1
|
Lin ZJ, Li B, Lin PX, Song W, Yan LM, Meng H, He N. Clinical application of trio-based whole-exome sequencing in idiopathic generalized epilepsy. Seizure 2024; 116:24-29. [PMID: 36842888 DOI: 10.1016/j.seizure.2023.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
PURPOSE Idiopathic generalized epilepsies (IGEs) are a common group of genetic generalized epilepsies with high genetic heterogeneity and complex inheritance. However, the genetic basis is still largely unknown. This study aimed to explore the genetic etiologies in IGEs. METHODS Trio-based whole-exome sequencing was performed in 60 cases with IGEs. The pathogenicity of candidate genetic variants was evaluated by the criteria of the American College of Medical Genetics and Genomics (ACMG), and the clinical causality was assessed by concordance between the observed phenotype and the reported phenotype. RESULTS Seven candidate variants were detected in seven unrelated cases with IGE (11.7%, 7/60). According to ACMG, a de novo SLC2A1 (c.376C>T/p.Arg126Cys) variant identified in childhood absence epilepsy was evaluated as pathogenic with clinical concordance. Six variants were assessed to be uncertain significance by ACMG, but then considered causative after evaluation of clinical concordance. These variants included CLCN4 hemizygous variant (c.2044G>A/p.Glu682Lys) and IQSEC2 heterozygous variant (c.4315C>T/p.Pro1439Ser) in juvenile absence epilepsy, EFHC1 variant (c.1504C>T/p.Arg502Trp) and CACNA1H (c.589G>T/p.Ala197Ser) both with incomplete penetrance in juvenile myoclonic epilepsy, and GRIN2A variant (c.2011C>G/p.Gln671Glu) and GABRB1 variant (c.1075G>A/p.Val359Ile) both co-segregated with juvenile myoclonic epilepsy. Among them, GABRB1 was for the first time identified as potential novel causative gene for IGE. SIGNIFICANCE Considering the genetic heterogeneity and complex inheritance of IGEs, a comprehensive evaluation combined the ACMG scoring and assessment of clinical concordance is suggested for the pathogenicity analysis of variants identified in clinical screening. GABRB1 is probably a novel causative gene for IGE, which warrants further studies.
Collapse
Affiliation(s)
- Zhi-Jian Lin
- Department of Neurology, the Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China; Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bin Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng-Xing Lin
- Department of Neurology, the Affiliated Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Wang Song
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Li-Min Yan
- Department of Neurology, The Second Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Heng Meng
- Department of Neurology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Na He
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Hou SJ, Tsai SJ, Kuo PH, Lin WY, Liu YL, Yang AC, Lin E, Lan TH. An association study in the Taiwan Biobank elicits the GABAA receptor genes GABRB3, GABRA5, and GABRG3 as candidate loci for sleep duration in the Taiwanese population. BMC Med Genomics 2021; 14:223. [PMID: 34530807 PMCID: PMC8447520 DOI: 10.1186/s12920-021-01083-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gamma-aminobutyric acid type A (GABAA) receptors mainly mediate the effects of gamma-aminobutyric acid, which is the primary inhibitory neurotransmitter in the central nervous system. Abundant evidence suggests that GABAA receptors play a key role in sleep-regulating processes. No genetic association study has explored the relationships between GABAA receptor genes and sleep duration, sleep quality, and sleep timing in humans. METHODS We determined the association between single-nucleotide polymorphisms (SNPs) in the GABAA receptor genes GABRA1, GABRA2, GABRB3, GABRA5, and GABRG3 and sleep duration, sleep quality, and sleep timing in the Taiwan Biobank with a sample of 10,127 Taiwanese subjects. There were 10,142 subjects in the original study cohort. We excluded 15 subjects with a medication history of sedative-hypnotics. RESULTS Our data revealed an association of the GABRB3-GABRA5-GABRG3 gene cluster with sleep duration, which has not been previously identified: rs79333046 (beta = - 0.07; P = 1.21 × 10-3) in GABRB3, rs189790076 (beta = 0.92; P = 1.04 × 10-3) in GABRA5, and rs147619342 (beta = - 0.72; P = 3.97 × 10-3) in GABRG3. The association between rs189790076 in GABRA5 and sleep duration remained significant after Bonferroni correction. A variant (rs12438141) in GABRB3 was also found to act as a potential expression quantitative trait locus. Additionally, we discovered interactions between variants in the GABRB3-GABRA5-GABRG3 gene cluster and lifestyle factors, such as tea and coffee consumption, smoking, and physical activity, that influenced sleep duration, although some interactions became nonsignificant after Bonferroni correction. We also found interactions among GABRB3, GABRA5, and GABRG3 that affected sleep duration. Furthermore, we identified an association of rs7165524 (beta = - 0.06; P = 2.20 × 10-3) in GABRA5 with sleep quality and an association of rs79465949 (beta = - 0.12; P = 3.95 × 10-3) in GABRB3 with sleep timing, although these associations became nonsignificant after Bonferroni correction. However, we detected no evidence of an association of individual SNPs in GABRA1 and GABRA2. CONCLUSIONS Our results indicate that rs189790076 in GABRA5 and gene-gene interactions among GABRB3, GABRA5, and GABRG3 may contribute to sleep duration in the Taiwanese population.
Collapse
Affiliation(s)
- Sheue-Jane Hou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Hsiu Kuo
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Yu Lin
- Department of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Li Liu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli County, Taiwan
| | - Albert C Yang
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Eugene Lin
- Department of Biostatistics, University of Washington, 3980 15th Avenue NE, Box 351617, Seattle, WA, 98195, USA.
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195, USA.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Tsuo-Hung Lan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan.
| |
Collapse
|
3
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
4
|
Knott EL, Leidenheimer NJ. A Targeted Bioinformatics Assessment of Adrenocortical Carcinoma Reveals Prognostic Implications of GABA System Gene Expression. Int J Mol Sci 2020; 21:ijms21228485. [PMID: 33187258 PMCID: PMC7697095 DOI: 10.3390/ijms21228485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but deadly cancer for which few treatments exist. Here, we have undertaken a targeted bioinformatics study of The Cancer Genome Atlas (TCGA) ACC dataset focusing on the 30 genes encoding the γ-aminobutyric acid (GABA) system—an under-studied, evolutionarily-conserved system that is an emerging potential player in cancer progression. Our analysis identified a subset of ACC patients whose tumors expressed a distinct GABA system transcriptome. Transcript levels of ABAT (encoding a key GABA shunt enzyme), were upregulated in over 40% of tumors, and this correlated with several favorable clinical outcomes including patient survival; while enrichment and ontology analysis implicated two cancer-related biological pathways involved in metastasis and immune response. The phenotype associated with ABAT upregulation revealed a potential metabolic heterogeneity among ACC tumors associated with enhanced mitochondrial metabolism. Furthermore, many GABAA receptor subunit-encoding transcripts were expressed, including two (GABRB2 and GABRD) prognostic for patient survival. Transcripts encoding GABAB receptor subunits and GABA transporters were also ubiquitously expressed. The GABA system transcriptome of ACC tumors is largely mirrored in the ACC NCI-H295R cell line, suggesting that this cell line may be appropriate for future functional studies investigating the role of the GABA system in ACC cell growth phenotypes and metabolism.
Collapse
|
5
|
Mutual Interaction of Clinical Factors and Specific microRNAs to Predict Mild Cognitive Impairment in Patients Receiving Hemodialysis. Cells 2020; 9:cells9102303. [PMID: 33076478 PMCID: PMC7650531 DOI: 10.3390/cells9102303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/06/2023] Open
Abstract
Cognitive impairment (CI) is not uncommon in dialysis patients. Various factors have been implicated. This study aims to examine mutual interaction of various clinical factors for CI in patients receiving hemodialysis. A total of 48 hemodialysis patients in outpatient clinic were recruited from 2015 to 2017. Demographics, circulating uremic toxin concentrations, miRNA concentrations, and nerve injury protein concentrations were collected. Clinical dementia rating (CDR) scores were used to stratify the functional scores of the patients. Receiver operating characteristic (ROC) analysis was used to evaluate diagnostic test performance for predicting dichotomous results, and cumulative ROC analysis was used to examine the combined contribution of clinical factors. CDR scale 0 included 15 patients (mean age, 59.1 years); CDR > 0.5 included 33 patients (mean age, 64.0 years). On cumulative ROC analysis, the major predictors of mild CI were hemoglobin, age, sex, homocysteine, neuron-specific enolase (NSE), and miR-486. The cumulative area under the curve (AUC) on combining hemoglobin, age, and miR-486 was the highest (0.897, 95% confidence interval 0.806–0.988). Two dichotomized variables reached 81.82% sensitivity and 86.67% specificity, with the likelihood ratio for positive and negative results being 6.14 and 0.21, respectively. In conclusion, hemoglobin, age, and miR-486 display high-degree combined effects on mild CI in patients receiving hemodialysis.
Collapse
|
6
|
Clément Y, Prut L, Saurini F, Mineur YS, Le Guisquet AM, Védrine S, Andres C, Vodjdani G, Belzung C. Gabra5-gene haplotype block associated with behavioral properties of the full agonist benzodiazepine chlordiazepoxide. Behav Brain Res 2012; 233:474-82. [PMID: 22677273 DOI: 10.1016/j.bbr.2012.05.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 05/21/2012] [Accepted: 05/25/2012] [Indexed: 01/09/2023]
Abstract
The gabra5 gene is associated with pharmacological properties (myorelaxant, amnesic, anxiolytic) of benzodiazepines. It is tightly located (0.5 cM) close to the pink-eyed dilution (p) locus which encodes for fur color on mouse chromosome 7. We tested the putative role of the gabra5 gene in pharmacological properties of the full non specific agonist chlordiazepoxide (CDP), using behavioral and molecular approaches in mutated p/p mice and wild type F2 from crosses between two multiple markers inbred strain ABP/Le and C57BL/6By strain. From our results, using rotarod, light-dark box, elevated maze and radial arm maze tests, we demonstrate that p/p mice are more sensitive than WT to the sensory motor, anxiolytic and amnesic effect of CDP. This is associated with the presence of a haplotypic block on the murine chromosome 7 and with an up regulation of gabra5 mRNAs in hippocampi of p/p F2 mice.
Collapse
Affiliation(s)
- Y Clément
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, 75651 Paris Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yalçın O. Genes and molecular mechanisms involved in the epileptogenesis of idiopathic absence epilepsies. Seizure 2011; 21:79-86. [PMID: 22206818 DOI: 10.1016/j.seizure.2011.12.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 11/16/2022] Open
Abstract
Idiopathic absence epilepsies (IAE), that have high prevalence particularly among children and adolescents, are complex disorders mainly caused by genetic factors. Childhood absence epilepsy and juvenile absence epilepsy are among the most common subtypes of IAEs. While the role of ion channels has been the primary focus of epilepsy research, the analysis of mutation and association in both patients with absence epilepsies and animal models revealed the involvement of GABA receptors and calcium channels, but also of novel non-ion channel proteins in inducing spike wave discharges (SWD). Functional studies on a mutated variant of these proteins also support their role in the epileptogenesis of absence seizures. Studies in animal models point to both the thalamus and cortex as the origin of SWDs: the abnormalities in the components of these circuits leading to seizure activity. This review examines the current research on mutations and susceptibility alleles determined in the genes that code for the subunits of GABA receptors (GABRG2, GABRA1, GABRB3, GABRA5, GABA(B1) and GABA(B2)), calcium channels (CACNA1A, CACNA1G, CACNA1H, CACNA1I, CACNAB4, CACNAG2 and CACNG3), and novel non-ion channel proteins, taking into account the results of functional studies on these variants.
Collapse
Affiliation(s)
- Ozlem Yalçın
- Department of Molecular Biology and Genetics, T.C. Istanbul Arel University, Tepekent-Buyukcekmece, Istanbul, Turkey.
| |
Collapse
|
8
|
Tanaka M, Olsen RW, Medina MT, Schwartz E, Alonso ME, Duron RM, Castro-Ortega R, Martinez-Juarez IE, Pascual-Castroviejo I, Machado-Salas J, Silva R, Bailey JN, Bai D, Ochoa A, Jara-Prado A, Pineda G, Macdonald RL, Delgado-Escueta AV. Hyperglycosylation and reduced GABA currents of mutated GABRB3 polypeptide in remitting childhood absence epilepsy. Am J Hum Genet 2008; 82:1249-61. [PMID: 18514161 DOI: 10.1016/j.ajhg.2008.04.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 04/09/2008] [Accepted: 04/24/2008] [Indexed: 12/24/2022] Open
Abstract
Childhood absence epilepsy (CAE) accounts for 10% to 12% of epilepsy in children under 16 years of age. We screened for mutations in the GABA(A) receptor (GABAR) beta 3 subunit gene (GABRB3) in 48 probands and families with remitting CAE. We found that four out of 48 families (8%) had mutations in GABRB3. One heterozygous missense mutation (P11S) in exon 1a segregated with four CAE-affected persons in one multiplex, two-generation Mexican family. P11S was also found in a singleton from Mexico. Another heterozygous missense mutation (S15F) was present in a singleton from Honduras. An exon 2 heterozygous missense mutation (G32R) was present in two CAE-affected persons and two persons affected with EEG-recorded spike and/or sharp wave in a two-generation Honduran family. All mutations were absent in 630 controls. We studied functions and possible pathogenicity by expressing mutations in HeLa cells with the use of Western blots and an in vitro translation and translocation system. Expression levels did not differ from those of controls, but all mutations showed hyperglycosylation in the in vitro translation and translocation system with canine microsomes. Functional analysis of human GABA(A) receptors (alpha 1 beta 3-v2 gamma 2S, alpha 1 beta 3-v2[P11S]gamma 2S, alpha 1 beta 3-v2[S15F]gamma 2S, and alpha 1 beta 3-v2[G32R]gamma 2S) transiently expressed in HEK293T cells with the use of rapid agonist application showed that each amino acid transversion in the beta 3-v2 subunit (P11S, S15F, and G32R) reduced GABA-evoked current density from whole cells. Mutated beta 3 subunit protein could thus cause absence seizures through a gain in glycosylation of mutated exon 1a and exon 2, affecting maturation and trafficking of GABAR from endoplasmic reticulum to cell surface and resulting in reduced GABA-evoked currents.
Collapse
Affiliation(s)
- Miyabi Tanaka
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M. A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J Physiol Lung Cell Mol Physiol 2007; 292:L704-15. [PMID: 17098806 DOI: 10.1152/ajplung.00383.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The carotid body (CB) is the primary hypoxic chemosensory organ. Its hypoxic response appears to be genetically controlled. We have hypothesized that: 1) genes related to CB function are expressed less in the A/J mice (low responder to hypoxia) compared with DBA/2J mice (high responder to hypoxia); and 2) gene expression levels of morphogenic and trophic factors of the CB are significantly lower in the A/J mice than DBA/2J mice. This study utilizes microarray analysis to test these hypotheses. Three sets of CBs were harvested from both strains. RNA was isolated and used for global gene expression profiling (Affymetrix Mouse 430 v2.0 array). Statistically significant gene expression was determined as a minimum six counts of nine pairwise comparisons, a minimum 1.5-fold change, and P ≤ 0.05. Our results demonstrated that 793 genes were expressed less and that 568 genes were expressed more in the A/J strain vs. the DBA/2J strain. Analysis of individual genes indicates that genes encoding ion channels are differentially expressed between the two strains. Genes related to neurotransmitter metabolism, synaptic vesicles, and the development of neural crest-derived cells are expressed less in the A/J CB vs. the DBA/2J CB. Through pathway analysis, we have constructed a model that shows gene interactions and offers a roadmap to investigate CB development and hypoxic chemosensing/chemotransduction processes. Particularly, Gdnf, Bmp2, Kcnmb2, Tph1, Hif1a, and Arnt2 may contribute to the functional differences in the CB between the two strains. Bmp2, Phox2b, Dlx2, and Msx2 may be important for the morphological differences.
Collapse
Affiliation(s)
- Alexander Balbir
- Division of Physiology, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, E7610, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
10
|
Urak L, Feucht M, Fathi N, Hornik K, Fuchs K. A GABRB3 promoter haplotype associated with childhood absence epilepsy impairs transcriptional activity. Hum Mol Genet 2006; 15:2533-41. [PMID: 16835263 DOI: 10.1093/hmg/ddl174] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Childhood absence epilepsy (CAE) is considered to exhibit a complex non-Mendelian pattern of inheritance. So far, only few CAE susceptibility genes have been identified. In a previous study of our group, an association between the GABA(A) receptor beta3 subunit (GABRB3) gene and CAE was shown. To further investigate this association, we screened 45 CAE patients of the first study for mutations in the 10 exons, the exon-intron boundaries and the regulatory sequences of GABRB3. Although we found no functionally relevant mutation, we did identify 13 single nucleotide polymorphisms (SNPs) in the GABRB3 gene region from the exon 1a promoter to the beginning of intron 3. Using these SNPs we defined four haplotypes for the respective GABRB3 gene region. A transmission disequilibrium test in the same 45 CAE patients and their parents indicated a significant association of this region and CAE (P=0.007075). Reporter gene assays in NT2 cells using exon 1a promoter constructs indicated that the disease-associated haplotype 2 promoter causes a significantly lower transcriptional activity than the haplotype 1 promoter that is over-represented in the controls. In silico analysis suggested that an exchange from T (haplotype 1) to C (haplotype 2) within this promoter impairs binding of the neuron-specific transcriptional activator N-Oct-3. Electrophoretic mobility shift assays demonstrated that the respective polymorphism reduces the nuclear protein binding affinity, thus explaining the results of the reporter gene assays. Reduced expression of the GABRB3 gene could therefore be one potential cause for the development of CAE, pathogenetically relevant in our patient group.
Collapse
Affiliation(s)
- Lydia Urak
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
11
|
Darlison MG, Pahal I, Thode C. Consequences of the evolution of the GABA(A) receptor gene family. Cell Mol Neurobiol 2005; 25:607-24. [PMID: 16075381 PMCID: PMC11529644 DOI: 10.1007/s10571-005-4004-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Accepted: 04/14/2004] [Indexed: 10/25/2022]
Abstract
1. This paper reviews the evolution of the family of genes present in mammals and other vertebrates that encode gamma-aminobutyric acid (GABA) type A (GABA(A)) receptors, which are the major inhibitory neurotransmitter receptors in the central nervous system (CNS). In mammals, 16 different polypeptides (alpha1-alpha6, beta1-beta3, gamma1-gamma3, delta, epsilon, pi, and theta) have been identified, using recombinant DNA techniques, each of which is encoded by a distinct gene. The products of these genes assemble in diverse combinations to form a variety of receptor subtypes that have different sensitivities to a number of clinically relevant compounds, such as the benzodiazepines (BZs). 2. Based on a number of chromosomal mapping techniques, the majority of the GABA(A) receptor genes have been localized, in man, in four clusters on chromosomes 4, 5, 15, and the X. Furthermore, the genes that are present within these clusters have a conserved transcriptional orientation. It has, therefore, been proposed that the clusters arose largely as a consequence of two whole-genome doublings that occurred during chordate evolution, and that the ancestral cluster contained an "alpha-like," a "beta-like," and a "gamma-like" subunit gene. 3. Our laboratory has identified two additional GABA(A) receptor polypeptides (the beta4 and gamma4 subunits) in a number of vertebrate species; these do not appear to be present in mammals. We discuss here the relationship of the corresponding genes to other GABA(A) receptor genes, and conclude that their products are orthologous to the mammalian theta and epsilon subunits, respectively. 4. The GABA(A) receptor has a number of binding sites for compounds such as BZs, barbiturates, neurosteroids, and certain volatile anaesthetics. However, the only site at which endogenous compounds are thought to be active is the steroid site; this binds steroids such as certain metabolites of progesterone and deoxycorticosterone, which are synthesized in the periphery and CNS. Since the in vivo functional relevance, if any, of binding sites for other classes of compounds (such as the BZs) is unknown, the significance of differences in primary sequence, between different receptor subunits, is uncertain. We suggest that a possibly more important consequence of gene duplication is that it permitted greater flexibility in the level, pattern and regulation of expression of GABA(A) receptor genes.
Collapse
Affiliation(s)
- Mark G Darlison
- Neuroscience and Signal Transduction Laboratory, School of Biomedical and Natural Sciences, College of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, United Kingdom.
| | | | | |
Collapse
|
12
|
Tian H, Chen HJ, Cross TH, Edenberg HJ. Alternative splicing and promoter use in the human GABRA2 gene. ACTA ACUST UNITED AC 2005; 137:174-83. [PMID: 15950776 DOI: 10.1016/j.molbrainres.2005.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 02/24/2005] [Accepted: 03/03/2005] [Indexed: 11/25/2022]
Abstract
GABA(A) receptors mediate the majority of the fast synaptic inhibition in the mammalian brain. They are the targets of several important drugs, including benzodiazepines, which are used as anxiolytics, sedatives, anti-convulsants, and in the treatment of alcohol withdrawal symptoms. Non-coding variations in GABRA2, the gene encoding the alpha2 subunit, are associated with the risk for alcoholism, suggesting that regulatory differences are important. GABRA2 mRNAs from whole human brain and from three brain regions were examined for evidence of alternative splicing using reverse transcription-PCR and DNA sequencing. A complex pattern of alternative splicing and alternative promoter use of the human GABRA2 mRNA was demonstrated. There are four major isoforms consisting of combinations of two alternative 5' and 3' exons, as well as minor isoforms lacking exon 4 or exon 8. The alternative 5' exons each lie downstream of a functional promoter sequence, as shown by transient transfection assays. The promoter activities of naturally occurring haplotypes differed, indicating genetic differences in gene expression.
Collapse
Affiliation(s)
- Huijun Tian
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Room 4063E, Indianapolis, IN 46202-5122, USA
| | | | | | | |
Collapse
|
13
|
McCauley JL, Olson LM, Delahanty R, Amin T, Nurmi EL, Organ EL, Jacobs MM, Folstein SE, Haines JL, Sutcliffe JS. A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism. Am J Med Genet B Neuropsychiatr Genet 2004; 131B:51-59. [PMID: 15389768 DOI: 10.1002/ajmg.b.30038] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autism is a complex genetic neuropsychiatric condition characterized by deficits in social interaction and language and patterns of repetitive or stereotyped behaviors and restricted interests. Chromosome 15q11.2-q13 is a candidate region for autism susceptibility based on observations of chromosomal duplications in a small percentage of affected individuals and findings of linkage and association. We performed linkage disequilibrium (LD) mapping across a 1-Mb interval containing a cluster of GABA(A) receptor subunit genes (GABRB3, GABRA5, and GABRG3) which are good positional and functional candidates. Intermarker LD was measured for 59 single nucleotide polymorphism (SNP) markers spanning this region, corresponding to an average marker spacing of 17.7 kb(-1). We identified haplotype blocks, and characterized these blocks for common (>5%) haplotypes present in the study population. At this marker resolution, haplotype blocks comprise <50% of the DNA in this region, consistent with a high local recombination rate. Identification of haplotype tag SNPs reduces the overall number of markers necessary to detect all common alleles by only 12%. Individual SNPs and multi-SNP haplotypes were examined for evidence of allelic association to autism, using a dataset of 123 multiplex autism families. Six markers individually, across GABRB3 and GABRA5, and several haplotypes inclusive of those markers, demonstrated nominally significant association. These results are positively correlated with the position of observed linkage. These studies support the existence of one or more autism risk alleles in the GABA(A) receptor subunit cluster on 15q12 and have implications for analysis of LD and association in regions with high local recombination.
Collapse
Affiliation(s)
- Jacob L McCauley
- Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Simon J, Wakimoto H, Fujita N, Lalande M, Barnard EA. Analysis of the Set of GABAA Receptor Genes in the Human Genome. J Biol Chem 2004; 279:41422-35. [PMID: 15258161 DOI: 10.1074/jbc.m401354200] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The genes of the ionotropic gamma-aminobutyric acid receptor (GABR) subunits have shown an unusual chromosomal clustering, but only now can this be fully specified by analyses of the human genome. We have characterized the genes encoding the 18 known human GABR subunits, plus one now located here, for their precise locations, sizes, and exon/intron structures. Clusters of 17 of the 19, distributed between five chromosomes, are specified in detail, and their possible significance is considered. By applying search algorithms designed to recognize sequences of all known GABR-type subunits in species from man down to nematodes, we found no new GABR subunit is detectable in the human genome. However, the sequence of the human orthologue of the rat GABR rho3 receptor subunit was uncovered by these algorithms, and its gene could be analyzed. Consistent with those search results, orthologues of the beta4 and gamma4 subunits from the chicken, not cloned from mammals, were not detectable in the human genome by specific searches for them. The relationships are consistent with the mammalian subunit being derived from the beta line and epsilon from the gamma line, with mammalian loss of beta4 and gamma4. In their structures the human GABR genes show a basic pattern of nine coding exons, with six different genomic mechanisms for the alternative splicing found in various subunits. Additional noncoding exons occur for certain subunits, which can be regulatory. A dicysteine loop and its exon show remarkable constancy between all GABR subunits and species, of deduced functional significance.
Collapse
Affiliation(s)
- Joseph Simon
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Steiger JL, Russek SJ. GABAA receptors: building the bridge between subunit mRNAs, their promoters, and cognate transcription factors. Pharmacol Ther 2004; 101:259-81. [PMID: 15031002 DOI: 10.1016/j.pharmthera.2003.12.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The type A gamma-aminobutyric acid (GABA(A)) receptors mediate the majority of fast inhibitory neurotransmission in the CNS, and alterations in GABA(A) receptor function is believed to be involved in the pathology of several neurological and psychiatric illnesses, such as epilepsy, anxiety, Alzheimer's disease, and schizophrenia. GABA(A) receptors can be assembled from eight distinct subunit families defined by sequence similarity: alpha(1-6), beta(1-3), gamma(1-3), delta, pi, theta, and rho(1-3). The regulation of GABA(A) receptor function in the brain is a highly compensating system, influencing both the number and the composition of receptors at the cell surface. While transcriptional and translational points of control operate in parallel, it is becoming increasingly evident that many functional changes in GABA(A) receptors reflect the differential gene regulation of its subunits. The fact that certain GABA(A) receptor subunit genes are transcribed in distinct cell types during specific periods of development strongly suggests that genetic control plays a major role in the choice of subunit variants available for receptor assembly. This review focuses on the physiological conditions that alter subunit mRNA levels, the promoters that may control such levels, and the use of a conceptual framework created by bioinformatics to study coordinate and independent GABA(A) receptor subunit gene regulation. As this exciting field moves closer to identifying the language hidden inside the chromatin of GABA(A) receptor subunit gene clusters, future experiments will be aimed at testing models generated by computational analysis with biologically relevant in vivo and in vitro assays. It is hoped that through this functional genomic approach there will be the identification of new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
16
|
Gole L, Crolla JA, Thomas SN, Jacobs PA, Dennis NR. Characterization of breakpoints in theGABRG3 andTSPY genes in a family with a t(Y;15)(p11.2;q12). ACTA ACUST UNITED AC 2004; 125A:177-80. [PMID: 14981720 DOI: 10.1002/ajmg.a.20482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report the clinical, cytogenetic, and molecular findings in a family in which a t(Y;15)(p11.2;q12) is segregating. The Y chromosome breakpoint disrupts the DYZ5 sequence containing the TSPY genes that are exclusively expressed in the testes while the chromosome 15 breakpoint is within the GABRG3 gene. The father and his son who both carried the balanced form of the translocation are clinically normal. A daughter who carried the der Y had the clinical features of Prader-Willi syndrome while a son who carries the der 15 has mild developmental delay and hypogonadism. The relationship of the translocation to the clinical phenotypes is discussed.
Collapse
Affiliation(s)
- Leena Gole
- Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| | | | | | | | | |
Collapse
|
17
|
Song J, Koller DL, Foroud T, Carr K, Zhao J, Rice J, Nurnberger JI, Begleiter H, Porjesz B, Smith TL, Schuckit MA, Edenberg HJ. Association of GABA(A) receptors and alcohol dependence and the effects of genetic imprinting. Am J Med Genet B Neuropsychiatr Genet 2003; 117B:39-45. [PMID: 12555233 DOI: 10.1002/ajmg.b.10022] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
GABA receptor genes have been postulated as candidates affecting the risk for alcoholism. The potential association between genes encoding five subunits of the GABA(A) receptors and alcoholism (alcohol dependence) was analyzed in the multiplex alcoholic pedigrees collected by the Collaborative Study on the Genetics of Alcoholism (COGA) using family-based association tests. We found consistent, although weak, linkage disequilibrium between GABRB1 (located on chromosome 4) and alcoholism (P < 0.03). Genes encoding GABRA1 and GABRA6, on chromosome 5, did not provide evidence for association with alcoholism. GABRA5 and GABRB3, on chromosome 15, were reported to be expressed uniparentally from the paternal chromosome. Analyses of paternal transmission of alleles of GABRA5 provided evidence for association with alcoholism, particularly in the Caucasian population and with the stricter ICD-10 definition of alcoholism (P < 0.004). Evidence of association was also observed during paternal transmission with GABRB3 in the Caucasian population (P < 0.007). Maternal transmissions provided no evidence for association. These data are consistent with an association between the expressed alleles in the GABA(A)-gene cluster on chromosome 15 and alcoholism that is modulated by genetic imprinting.
Collapse
Affiliation(s)
- Jiuzhou Song
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202-5122, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Autism is a complex neurodevelopmental disorder characterized by impairment in social interaction accompanied by a delay or lack of language, restricted interests, stereotyped behavior, and repetitive movement. Genetic predisposition to autism is evident from family and twin studies, and heritability in idiopathic autism is estimated at over 90%. Frequency of the disorder is approximately 1:2000 with a male to female ratio of 4:1. Affected individuals look normal at birth, and the symptoms manifest at the first 2-3 years of life. The spectrum of clinical symptoms and the severity of the disorder are variable even among siblings. Family studies and several genome-wide linkage analyses support the hypothesis of complex inheritance with involvement of as many as 10-100 genes of moderate effect. Identification of genes responsible for the phenotype would help to understand the molecular mechanisms of the disorder. Several genes have been proposed to play a role in susceptibility to autism, and this paper will overview those genes and their potential role in the disorder.
Collapse
Affiliation(s)
- Irina N Bespalova
- Seaver Autism Research Center, Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
19
|
Menold MM, Shao Y, Wolpert CM, Donnelly SL, Raiford KL, Martin ER, Ravan SA, Abramson RK, Wright HH, Delong GR, Cuccaro ML, Pericak-Vance MA, Gilbert JR. Association analysis of chromosome 15 gabaa receptor subunit genes in autistic disorder. J Neurogenet 2002; 15:245-59. [PMID: 12092907 DOI: 10.3109/01677060109167380] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain, acting via the GABAA receptors. The GABAA receptors are comprised of several different homologous subunits, forming a group of receptors that are both structurally and functionally diverse. Three of the GABAA receptor subunit genes (GABRB3, GABRA5 and GABRG3) form a cluster on chromosome 15q11-q13, in a region that has been genetically associated with autistic disorder (AutD). Based on these data, we examined 16 single nucleotide polymorphisms (SNPs) located within GABRB3, GABRA5 and GABRG3 for linkage disequilibrium (LD) in 226 AutD families (AutD patients and parents). Genotyping was performed using either OLA (oligonucleotide ligation assay), or SSCP (single strand conformation polymorphism) followed by DNA sequencing. We tested for LD using the Pedigree Disequilibrium Test (PDT). PDT results gave significant evidence that AutD is associated with two SNPs located within the GABRG3 gene (exon5_539T/C, p=0.02 and intron5_687T/C, p=0.03), suggesting that the GABRG3 gene or a gene nearby contributes to genetic risk in AutD.
Collapse
Affiliation(s)
- M M Menold
- Department of Medicine and the Center for Human Genetics, Duke University Medical Center, Durham NC 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Neurotransmitter receptor systems have been the focus of intensive pharmacological research for more than 20 years for basic and applied scientific reasons, but only recently has there been a better understanding of their key features. One of these systems includes the type A receptor for the gamma-aminobutyric acid (GABA), which forms an integral anion channel from a pentameric subunit assembly and mediates most of the fast inhibitory neurotransmission in the adult vertebrate central nervous system. Up to now, depending on the definition, 16-19 mammalian subunits have been cloned and localized on different genes. Their assembly into proteins in a poorly defined stoichiometry forms the basis of functional and pharmacological GABA(A) receptor diversity, i.e. the receptor subtypes. The latter has been well documented in autoradiographic studies using ligands that label some of the receptors' various binding sites, corroborated by recombinant expression studies using the same tools. Significantly less heterogeneity has been found at the physiological level in native receptors, where the subunit combinations have been difficult to dissect. This review focuses on the characteristics, use and usefulness of various ligands and their binding sites to probe GABA(A) receptor properties and to gain insight into the biological function from fish to man and into evolutionary conserved GABA(A) receptor heterogeneity. We also summarize the properties of the novel mouse models created for the study of various brain functions and review the state-of-the-art imaging of brain GABA(A) receptors in various human neuropsychiatric conditions. The data indicate that the present ligands are only partly satisfactory tools and further ligands with subtype-selective properties are needed for imaging purposes and for confirming the behavioral and functional results of the studies presently carried out in gene-targeted mice with other species, including man.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4B, Finland.
| | | | | |
Collapse
|
21
|
Robinson R, Taske N, Sander T, Heils A, Whitehouse W, Goutières F, Aicardi J, Lehesjoki AE, Siren A, Laue Friis M, Kjeldsen MJ, Panayiotopoulos C, Kennedy C, Ferrie C, Rees M, Gardiner RM. Linkage analysis between childhood absence epilepsy and genes encoding GABAA and GABAB receptors, voltage-dependent calcium channels, and the ECA1 region on chromosome 8q. Epilepsy Res 2002; 48:169-79. [PMID: 11904235 DOI: 10.1016/s0920-1211(01)00335-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Childhood absence epilepsy (CAE) is an idiopathic generalised epilepsy (IGE) characterised by onset of typical absence seizures in otherwise normal children of school age. A genetic component to aetiology is well established but the mechanism of inheritance and the genes involved are unknown. Available evidence suggests that mutations in genes encoding GABA receptors or brain expressed voltage-dependent calcium channels (VDCCs) may underlie CAE. The aim of this work was to test this hypothesis by linkage analysis using microsatellite loci spanning theses genes in 33 nuclear families each with two or more individuals with CAE. Seventeen VDCC subunit genes, ten GABA(A)R subunit genes, two GABA(B) receptor genes and the ECA1 locus on 8q24 were investigated using 35 microsatellite loci. Assuming locus homogeneity, all loci gave statistically significant negative LOD scores, excluding these genes as major loci in the majority of these families. Positive HLOD scores assuming locus heterogeneity were observed for CACNG3 on chromosome 16p12-p13.1 and the GABRA5, GABRB3, GABRG3 cluster on chromosome 15q11-q13. Association studies are required to determine whether these loci are the site of susceptibility alleles in a subset of patients with CAE.
Collapse
Affiliation(s)
- Robert Robinson
- Department of Paediatrics, Royal Free and University College Medical School, University College London, 5 University Street, WC1E 6JJ, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Feusner J, Ritchie T, Lawford B, Young RM, Kann B, Noble EP. GABA(A) receptor beta 3 subunit gene and psychiatric morbidity in a post-traumatic stress disorder population. Psychiatry Res 2001; 104:109-17. [PMID: 11711165 DOI: 10.1016/s0165-1781(01)00296-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GABAergic systems have been implicated in the pathogenesis of anxiety, depression and insomnia. These symptoms are part of the core and comorbid psychiatric disturbances in post-traumatic stress disorder (PTSD). In a sample of Caucasian male PTSD patients, dinucleotide repeat polymorphisms of the GABA(A) receptor beta 3 subunit gene were compared to scores on the General Health Questionnaire-28 (GHQ). As the major allele at this gene locus (GABRB3) was G1, the alleles were divided into G1 and non-G1 groups. On the total score of the GHQ, which comprises the somatic symptoms, anxiety/insomnia, social dysfunction and depression subscales, patients with the G1 non-G1 genotype had a significantly higher score when compared to either the G1G1 genotype (alpha=0.01) or the non-G1 non-G1 genotype (alpha=0.05). No significant difference was found between the G1G1 and non-G1 non-G1 genotypes. When the G1 non-G1 heterozygotes were compared to the combined G1G1 and non-G1 non-G1 homozygotes, a significantly higher total GHQ score was found in the heterozygotes (P=0.002). These observations suggest a heterosis effect. Further analysis of GHQ subscale scores showed that heterozygotes compared to the combined homozygotes had higher scores on the somatic symptoms (P=0.006), anxiety/insomnia (P=0.003), social dysfunction (P=0.054) and depression (P=0.004) subscales. In conclusion, the present study indicates that in a population of PTSD patients, heterozygosity of the GABRB3 major (G1) allele confers higher levels of somatic symptoms, anxiety/insomnia, social dysfunction and depression than found in homozygosity.
Collapse
Affiliation(s)
- J Feusner
- Alcohol Research Center and Department of Psychiatry and Biobehavioral Sciences, UCLA Neuropsychiatric Institute, 760 Westwood Plaza, Los Angeles, CA 90024-1759, USA
| | | | | | | | | | | |
Collapse
|
23
|
Nurmi EL, Bradford Y, Chen Y, Hall J, Arnone B, Gardiner MB, Hutcheson HB, Gilbert JR, Pericak-Vance MA, Copeland-Yates SA, Michaelis RC, Wassink TH, Santangelo SL, Sheffield VC, Piven J, Folstein SE, Haines JL, Sutcliffe JS. Linkage disequilibrium at the Angelman syndrome gene UBE3A in autism families. Genomics 2001; 77:105-13. [PMID: 11543639 DOI: 10.1006/geno.2001.6617] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autistic disorder is a neurodevelopmental disorder with a complex genetic etiology. Observations of maternal duplications affecting chromosome 15q11-q13 in patients with autism and evidence for linkage and linkage disequilibrium to markers in this region in chromosomally normal autism families indicate the existence of a susceptibility locus. We have screened the families of the Collaborative Linkage Study of Autism for several markers spanning a candidate region covering approximately 2 Mb and including the Angelman syndrome gene (UBE3A) and a cluster of gamma-aminobutyric acid (GABA(A)) receptor subunit genes (GABRB3, GABRA5, and GABRG3). We found significant evidence for linkage disequilibrium at marker D15S122, located at the 5' end of UBE3A. This is the first report, to our knowledge, of linkage disequilibrium at UBE3A in autism families. Characterization of null alleles detected at D15S822 in the course of genetic studies of this region showed a small (approximately 5-kb) genomic deletion, which was present at somewhat higher frequencies in autism families than in controls.
Collapse
Affiliation(s)
- E L Nurmi
- Program in Human Genetics, Department of Molecular Physiology & Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Papadimitriou GN, Dikeos DG, Karadima G, Avramopoulos D, Daskalopoulou EG, Stefanis CN. GABA-A receptor beta3 and alpha5 subunit gene cluster on chromosome 15q11-q13 and bipolar disorder: a genetic association study. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 105:317-20. [PMID: 11378843 DOI: 10.1002/ajmg.1354] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There is accumulated evidence that the genes coding for the receptor of gamma aminobutyric acid (GABA), the most important inhibitory neurotransmitter in the CNS, may be involved in the pathogenesis of affective disorders. In a previous study, we have found a genetic association between the GABA-A receptor alpha5 subunit gene locus (GABRA5) on chromosome 15q11-of 13 and bipolar affective disorder. The aim of the present study was to examine the same subjects to see if there exists a genetic association between bipolar affective disorder and the GABA receptor beta3 subunit gene (GABRB3), which is located within 100 kb from GABRA5. The sample consisted of 48 bipolar patients compared to 44 controls (blood donors). All subjects were Greek, unrelated, and personally interviewed. Diagnosis was based on DSM-IV and ICD-10 criteria. The marker used was a dinucleotide (CA) repeat polymorphism with 12 alleles 179 to 201 bp long; genotyping was successful in all patients and 43 controls. The distribution of GABRB3 genotypes among the controls did not deviate significantly from the Hardy-Weinberg equilibrium. No differences in allelic frequencies between bipolar patients and controls were found for GABRB3, while this locus and GABRA5 did not seem to be in significant linkage disequilibrium. In conclusion, the GABRB3 CA-repeat polymorphism we investigated does not present the observed association between bipolar affective illness and GABRA5. This could be due to higher mutation rate in the GABRB3 CA-repeat polymorphism, but it might also signify that GABRA5 is the gene actually associated with the disease.
Collapse
Affiliation(s)
- G N Papadimitriou
- Department of Psychiatry, Clinical and Molecular Neurogenetics Unit, Eginition Hospital, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | |
Collapse
|
25
|
Holopainen IE, Metsähonkala EL, Kokkonen H, Parkkola RK, Manner TE, Någren K, Korpi ER. Decreased binding of [11C]flumazenil in Angelman syndrome patients with GABA(A) receptor beta3 subunit deletions. Ann Neurol 2001; 49:110-3. [PMID: 11198279 DOI: 10.1002/1531-8249(200101)49:1<110::aid-ana17>3.0.co;2-t] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We used positron emission tomography (PET) to study brain [11C]flumazenil (FMZ) binding in four Angelman syndrome (AS) patients. Patients 1 to 3 had a maternal deletion of 15q11-q13 leading to the loss of beta3 subunit of gamma-aminobutyric acidA/benzodiazepine (GABA(A)/BZ) receptor, whereas Patient 4 had a mutation in the ubiquitin protein ligase (UBE3A) saving the beta3 subunit gene. [11C]FMZ binding potential in the frontal, parietal, hippocampal, and cerebellar regions was significantly lower in Patients 1 to 3 than in Patient 4. We propose that the 15q11-q13 deletion leads to a reduced number of GABA(A)/BZ receptors, which could partly explain the neurological deficits of the AS patients.
Collapse
Affiliation(s)
- I E Holopainen
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
26
|
Martin ER, Menold MM, Wolpert CM, Bass MP, Donnelly SL, Ravan SA, Zimmerman A, Gilbert JR, Vance JM, Maddox LO, Wright HH, Abramson RK, DeLong GR, Cuccaro ML, Pericak-Vance MA. Analysis of linkage disequilibrium in gamma-aminobutyric acid receptor subunit genes in autistic disorder. AMERICAN JOURNAL OF MEDICAL GENETICS 2000; 96:43-8. [PMID: 10686550 DOI: 10.1002/(sici)1096-8628(20000207)96:1<43::aid-ajmg9>3.0.co;2-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autistic disorder (AD) is a neurodevelopmental disorder characterized by abnormalities in behavior, communication, and social interactions and functioning. Recently, Cook et al. reported significant linkage disequilibrium with an AD susceptibility locus and a marker, GABRB3 155CA-2, in the gamma-aminobutyric acid(A) (GABA(A)) receptor beta3-subunit gene on chromosome 15q11-q13. This linkage disequilibrium was detected using a multiallelic version of the transmission/disequilibrium test (TDT) in a sample of nuclear families having at least one child with autistic disorder. In an attempt to replicate this finding we tested for linkage disequilibrium with this marker, as well as with three additional markers in and around the GABA(A) receptor beta3-subunit gene, in an independent, clinically comparable set of AD families. Unlike Cook et al., we failed to detect significant linkage disequilibrium between GABRB3 155CA-2 and AD in our sample. We did, however, find suggestive evidence for linkage disequilibrium with a marker, GABRB3, approximately 60 kb beyond the 3' end of beta3-subunit gene. This finding lends support for previous reports implicating the involvement of genes in this region with AD. Am. J. Med. Genet. (Neuropsychiatr. Genet.) 96:43-48, 2000
Collapse
Affiliation(s)
- E R Martin
- Center for Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Maddox LO, Menold MM, Bass MP, Rogala AR, Pericak-Vance MA, Vance JM, Gilbert JR. Autistic disorder and chromosome 15q11-q13: construction and analysis of a BAC/PAC contig. Genomics 1999; 62:325-31. [PMID: 10644429 DOI: 10.1006/geno.1999.6017] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autistic disorder (AD) is a neurodevelopmental disorder that affects approximately 2-10/10,000 individuals. Chromosome 15q11-q13 has been implicated in the genetic etiology of AD based on (1) cytogenetic abnormalities; (2) increased recombination frequency in this region in AD versus non-AD families; (3) suggested linkage with markers D15S156, D15S219, and D15S217; and (4) evidence for significant association with polymorphisms in the gamma-aminobutyric acid receptor subunit B3 gene (GABRB3). To isolate the putative 15q11-q13 candidate AD gene, a genomic contig and physical map of the approximately 1.2-Mb region from the GABA receptor gene cluster to the OCA2 locus was generated. Twenty-one bacterial artificial chromosome (BAC) clones, 32 P1-derived artificial chromosome (PAC) clones, and 2 P1 clones have been isolated using the markers D15S540, GABRB3, GABRA5, GABRG3, D15S822, and D15S217, as well as 34 novel markers developed from the end sequences of BAC/PAC clones. In contrast to previous findings, the markers D15S822 and D15S975 have been localized within the GABRG3 gene, which we have shown to be approximately 250 kb in size. NotI and numerous EagI restriction enzyme cut sites were identified in this region. The BAC/PAC genomic contig can be utilized for the study of genomic structure and the identification and characterization of genes and their methylation status in this autism candidate gene region on human chromosome 15q11-q13.
Collapse
Affiliation(s)
- L O Maddox
- Department of Medicine and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Maestrini E, Lai C, Marlow A, Matthews N, Wallace S, Bailey A, Cook EH, Weeks DE, Monaco AP. Serotonin transporter (5-HTT) and gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene polymorphisms are not associated with autism in the IMGSA families. The International Molecular Genetic Study of Autism Consortium. AMERICAN JOURNAL OF MEDICAL GENETICS 1999; 88:492-6. [PMID: 10490705 DOI: 10.1002/(sici)1096-8628(19991015)88:5<492::aid-ajmg11>3.0.co;2-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies have suggested that the serotonin transporter (5-HTT) gene and the gamma-aminobutyric acid receptor subunit beta3 (GABRB3) gene, or other genes in the 15q11-q13 region, are possibly involved in susceptibility to autism. To test this hypothesis we performed an association study on the collection of families from the International Molecular Genetic Study of Autism (IMGSA) Consortium, using the transmission disequilibrium test. Two polymorphisms in the 5-HTT gene (a functional insertion-deletion polymorphism in the promoter and a variable number tandem repeat in the second intron) were examined in 90 families comprising 174 affected individuals. Furthermore, seven microsatellite markers spanning the 15q11-q13 region were studied in 94 families with 182 affected individuals. No significant evidence of association or linkage was found at any of the markers tested, indicating that the 5-HTT and the GABRB3 genes are unlikely to play a major role in the aetiology of autism in our family data set.
Collapse
Affiliation(s)
- E Maestrini
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Feucht M, Fuchs K, Pichlbauer E, Hornik K, Scharfetter J, Goessler R, Füreder T, Cvetkovic N, Sieghart W, Kasper S, Aschauer H. Possible association between childhood absence epilepsy and the gene encoding GABRB3. Biol Psychiatry 1999; 46:997-1002. [PMID: 10509183 DOI: 10.1016/s0006-3223(99)00039-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Childhood Absence Epilepsy (CAE) is considered to have a predominantly, perhaps exclusively, genetic background. To date, genes responsible for susceptibility to CAE have not been identified. The object of the present study was to test association between CAE and the genes encoding the gamma-aminobutyric acid (GABA) type-A receptor subunits alpha 5 (GABRA5) and beta 3 (GABRB3) located on the long arm of chromosome 15 (15q11-q13). METHODS A family-based candidate gene approach was applied: 50 Austrian nuclear families ascertained for the presence of an affected child were investigated. GABRA5 and GABRB3 subunit genes were genotyped using DNA gained from peripheral blood samples by Polymerase Chain Reactions (PCR). Genetic association was tested using a Monte Carlo Version of the multi-allele Transmission-Disequilibrium Test (TDT). RESULTS The TDT displayed significant overall association with GABRB3 (p = .0118). CONCLUSIONS The present data suggest that the tested polymorphism may be either directly involved in the etiology of CAE or in linkage disequilibrium with disease-predisposing sites.
Collapse
Affiliation(s)
- M Feucht
- University Hospital for Child and Adolescent Neuropsychiatry, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
DeLorey TM, Olsen RW. GABA and epileptogenesis: comparing gabrb3 gene-deficient mice with Angelman syndrome in man. Epilepsy Res 1999; 36:123-32. [PMID: 10515160 DOI: 10.1016/s0920-1211(99)00046-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The GABAergic system has long been implicated in epilepsy with defects in GABA neurotransmission being linked to epilepsy in both experimental animal models and human syndromes (Olsen and Avoli, 1997). However, to date no human epileptic syndrome has been directly attributed to an altered GABAergic system. The observed defects in GABA neurotransmission in human epileptic syndromes may be the indirect result of a brain besieged by seizures. The use of animal models of epilepsy has sought to address these matters. The advent of gene targeting methodologies in mice now allows for a more direct assessment of GABA's involvement in epileptogenesis. To date several genes associated with the GABAergic system have been disrupted. These include the genes for glutamic acid decarboxylase, both the 65- and 67-kDa isoforms (GAD65 and GAD67), the tissue non-specific alkaline phosphatase gene (TNAP) and genes for the GABA(A) receptor subunits alpha6, beta3, gamma2, and delta (gabra6, gabrb3, gabrg2, and gabrd respectively). Gene disruptions of either GAD67 or gabrg2 result in neonatal lethality, while others, GAD65, TNAP, and gabrb3 exhibit increased mortality and spontaneous seizures. GABA receptor expression has been found to be both regionally and developmentally regulated. Thus in addition to their obvious role in controlling excitability in adult brain, a deficit in GABAergic function during development could be expected to elicit pleiotropic neurodevelopmental abnormalities perhaps including epilepsy. The GABA(A) receptor beta3 subunit gene, gabrb3/GABRB3 (mouse/human), is of particular interest because of its expression early in development and its possible role in the neurodevelopmental disorder Angelman syndrome. Individuals with this syndrome exhibit severe mental retardation and epilepsy. Mice with the gabrb3 gene disrupted likewise exhibit electroencephalograph (EEG) abnormalities, seizures, and behavioral characteristics typically associated with Angelman syndrome. These gabrb3 gene knockout mice provide direct evidence that a reduction of a specific subunit of the GABA(A) receptor system can result in epilepsy and support a GABAergic role in the pathophysiology of Angelman syndrome.
Collapse
Affiliation(s)
- T M DeLorey
- Molecular Research Institute, CA 94304, USA.
| | | |
Collapse
|
31
|
Lengeling A, Wiltshire T, Otmani C, Bućan M. A Sequence-Ready BAC Contig of the GABA A Receptor Gene Cluster Gabrg1–Gabra2–Gabrb1 on Mouse Chromosome 5. Genome Res 1999. [DOI: 10.1101/gr.9.8.732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The type-A receptors for the neurotransmitter GABA (γ-aminobutyric acid) are ligand-gated chloride channels that mediate postsynaptic inhibition. The functional diversity of these receptors comes from the use of a large repertoire of subunits encoded by separate genes, as well as from differences in subunit composition of individual receptors. In mammals, a majority of GABAAreceptor subunit genes are located in gene clusters that may be important for their regulated expression and function. We have established a high-resolution physical map of the cluster of genes encoding GABAA receptor subunits α2 (Gabra2), β1 (Gabrb1), and γ1 (Gabrg1) on mouse chromosome 5. Rat cDNA probes and specific sequence probes for all three GABAA receptor subunit genes have been used to initiate the construction of a sequence-ready contig of bacterial artificial chromosomes (BACs) encompassing this cluster. In the process of contig construction clones from 129/Sv and C57BL/6J BAC libraries were isolated. The assembled 1.3-Mb contig, consisting of 45 BACs, gives five- to sixfold coverage over the gene cluster and provides an average resolution of one marker every 32 kb. A number of BAC insert ends were sequenced, generating 30 new sequence tag sites (STS) in addition to 6 Gabr gene-based and 3 expressed sequence tag (EST)-based markers. STSs from, and surrounding, theGabrg1–Gabra2–Gabrb1 gene cluster were mapped in the T31 mouse radiation hybrid panel. The integration of the BAC contig with a map of loci ordered by radiation hybrid mapping suggested the most likely genomic orientation of this cluster on mouse chromosome 5: cen–D5Mit151–Gabrg1–Gabra2–Gabrb1–D5Mit58–tel. This established contig will serve as a template for genomic sequencing and for functional analysis of the GABAA gene cluster on mouse chromosome 5 and the corresponding region on human chromosome 4.The sequence data described in this paper have been submitted to the GenBank/GSS data libraries under accession nos.AF156490 and AQ589406–AQ589436.
Collapse
|
32
|
Noble EP, Zhang X, Ritchie T, Lawford BR, Grosser SC, Young RM, Sparkes RS. D2 dopamine receptor and GABA(A) receptor beta3 subunit genes and alcoholism. Psychiatry Res 1998; 81:133-47. [PMID: 9858031 DOI: 10.1016/s0165-1781(98)00084-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
As the dopaminergic and GABAergic systems have been implicated in alcohol-related behaviors, variants of the D2 dopamine receptor (DRD2) and GABA(A) receptor beta3 subunit (GABRB3) genes were determined in a population-based association study of Caucasian non-alcoholic and alcoholic subjects. In severe alcoholics, compared to non-alcoholics, a significant increase was found in the prevalence (P = 1.7 x 10(-5)) and frequency (P = 1.6 x 10(-5)) of the DRD2 minor (A1) allele. Moreover, a significant progressive increase was observed in A1 allelic prevalence (P = 3.1 x 10(-6)) and frequency (P = 2.7 x 10(-6)) in the order of non-alcoholics, less severe and severe alcoholics. In severe alcoholics, compared to non-alcoholics, a significant decrease was found in the prevalence (P = 4.5 x 10(-3)) and frequency (P = 2.7 x 10(-2)) of the GABRB3 major (G1) allele. Furthermore, a significant progressive decrease was noted in G1 allelic prevalence (P = 2.4 x 10(-3)) and frequency (P = 1.9 x 10(-2)) in non-alcoholics, less severe and severe alcoholics, respectively. In sum, in the same population of non-alcoholics and alcoholics studied, variants of both the DRD2 and GABRB3 genes independently contribute to the risk for alcoholism, with the DRD2 variants revealing a stronger effect than the GABRB3 variants. However, when the DRD2 and the GABRB3 variants are combined, the risk for alcoholism is more robust than when these variants are considered separately.
Collapse
Affiliation(s)
- E P Noble
- Alcohol Research Center and Department of Psychiatry and Biobehavioral Sciences, UCLA, Neuropsychiatric Institute, Los Angeles, CA 90024-1759, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Cook EH, Courchesne RY, Cox NJ, Lord C, Gonen D, Guter SJ, Lincoln A, Nix K, Haas R, Leventhal BL, Courchesne E. Linkage-disequilibrium mapping of autistic disorder, with 15q11-13 markers. Am J Hum Genet 1998; 62:1077-83. [PMID: 9545402 PMCID: PMC1377089 DOI: 10.1086/301832] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Autistic disorder is a complex genetic disease. Because of previous reports of individuals with autistic disorder with duplications of the Prader-Willi/Angelman syndrome critical region, we screened several markers across the 15q11-13 region, for linkage disequilibrium. One hundred forty families, consisting predominantly of a child with autistic disorder and both parents, were studied. Genotyping was performed by use of multiplex PCR and capillary electrophoresis. Two children were identified who had interstitial chromosome 15 duplications and were excluded from further linkage-disequilibrium analysis. Use of the multiallelic transmission-disequilibrium test (MTDT), for nine loci on 15q11-13, revealed linkage disequilibrium between autistic disorder and a marker in the gamma-aminobutyric acidA receptor subunit gene, GABRB3 155CA-2 (MTDT 28.63, 10 df, P=.0014). No evidence was found for parent-of-origin effects on allelic transmission. The convergence of GABRB3 as a positional and functional candidate along with the linkage-disequilibrium data suggests the need for further investigation of the role of GABRB3 or adjacent genes in autistic disorder.
Collapse
Affiliation(s)
- E H Cook
- Department of Psychiatry, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Christian SL, Bhatt NK, Martin SA, Sutcliffe JS, Kubota T, Huang B, Mutirangura A, Chinault AC, Beaudet AL, Ledbetter DH. Integrated YAC contig map of the Prader-Willi/Angelman region on chromosome 15q11-q13 with average STS spacing of 35 kb. Genome Res 1998; 8:146-57. [PMID: 9477342 PMCID: PMC310691 DOI: 10.1101/gr.8.2.146] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prader-Willi syndrome and Angelman syndrome are associated with parent-of-origin-specific abnormalities of chromosome 15q11-q13, most frequently a deletion of an approximately 4-Mb region. Because of genomic imprinting, paternal deficiency of this region leads to PWS and maternal deficiency to AS. Additionally, this region is frequently involved in other chromosomal rearrangements including duplications, triplications, or supernumerary marker formation. A detailed physical map of this region is important for elucidating the genes and mechanisms involved in genomic imprinting, as well as for understanding the mechanism of recurrent chromosomal rearrangments. An initial YAC contig extended from D15S18 to D15S12 and was comprised of 23 YACs and 21 STSs providing an average resolution of about one STS per 200 kb. To close two gaps in this contig, YAC screening was performed using two STSs that flank the gap between D15S18 and 254B5R and three STSs located distal to the GABRA5-149A9L gap. Additionally, we developed 11 new STSs, including seven polymorphic markers. Although several groups have developed whole-genome genetic and radiation hybrid maps, the depth of coverage for 15q11-q13 has been somewhat limited and discrepancies in marker order exist between the maps. To resolve the inconsistencies and to provide a more detailed map order of STSs in this region, we have constructed an integrated YAC STS-based physical map of chromosome 15q11-q13 containing 118 YACs and 118 STSs, including 38 STRs and 49 genes/ESTs. Using an estimate of 4 Mb for the size of this region, the map provides an average STS spacing of 35 kb. This map provides a valuable resource for identification of disease genes localized to this region as well as a framework for complete DNA sequencing.
Collapse
Affiliation(s)
- S L Christian
- Department of Human Genetics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Strehl S, LaSalle JM, Lalande M. High-resolution analysis of DNA replication domain organization across an R/G-band boundary. Mol Cell Biol 1997; 17:6157-66. [PMID: 9315676 PMCID: PMC232466 DOI: 10.1128/mcb.17.10.6157] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Establishing how mammalian chromosome replication is regulated and how groups of replication origins are organized into replication bands will significantly increase our understanding of chromosome organization. Replication time bands in mammalian chromosomes show overall congruency with structural R- and G-banding patterns as revealed by different chromosome banding techniques. Thus, chromosome bands reflect variations in the longitudinal structure and function of the chromosome, but little is known about the structural basis of the metaphase chromosome banding pattern. At the microscopic level, both structural R and G bands and replication bands occupy discrete domains along chromosomes, suggesting separation by distinct boundaries. The purpose of this study was to determine replication timing differences encompassing a boundary between differentially replicating chromosomal bands. Using competitive PCR on replicated DNA from flow-sorted cell cycle fractions, we have analyzed the replication timing of markers spanning roughly 5 Mb of human chromosome 13q14.3/q21.1. This is only the second report of high-resolution analysis of replication timing differences across an R/G-band boundary. In contrast to previous work, however, we find that band boundaries are defined by a gradient in replication timing rather than by a sharp boundary separating R and G bands into functionally distinct chromatin compartments. These findings indicate that topographical band boundaries are not defined by specific sequences or structures.
Collapse
Affiliation(s)
- S Strehl
- Genetics Division, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|