recent cloning of multiple CRF receptor subtypes has precipitated a new era in CRF research that has allowed precise molecular, pharmacological and anatomical examination of mammalian CRF receptors. In this article, Derek Chalmers and colleagues highlight the major differences between the two classes of CRF receptors, CRF1 and CRF2, and a functionally related CRF-binding protein, and discuss the relevance of these sites to the ongoing development of CRF-based therapeutics.
Collapse
Affiliation(s)
- D T Chalmers
- Neurocrine Biosciences, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
29
|
Foulon T, Cadel S, Chesneau V, Draoui M, Prat A, Cohen P. Two novel metallopeptidases with a specificity for basic residues: functional properties, structure and cellular distribution. Ann N Y Acad Sci 1996; 780:106-20. [PMID: 8602724 DOI: 10.1111/j.1749-6632.1996.tb15115.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- T Foulon
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, Unité de Recherche Associée au Centre National de la Recherche Scientifique 1682, Universite Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Behan DP, De Souza EB, Potter E, Sawchenko P, Lowry PJ, Vale WW. Modulatory actions of corticotropin-releasing factor-binding protein. Ann N Y Acad Sci 1996; 780:81-95. [PMID: 8602741 DOI: 10.1111/j.1749-6632.1996.tb15113.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- D P Behan
- Neurocrine Biosciences Inc., San Diego, California 92121, USA
| | | | | | | | | | | |
Collapse
|
31
|
Behan DP, Cepoi D, Fischer WH, Park M, Sutton S, Lowry PJ, Vale WW. Characterization of a sheep brain corticotropin releasing factor binding protein. Brain Res 1996; 709:265-74. [PMID: 8833763 DOI: 10.1016/0006-8993(95)01317-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report here the identification, purification and cDNA cloning of a corticotropin releasing factor (CRF) binding protein(s) (CRF-BP) from sheep brain. Native sheep and rat brain CRF-BP and recombinant rat CRF-BP were shown to be N-glycosylated. Two membrane associated forms of brain CRF-BPs of 33 and 35 kDa were purified from sheep brain homogenates after solubilization in the presence of detergent. N-Terminal sequence analysis revealed that the 35 kDa protein is proteolytically cleaved near the N-terminus giving rise to an 18 amino acid peptide and a 33 kDa CRF-BP. Both the purified 33 and 35 kDa ovine CRF-BPs could be specifically cross linked to ovine [125I]CRF and human [125I]CRF. In contrast, recombinant rat CRF-BP can only be cross-linked to human [125I]CRF. A 1.7 kb cDNA clone (Basil 7) encoding an open reading frame for a 324 amino acid CRF-BP precursor was cloned from a sheep brain lambda gtlO cDNA library and was shown to have 85% and 87% amino acid homology to the rat and human proteins, respectively. Competitive binding analysis of the recombinant sheep CRF-BP (Basil 7) expressed in CHO cells revealed that it binds human and ovine CRF with high affinity. However, the recombinant sheep CRF-BP (Basil 7) had approximately 50-fold higher affinity for human CRF than for the ovine peptide. These data present the first biochemical proof that CRF-BP is in the brain and provides evidence for the existence of different forms of CRF-BP which have evolved across species to regulate CRF.
Collapse
Affiliation(s)
- D P Behan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, San Diego, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Lovejoy DA. Peptide hormone evolution: functional heterogeneity within GnRH and CRF families. Biochem Cell Biol 1996; 74:1-7. [PMID: 9035682 DOI: 10.1139/o96-001] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Recent investigations indicate that the gonadotropin-releasing hormone (GnRH) and corticotropin-releasing factor (CRF) family of peptides are each composed of at least two functionally discrete paralogous lineages. [His5Trp7Tyr8]GnRH (chicken GnRH-II) is associated with brain neuromodulatory and possibly peripheral endocrine activity, whereas [Arg8]GnRH (mammal GnRH) and its orthologues play major roles as hypothalamic releasing factors. Similarly, CRF appears to be the primary vertebrate ACTH-releasing peptide, whereas the paralogous lineage of urotensin-I-sauvagine has been associated with a variety of diverse peripheral activities. In phylogenetically older species, representatives of both GnRH and CRF family lineages have been characterized. Structural and functional conservation of these peptide systems in vertebrates suggest that additional GnRH-like and CRF-like peptides will be found in the mammal brain.
Collapse
Affiliation(s)
- D A Lovejoy
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute, La Jolla, CA 92037, USA
| |
Collapse
|
33
|
Behan DP, Maciejewski D, Chalmers D, De Souza EB. Corticotropin releasing factor binding protein (CRF-BP) is expressed in neuronal and astrocytic cells. Brain Res 1995; 698:259-64. [PMID: 8581494 DOI: 10.1016/0006-8993(95)01014-m] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Corticotropin releasing factor (CRF) binding protein (CRF-BP) was measured in media and cell lysates of primary rat astrocytes, microglia and neurons with the use of a ligand immunoradiometric assay (LIRMA). A low basal level of CRF-BP was detected in the media and cell lysates from primary neuronal and astrocyte cells after 48 h in culture. No basal expression of CRF-BP was detected in cell lysates or media from primary microglial cultures. The CRF-BP expressed in cultured astrocytes and neurons had the same pharmacological characteristics as the human recombinant molecule. After forskolin, IBMX or forskolin/IBMX treatment, a robust increase in secreted CRF-BP levels in the media from astrocytes and neurons, but not microglia, was observed. An increase in CRF-BP-like immunoreactivity in cell lysates was also observed after IBMX/forskolin treatment. In situ hybridization analysis revealed that CRF-BP mRNA was increased in primary cultured astrocytes after IBMX/forskolin stimulation suggesting that regulation was at the level of gene transcription. 'Axon sparing' lesions produced with 0.12 M quinolinic acid in PBS injected intracerebrally (unilaterally into dorsal hippocampus) resulted in loss of CRF-BP expression in neurons. These data provide evidence for the differential localization and regulation of CRF-BP in different cell types in brain and suggest that CRF-BP expression may be locally increased in disease states associated with astrocytosis and gliosis.
Collapse
Affiliation(s)
- D P Behan
- Neurocrine Biosciences Inc., San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
34
|
Cortright DN, Nicoletti A, Seasholtz AF. Molecular and biochemical characterization of the mouse brain corticotropin-releasing hormone-binding protein. Mol Cell Endocrinol 1995; 111:147-57. [PMID: 7556876 DOI: 10.1016/0303-7207(95)03558-o] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A 37 kDa corticotropin-releasing hormone-binding protein (CRH-BP), distinct from the CRH receptor, is expressed in rat anterior pituitary corticotrophs and many regions of the brain, suggesting that CRH-BP may modulate the biological activity of CRH. In these studies a mouse brain CRH-BP (mCRH-BP) cDNA has been isolated and characterized. The 1666 nucleotide mCRH-BP cDNA is expressed in brain and pituitary and encodes a 322 amino acid protein that is highly homologous to human and rat CRH-BPs. Recombinant mCRH-BP, expressed in cultured mammalian cells, binds human CRH (Kd(app) = 0.56 nM and Ki(app) = 0.37 nM) and the alpha-helical (9-41) CRH antagonist (Ki(app) = 0.28 nM) with high affinity, but exhibits much weaker affinity for ovine CRH (Ki(app) = 206 nM). Recombinant mCRH-BP also blocks CRH-induced adrenocorticotropin release from AtT-20 cells. Additional biochemical characterization of the binding activity of mCRH-BP indicates that CRH-BP and CRH receptor utilize different molecular interactions to bind CRH.
Collapse
Affiliation(s)
- D N Cortright
- Department of Biological Chemistry, University of Michigan, Ann Arbor, USA
| | | | | |
Collapse
|
35
|
|