1
|
Wang S, Hu T, He M, Gu Y, Cao X, Yuan Z, Lv X, Getachew T, Quan K, Sun W. Defining ovine dermal papilla cell markers and identifying key signaling pathways regulating its intrinsic properties. Front Vet Sci 2023; 10:1127501. [PMID: 36923053 PMCID: PMC10009177 DOI: 10.3389/fvets.2023.1127501] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Dermal papilla cell (DPC), one of the key cell types during hair follicle development and regeneration, specifies hair size, shape and cycling. It is also an important in vitro screening model for hair growth. Although some characteristics of DPCs, such as agglutinative growth and marker genes, have been studied in mice and humans, the intrinsic properties of ovine DPCs and the regulatory mechanism of the intrinsic properties during continued culture in vitro remained unknown. In this study, based on our previous single-cell transcriptome sequencing on sheep lambskin, we verified SOX18 and PDGFRA as the novel marker genes of ovine DPCs through immunofluorescence staining on skin sections and cultured DPCs. Using continued cell culture and alkaline phosphatase staining, we found that different from mice and humans, ovine DPCs exhibit particularly robust and stable aggregation with unbated alkaline phosphatase activity till 30 passages during continued culture in vitro. Also, we found that the expression of some marker genes and the activity of Wnt/β-catenin signaling differ between early passaged DPCs and multiple passaged DPCs. Further, using Wnt/β-catenin agonist and antagonist, we demonstrated that Wnt/β-catenin signaling could regulate cell aggregation and alkaline phosphatase activity of ovine DPCs through regulating FGF and IGF signaling. This study provides the basis for isolating ovine DPCs and defines their intrinsic properties, which contribute to improving wool performance and medicine of hair regeneration.
Collapse
Affiliation(s)
- Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Tingyan Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa, Ethiopia
| | - Kai Quan
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.,International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou, China.,"Innovative China" "Belt and Road" International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou, China
| |
Collapse
|
2
|
Role of Annexin A2 isoform 2 on the aggregative growth of dermal papillae cells. Biosci Rep 2018; 38:BSR20180971. [PMID: 30341243 PMCID: PMC6435533 DOI: 10.1042/bsr20180971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/25/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
The dermal papilla is a major component of hair, which signals the follicular epithelial cells to prolong the hair growth process. Human Annexin A2 was preliminarily identified by two-dimensional gel electrophoresis (2-DE), MALDI-TOF-MS and database searching. The aim of the present study was to explore the role of Annexin A2 in the aggregative growth of dermal papillae cells (DPC). Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot were adopted to detect the expression of Annexin A2. And siRNA technique was used to suppress the expression of Annexin A2. Construction of over-expression vector was used to up-regulate the expression of Annexin A2. Cell Counting Kit 8 (CCK-8) and proliferating cell nuclear antigen (PCNA) were taken to detect the proliferation of DPC. The expression of Annexin A2 mRNA was up-regulated in passage 3 DPC compared with passage 10 DPC by RT-PCR. In line with the results at the mRNA level, Western blot analysis revealed that Annexin A2 isoform 2 was up-regulated significantly in passage 3 DPC compared with passage 10 DPC. The Annexin A2 isoform 2 siRNA was synthesized and transfected into passage 3 DPC. RT-PCR data showed the mRNA expression of Annexin A2 isoform 2 was suppressed in passage 3 DPC. Western blot results showed the expression level of Annexin A2 isoform 2 and PCNA were suppressed in passage 3 DPC. CCK-8 results showed that the proliferation of passage 3 DPC was suppressed (P < 0.05). Recombinant plasmid PLJM-Annexin A2 isoform 2-expression vector were constructed and were transfected into passage 10 DPC. RT-PCR data showed the mRNA expression of Annexin A2 isoform 2 was up-regulated in passage 10 DPC. Western blot results showed the expression level of annexin A2 isoform 2 and PCNA were up-regulated in passage 10 DPC. CCK-8 assay showed the proliferation of DPC was stimulated compared with control group (*P < 0.05). Our study proved that Annexin A2 isoform 2 may participate in regulating the proliferation of DPC and may be related to aggregative growth of dermal papilla cells. Therefore, our study suggests that Annexin A2 may be linked to hair follicle growth cycle.
Collapse
|
3
|
Krupska I, Bruford EA, Chaqour B. Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities. Hum Genomics 2015; 9:24. [PMID: 26395334 PMCID: PMC4579636 DOI: 10.1186/s40246-015-0046-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/16/2015] [Indexed: 01/03/2023] Open
Abstract
“CCN” is an acronym referring to the first letter of each of the first three members of this original group of mammalian functionally and phylogenetically distinct extracellular matrix (ECM) proteins [i.e., cysteine-rich 61 (CYR61), connective tissue growth factor (CTGF), and nephroblastoma-overexpressed (NOV)]. Although “CCN” genes are unlikely to have arisen from a common ancestral gene, their encoded proteins share multimodular structures in which most cysteine residues are strictly conserved in their positions within several structural motifs. The CCN genes can be subdivided into members developmentally indispensable for embryonic viability (e.g., CCN1, 2 and 5), each assuming unique tissue-specific functions, and members not essential for embryonic development (e.g., CCN3, 4 and 6), probably due to a balance of functional redundancy and specialization during evolution. The temporo-spatial regulation of the CCN genes and the structural information contained within the sequences of their encoded proteins reflect diversity in their context and tissue-specific functions. Genetic association studies and experimental anomalies, replicated in various animal models, have shown that altered CCN gene structure or expression is associated with “injury” stimuli—whether mechanical (e.g., trauma, shear stress) or chemical (e.g., ischemia, hyperglycemia, hyperlipidemia, inflammation). Consequently, increased organ-specific susceptibility to structural damages ensues. These data underscore the critical functions of CCN proteins in the dynamics of tissue repair and regeneration and in the compensatory responses preceding organ failure. A better understanding of the regulation and mode of action of each CCN member will be useful in developing specific gain- or loss-of-function strategies for therapeutic purposes.
Collapse
Affiliation(s)
- Izabela Krupska
- Department of Cell Biology, Downstate Medical Center, Brooklyn, NY, 11203, USA.,Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Brahim Chaqour
- Department of Cell Biology, Downstate Medical Center, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, Downstate Medical Center, Brooklyn, NY, 11203, USA. .,State University of New York (SUNY) Eye Institute Downstate Medical Center, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
4
|
Lin CM, Liu Y, Huang K, Chen XC, Cai BZ, Li HH, Yuan YP, Zhang H, Li Y. Long noncoding RNA expression in dermal papilla cells contributes to hairy gene regulation. Biochem Biophys Res Commun 2014; 453:508-14. [PMID: 25285630 DOI: 10.1016/j.bbrc.2014.09.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 09/26/2014] [Indexed: 02/05/2023]
Abstract
Dermal papilla (DP) cells may be the source of dermal-derived signaling molecules involved in hair-follicle development and postnatal hair cycling. Early-passage DP cells can induce hair growth in vivo, but, on further culture, this ability is lost. The cellular mechanisms underlying the hair-follicle induction property of early-passage DP cells are unclear. Long noncoding RNAs (lncRNAs) are an important class of genes involved in various biological functions. They are aberrantly expressed and play roles in the regulation of the Wnt signaling pathway, a critical point in maintaining hair-induction activity. LncRNA microarray revealed 1683 upregulated and 1773 downregulated lncRNAs in passage-4 DP cells compare with passage-10 DP cells. To investigate the relation between lncRNAs and coding genes in WNT signaling, we constructed a coding-noncoding gene co-expression network using lncRNAs and coding genes that were differentially expressed between the passage-4 and -10 DP cells. RP11-766N7.3, H19 and HOTAIR are specific lncRNAs that were aberrantly expressed in DP cells and played an important role in regulating Wnt signaling. This study may provide potential targets for discovering the hair-follicle induction mechanism of early-passage DP cells.
Collapse
Affiliation(s)
- Chang-Min Lin
- Department of Histology and Embryology, Shantou University Medical College, Xinling No. 22, Shantou 515041, China
| | - Yang Liu
- Department of Histology and Embryology, Shantou University Medical College, Xinling No. 22, Shantou 515041, China
| | - Keng Huang
- Department of Emergency, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xian-Cai Chen
- Department of Histology and Embryology, Shantou University Medical College, Xinling No. 22, Shantou 515041, China
| | - Bo-Zhi Cai
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Changping No. 57, Shantou 515041, China
| | - Hai-Hong Li
- Department of Emergency, Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yan-Ping Yuan
- Department of Histology and Embryology, Shantou University Medical College, Xinling No. 22, Shantou 515041, China
| | - Huan Zhang
- Department of Histology and Embryology, Shantou University Medical College, Xinling No. 22, Shantou 515041, China
| | - Yu Li
- Tissue Engineering Laboratory, First Affiliated Hospital, Shantou University Medical College, Changping No. 57, Shantou 515041, China.
| |
Collapse
|
5
|
Ohyama M, Kobayashi T, Sasaki T, Shimizu A, Amagai M. Restoration of the intrinsic properties of human dermal papilla in vitro. J Cell Sci 2012; 125:4114-25. [PMID: 22623722 DOI: 10.1242/jcs.105700] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, characterization and/or propagation of human DPs have been unsatisfactory because of the lack of efficient isolation methods and the loss of innate characteristics in vitro. We hypothesized that culture conditions sustaining the intrinsic molecular signature of the human DP could facilitate expansion of functional DP cells. To test this, we first characterized the global gene expression profile of microdissected, non-cultured human DPs. We performed a 'two-step' microarray analysis to exclude the influence of unwanted contaminants in isolated DPs and successfully identified 118 human DP signature genes, including 38 genes listed in the mouse DP signature. The bioinformatics analysis of the DP gene list revealed that WNT, BMP and FGF signaling pathways were upregulated in intact DPs and addition of 6-bromoindirubin-3'-oxime, recombinant BMP2 and basic FGF to stimulate these respective signaling pathways resulted in maintained expression of in situ DP signature genes in primarily cultured human DP cells. More importantly, the exposure to these stimulants restored normally reduced DP biomarker expression in conventionally cultured DP cells. Cell growth was moderate in the newly developed culture medium. However, rapid DP cell expansion by conventional culture followed by the restoration by defined activators provided a sufficient number of DP cells that demonstrated characteristic DP activities in functional assays. The study reported here revealed previously unreported molecular mechanisms contributing to human DP properties and describes a useful technique for the investigation of human DP biology and hair follicle bioengineering.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
6
|
Ohyama M, Zheng Y, Paus R, Stenn KS. The mesenchymal component of hair follicle neogenesis: background, methods and molecular characterization. Exp Dermatol 2009; 19:89-99. [PMID: 19650868 DOI: 10.1111/j.1600-0625.2009.00935.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hair follicle morphogenesis and regeneration occur by an extensive and collaborative crosstalk between epithelial and mesenchymal skin components. A series of pioneering studies, which revealed an indispensable role of follicular dermal papilla and dermal sheath cells in this crosstalk, has led workers in the field to study in detail the anatomical distribution, functional properties, and molecular signature of the trichogenic dermal cells. The purpose of this paper was to provide a practical summary of the development and recent advances in the study of trichogenic dermal cells. Following a short review of the relevant literature, the methods for isolating and culturing these cells are summarized. Next, the bioassays, both in vivo and in vitro, that enable the evaluation of trichogenic properties of tested dermal cells are described in detail. A list of trichogenic molecular markers identified by those assays is also provided. Finally, this methods review is completed by defining some of the major questions needing resolution.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
7
|
Rushan X, Fei H, Zhirong M, Yu-Zhang W. Identification of proteins involved in aggregation of human dermal papilla cells by proteomics. J Dermatol Sci 2007; 48:189-97. [PMID: 17875385 DOI: 10.1016/j.jdermsci.2007.06.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/10/2007] [Accepted: 06/20/2007] [Indexed: 01/07/2023]
Abstract
BACKGROUND The dermal papilla is a major component of hair, which signals the follicular epithelial cells to prolong the hair growth process. To date, little is known about the significance of the specific protein(s) express in the dermal papilla cells (DPC) with regard to their aggregative behaviour. OBJECTIVES To identify proteins involved in aggregative behaviour of DPC, we comparatively analyzed the proteome of cells with and without aggregative behaviour. METHODS A series of methods were used, including two-dimensional gel electrophoresis (2-DE), PDQuest software analysis of 2-DE gels, peptide mass fingerprinting based on matrix-assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-TOF-MS), and NCBInr database searching, to separate and identify differentially expressed proteins. Western blotting and reverse transcriptase polymerase chain reaction (RT-PCR) were used to validate the differentially expressed proteins. RESULTS Image analysis revealed that averages of 618+/-22 and 568+/-47 protein spots were detected in passages 3 and 10 DPC, respectively. Twenty-four differential protein spots were measured with MALDI-TOF-MS. A total of 17 spots yielded good spectra, and 15 spots matched with known proteins after database searching. Western blotting confirmed that heat shocking protein 70 was up-regulated in passage 3 DPC. Over-expression of mitochondrial ribosomal protein S7 was confirmed by RT-PCR, indicating that they are involved in aggregation of DPC through some signaling pathway. CONCLUSIONS The clues provided by the comparative proteome strategy utilized here will shed light on molecular mechanisms of DPC in aggregative behaviour.
Collapse
Affiliation(s)
- Xia Rushan
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Gaotanyan Road, Chongqing 400038, China.
| | | | | | | |
Collapse
|
8
|
Rutberg SE, Kolpak ML, Gourley JA, Tan G, Henry JP, Shander D. Differences in Expression of Specific Biomarkers Distinguish Human Beard from Scalp Dermal Papilla Cells. J Invest Dermatol 2006; 126:2583-95. [PMID: 16810298 DOI: 10.1038/sj.jid.5700454] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Androgen exposure stimulates the growth of beard hair follicles. The follicle dermal papilla appears to be the site of androgen action; however, the molecular mechanisms that regulate this process are not well understood. In an attempt to identify genes that contribute to the androgen-responsive phenotype, we compared gene expression patterns in unstimulated and androgen-treated cultured human dermal papilla cells isolated from beard (androgen-sensitive) and occipital scalp (androgen-insensitive) hair follicles. Through this analysis, we identified three genes that are expressed at significantly higher levels in beard dermal papilla cells. One of these genes, sfrp-2 has been identified as a dermal papilla signature gene in mouse pelage follicles. Two of these genes, mn1 and atp1beta1, have not been studied in the hair follicle. A fourth, fibulin-1d, was slightly upregulated in beard dermal papilla cells. The differences in the expression of these genes in cultured beard and scalp dermal papilla cells reflected similar differences in microdissected dermal papilla isolated from intact beard and scalp follicles. Our findings introduce potentially novel signaling pathways in dermal papilla cells. In addition, this study supports that cultured dermal papilla cells provide a cell-based model system that is reflective of the biology of in vivo hair follicle cells.
Collapse
Affiliation(s)
- Susan E Rutberg
- Gillette/P&G Technical Center, Needham, Massachusetts 02492, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Rendl M, Lewis L, Fuchs E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol 2005; 3:e331. [PMID: 16162033 PMCID: PMC1216328 DOI: 10.1371/journal.pbio.0030331] [Citation(s) in RCA: 357] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 07/19/2005] [Indexed: 12/17/2022] Open
Abstract
De novo hair follicle formation in embryonic skin and new hair growth in adult skin are initiated when specialized mesenchymal dermal papilla (DP) cells send cues to multipotent epithelial stem cells. Subsequently, DP cells are enveloped by epithelial stem cell progeny and other cell types to form a niche orchestrating hair growth. Understanding the general biological principles that govern the mesenchymal–epithelial interactions within the DP niche, however, has been hampered so far by the lack of systematic approaches to dissect the complete molecular make-up of this complex tissue. Here, we take a novel multicolor labeling approach, using cell type–specific transgenic expression of red and green fluorescent proteins in combination with immunolabeling of specific antigens, to isolate pure populations of DP and four of its surrounding cell types: dermal fibroblasts, melanocytes, and two different populations of epithelial progenitors (matrix and outer root sheath cells). By defining their transcriptional profiles, we develop molecular signatures characteristic for the DP and its niche. Validating the functional importance of these signatures is a group of genes linked to hair disorders that have been largely unexplored. Additionally, the DP signature reveals novel signaling and transcription regulators that distinguish them from other cell types. The mesenchymal–epithelial signatures include key factors previously implicated in ectodermal-neural fate determination, as well as a myriad of regulators of bone morphogenetic protein signaling. These findings establish a foundation for future functional analyses of the roles of these genes in hair development. Overall, our strategy illustrates how knowledge of the genes uniquely expressed by each cell type residing in a complex niche can reveal important new insights into the biology of the tissue and its associated disease states. Determining the molecular signature of the cells that orchestrate hair follicle growth generates new insights that will aid in understanding the normal biology and disease states of this tissue.
Collapse
Affiliation(s)
- Michael Rendl
- 1Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Lisa Lewis
- 1Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| | - Elaine Fuchs
- 1Howard Hughes Medical Institute, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
10
|
O'Shaughnessy RFL, Yeo W, Gautier J, Jahoda CAB, Christiano AM. The WNT signalling modulator, Wise, is expressed in an interaction-dependent manner during hair-follicle cycling. J Invest Dermatol 2004; 123:613-21. [PMID: 15373764 DOI: 10.1111/j.0022-202x.2004.23410.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We used microarray hybridization to identify genes induced in the dermal papilla (DP) during anagen as a result of the interaction with epithelial matrix cells. We identified inhibitors of the bone morphogenetic protein (BMP) and transforming growth factor beta (TGFbeta)-signalling pathway, as well as the rat homologue of the Xenopus-secreted WNT modulator Wise. A large number of genes previously determined to be expressed in the DP were shown to be expressed in both the DP and dermal sheath (DS). Genes induced in the DP during anagen included modulators of genes expressed additionally in the DS as well as specialized extracellular matrix components. Expression of some of these genes were lost when the DP cells were cultured, suggesting that their expression was interaction dependent. One such gene, the WNT-signalling modulator Wise, was expressed in the DP and not in the non-inductive DS and was additionally expressed at high levels in the precortex and in the putative bulge region. In addition to the reported WNT-signalling modulation role, we show that Wise reduced both BMP and TGFbeta signalling in transformed fibroblasts. We speculate that loss of gene expression in cultured cells is a model for the loss of gene expression observed at catagen.
Collapse
Affiliation(s)
- Ryan F L O'Shaughnessy
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York 10032, USA.
| | | | | | | | | |
Collapse
|
11
|
O'Shaughnessy RFL, Christiano AM, Jahoda CAB. The role of BMP signalling in the control of ID3 expression in the hair follicle. Exp Dermatol 2004; 13:621-9. [PMID: 15447722 DOI: 10.1111/j.0906-6705.2004.00206.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both the production of the hair shaft in anagen and the initiation of a new hair cycle at telogen are the result of reciprocal interactions between the dermal papilla and the overlying epithelial cells. Secreted factors, such as those of the bone morphogenetic protein (BMP) family, play a crucial role in moderating these interactions. Analysis of hair follicles in different stages of the hair cycle showed that BMP signalling was only active during anagen and again during telogen. During catagen, no BMP signalling occurred in the dermal papilla. ID3, a gene expressed in the dermal papilla of both vibrissa and pelage follicles, is a BMP target, and as such, we found that ID3 was expressed from the earliest stages of morphogenesis. During the hair cycle, ID3 was only expressed in the dermal papilla at middle anagen and telogen. To test the significance of ID3 expression in the dermal papilla, we cultured dermal papilla cells and found that ID3 expression fell significantly after a single passage. ID3 expression was returned to in vivo levels in low- and high-passage cells by culturing to high confluence or by the addition of BMP4. These studies reinforce the requirement for active BMP signalling and cell-cell contacts in the dermal papilla during specific stages in the hair cycle.
Collapse
|
12
|
Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc 2003; 8:46-55. [PMID: 12894994 DOI: 10.1046/j.1523-1747.2003.12171.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial-mesenchymal interactions play pivotal roles in the morphogenesis of many organs and various types of appendages. During hair follicle development, extensive interactions between two embryologically different hair follicle compartments (epidermal keratinocytes and dermal papilla fibroblasts) lead to the formation of the hair shaft-producing mini-organ that shows cyclic activity during postnatal life with periods of active growth, involution and resting. During the hair cycle, the epithelium and the mesenchyme are regulated by a distinct set of molecular signals that are unique for every distinct phase of the hair cycle. In telogen hair follicles, epithelial-mesenchymal interactions are characterized by a predominance of inhibitory signals that retain the hair follicle in a quiescent state. During anagen, a large variety of growth stimulatory pathways are activated in the epithelium and in the mesenchyme, the coordination of which are essential for proper hair fiber formation. During catagen, the termination of anagen-specific signaling interactions between the epithelium and the mesenchyme leads to apoptosis in the hair follicle epithelium, while activation of selected signaling pathways promotes the transition of the dermal papilla into a quiescent state. The signaling exchange between the follicular epithelium and the mesenchyme is modulated by proteoglycans, such as versican, which may significantly enhance or reduce the biological activities of secreted growth stimulators. However, additional research will be required to bridge the gap between our current understanding of mechanisms underlying epithelial-mesenchymal interactions in hair follicles and the potential clinical application of growth modulators involved in those interactions. Further progress in this area of research will hopefully lead to the development of new drugs for the treatment of hair growth disorders.
Collapse
|
13
|
Dicker AJ, Serewko MM, Russell T, Rothnagel JA, Strutton GM, Dahler AL, Saunders NA. Isolation (from a basal cell carcinoma) of a functionally distinct fibroblast-like cell type that overexpresses Ptch. J Invest Dermatol 2002; 118:859-65. [PMID: 11982765 DOI: 10.1046/j.1523-1747.2002.01739.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study we report on the isolation and characterization of a nonepithelial, nontumorigenic cell type (BCC1) derived from a basal cell carcinoma from a patient. The BCC1 cells share many characteristics with dermal fibroblasts, such as the expression of vimentin, lack of expression of cytokeratins, and insensitivity to agents that cause growth inhibition and differentiation of epithelial cells; however, significant differences between BCC1 cells and fibroblasts also exist. For example, BCC1 cells are stimulated to undergo DNA synthesis in response to interferon-gamma, whereas dermal fibroblasts are not. More over, BCC1 cells overexpress the basal cell carcinoma-specific genes ptch and ptch2. These data indicate that basal cell carcinomas are associated with a functionally distinct population of fibroblast-like cells that overexpress known tumor-specific markers (ptch and ptch2).
Collapse
Affiliation(s)
- Anthony J Dicker
- Epithelial Pathobiology Group, Center for Immunology & Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|