1
|
Hosseini A, Gharibi T, Marofi F, Javadian M, Babaloo Z, Baradaran B. Janus kinase inhibitors: A therapeutic strategy for cancer and autoimmune diseases. J Cell Physiol 2020; 235:5903-5924. [DOI: 10.1002/jcp.29593] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Arezoo Hosseini
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Tohid Gharibi
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
- Student Research CommitteeTabriz University of Medical SciencesTabriz Iran
- Aging Research InstituteTabriz University of Medical SciencesTabriz Iran
| | - Faroogh Marofi
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Mahsa Javadian
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Zohreh Babaloo
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabriz Iran
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabriz Iran
| |
Collapse
|
2
|
Sareen D, McMillan E, Ebert AD, Shelley BC, Johnson JA, Meisner LF, Svendsen CN. Chromosome 7 and 19 trisomy in cultured human neural progenitor cells. PLoS One 2009; 4:e7630. [PMID: 19898616 PMCID: PMC2765070 DOI: 10.1371/journal.pone.0007630] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/25/2009] [Indexed: 01/07/2023] Open
Abstract
Background Stem cell expansion and differentiation is the foundation of emerging cell therapy technologies. The potential applications of human neural progenitor cells (hNPCs) are wide ranging, but a normal cytogenetic profile is important to avoid the risk of tumor formation in clinical trials. FDA approved clinical trials are being planned and conducted for hNPC transplantation into the brain or spinal cord for various neurodegenerative disorders. Although human embryonic stem cells (hESCs) are known to show recurrent chromosomal abnormalities involving 12 and 17, no studies have revealed chromosomal abnormalities in cultured hNPCs. Therefore, we investigated frequently occurring chromosomal abnormalities in 21 independent fetal-derived hNPC lines and the possible mechanisms triggering such aberrations. Methods and Findings While most hNPC lines were karyotypically normal, G-band karyotyping and fluorescent in situ hybridization (FISH) analyses revealed the emergence of trisomy 7 (hNPC+7) and trisomy 19 (hNPC+19), in 24% and 5% of the lines, respectively. Once detected, subsequent passaging revealed emerging dominance of trisomy hNPCs. DNA microarray and immunoblotting analyses demonstrate epidermal growth factor receptor (EGFR) overexpression in hNPC+7 and hNPC+19 cells. We observed greater levels of telomerase (hTERT), increased proliferation (Ki67), survival (TUNEL), and neurogenesis (βIII-tubulin) in hNPC+7 and hNPC+19, using respective immunocytochemical markers. However, the trisomy lines underwent replicative senescence after 50–60 population doublings and never showed neoplastic changes. Although hNPC+7 and hNPC+19 survived better after xenotransplantation into the rat striatum, they did not form malignant tumors. Finally, EGF deprivation triggered a selection of trisomy 7 cells in a diploid hNPC line. Conclusions We report that hNPCs are susceptible to accumulation of chromosome 7 and 19 trisomy in long-term cell culture. These results suggest that micro-environmental cues are powerful factors in the selection of specific hNPC aneuploidies, with trisomy of chromosome 7 being the most common. Given that a number of stem cell based clinical trials are being conducted or planned in USA and a recent report in PLoS Medicine showing the dangers of grafting an inordinate number of cells, these data substantiate the need for careful cytogenetic evaluation of hNPCs (fetal or hESC-derived) before their use in clinical or basic science applications.
Collapse
Affiliation(s)
- Dhruv Sareen
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research (WIMR), Madison, Wisconsin, United States of America
- The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Erin McMillan
- The Waisman Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Allison D. Ebert
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research (WIMR), Madison, Wisconsin, United States of America
- The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Brandon C. Shelley
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research (WIMR), Madison, Wisconsin, United States of America
- The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Julie A. Johnson
- Cell Line Genetics, LLC, Madison, Wisconsin, United States of America
| | | | - Clive N. Svendsen
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research (WIMR), Madison, Wisconsin, United States of America
- The Stem Cell and Regenerative Medicine Center, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
3
|
de Saint Basile G, Geissmann F, Flori E, Uring-Lambert B, Soudais C, Cavazzana-Calvo M, Durandy A, Jabado N, Fischer A, Le Deist F. Severe combined immunodeficiency caused by deficiency in either the delta or the epsilon subunit of CD3. J Clin Invest 2004; 114:1512-7. [PMID: 15546002 PMCID: PMC525745 DOI: 10.1172/jci22588] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 08/24/2004] [Indexed: 02/02/2023] Open
Abstract
We investigated the molecular mechanism underlying a severe combined immunodeficiency characterized by the selective and complete absence of T cells. The condition was found in 5 patients and 2 fetuses from 3 consanguineous families. Linkage analysis performed on the 3 families revealed that the patients were carrying homozygous haplotypes within the 11q23 region, in which the genes encoding the gamma, delta, and epsilon subunits of CD3 are located. Patients and affected fetuses from 2 families were homozygous for a mutation in the CD3D gene, and patients from the third family were homozygous for a mutation in the CD3E gene. The thymus from a CD3delta-deficient fetus was analyzed and revealed that T cell differentiation was blocked at entry into the double positive (CD4+CD8+) stage with the accumulation of intermediate CD4-single positive cells. This indicates that CD3delta plays an essential role in promoting progression of early thymocytes toward double-positive stage. Altogether, these findings extend the known molecular mechanisms underlying severe combined immunodeficiency to a new deficiency, i.e., CD3epsilon deficiency, and emphasize the essential roles played by the CD3epsilon and CD3delta subunits in human thymocyte development, since these subunits associate with both the pre-TCR and the TCR.
Collapse
|
4
|
Basile GDS, Geissmann F, Flori E, Uring-Lambert B, Soudais C, Cavazzana-Calvo M, Durandy A, Jabado N, Fischer A, Deist FL. Severe combined immunodeficiency caused by deficiency in either the δ or the ε subunit of CD3. J Clin Invest 2004. [DOI: 10.1172/jci200422588] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
5
|
Vihinen M, Arredondo-Vega FX, Casanova JL, Etzioni A, Giliani S, Hammarström L, Hershfield MS, Heyworth PG, Hsu AP, Lähdesmäki A, Lappalainen I, Notarangelo LD, Puck JM, Reith W, Roos D, Schumacher RF, Schwarz K, Vezzoni P, Villa A, Väliaho J, Smith CI. Primary immunodeficiency mutation databases. ADVANCES IN GENETICS 2001; 43:103-88. [PMID: 11037300 DOI: 10.1016/s0065-2660(01)43005-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies are intrinsic defects of immune systems. Mutations in a large number of cellular functions can lead to impaired immune responses. More than 80 primary immunodeficiencies are known to date. During the last years genes for several of these disorders have been identified. Here, mutation information for 23 genes affected in 14 immunodefects is presented. The proteins produced are employed in widely diverse functions, such as signal transduction, cell surface receptors, nucleotide metabolism, gene diversification, transcription factors, and phagocytosis. Altogether, the genetic defect of 2,140 families has been determined. Diseases with X-chromosomal origin constitute about 70% of all the cases, presumably due to full penetrance and because the single affected allele causes the phenotype. All types of mutations have been identified; missense mutations are the most common mutation type, and truncation is the most common effect on the protein level. Mutational hotspots in many disorders appear in CPG dinucleotides. The mutation data for the majority of diseases are distributed on the Internet with a special database management system, MUTbase. Despite large numbers of mutations, it has not been possible to make genotype-phenotype correlations for many of the diseases.
Collapse
Affiliation(s)
- M Vihinen
- Institute of Medical Technology, University of Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Goodman PA, Niehoff LB, Uckun FM. Role of tyrosine kinases in induction of the c-jun proto-oncogene in irradiated B-lineage lymphoid cells. J Biol Chem 1998; 273:17742-8. [PMID: 9651374 DOI: 10.1074/jbc.273.28.17742] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure of B-lineage lymphoid cells to ionizing radiation induces an elevation of c-jun proto-oncogene mRNA levels. This signal is abrogated by protein-tyrosine kinase (PTK) inhibitors, indicating that activation of an as yet unidentified PTK is mandatory for radiation-induced c-jun expression. Here, we provide experimental evidence that the cytoplasmic tyrosine kinases BTK, SYK, and LYN are not required for this signal. Lymphoma B-cells rendered deficient for LYN, SYK, or both by targeted gene disruption showed increased c-jun expression levels after radiation exposure, but the magnitude of the stimulation was lower than in wild-type cells. Thus, these PTKs may participate in the generation of an optimal signal. Notably, an inhibitor of JAK-3 (Janus family kinase-3) abrogated radiation-induced c-jun activation, prompting the hypothesis that a chicken homologue of JAK-3 may play a key role in initiation of the radiation-induced c-jun signal in B-lineage lymphoid cells.
Collapse
Affiliation(s)
- P A Goodman
- Department of Molecular Genetics, Wayne Hughes Institute, St. Paul, Minnesota 55113, USA
| | | | | |
Collapse
|