1
|
Hammond T, Choi JB, Membreño MW, Demeter J, Ng R, Bhattacharya D, Nguyen TN, Hartmann GG, Bossard C, Skotheim JM, Jackson PK, Pasca A, Rubin SM, Sage J. THE FAM53C/DYRK1A axis regulates the G1/S transition of the cell cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627280. [PMID: 39713326 PMCID: PMC11661141 DOI: 10.1101/2024.12.10.627280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A growing number of therapies are being developed to target the cell cycle machinery for the treatment of cancer and other human diseases. Consequently, a greater understanding of the factors regulating cell cycle progression becomes essential to help enhance the response to these new therapies. Here, using data from the Cancer Dependency Map, we identified the poorly-studied factor FAM53C as a new regulator of cell cycle progression. We found that FAM53C is critical for this cell cycle transition and that it acts upstream of the CyclinD-CDK4/6-RB axis in the regulation of the G1/S transition. By mass spectrometry, biochemical, and cellular assays, we identified and validated DYRK1A as a cell cycle kinase that is inhibited by and directly interacts with FAM53C. DYRK1A kinase inhibition rescues the G1 arrest induced by FAM53C knock-down. Consistent with the role for FAM53C identified in cells in culture, FAM53C knockout human cortical organoids display increased cell cycle arrest and growth defects. In addition, Fam53C knockout mice show defects in body growth and behavioral phenotypes. Because DYRK1A dysregulation contributes to developmental disorders such as Down syndrome as well as tumorigenesis, future strategies aiming at regulating FAM53C activity may benefit a broad range of patients.
Collapse
|
2
|
Cruz P, Peña-Lopez D, Figueroa D, Riobó I, Benedetti V, Saavedra F, Espinoza-Arratia C, Escobar TM, Lladser A, Loyola A. Unraveling the Role of JMJD1B in Genome Stability and the Malignancy of Melanomas. Int J Mol Sci 2024; 25:10689. [PMID: 39409021 PMCID: PMC11476393 DOI: 10.3390/ijms251910689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Genome instability relies on preserving the chromatin structure, with any histone imbalances threating DNA integrity. Histone synthesis occurs in the cytoplasm, followed by a maturation process before their nuclear translocation. This maturation involves protein folding and the establishment of post-translational modifications. Disruptions in this pathway hinder chromatin assembly and contribute to genome instability. JMJD1B, a histone demethylase, not only regulates gene expression but also ensures a proper supply of histones H3 and H4 for the chromatin assembly. Reduced JMJD1B levels lead to the cytoplasmic accumulation of histones, causing defects in the chromatin assembly and resulting in DNA damage. To investigate the role of JMJD1B in regulating genome stability and the malignancy of melanoma tumors, we used a JMJD1B/KDM3B knockout in B16F10 mouse melanoma cells to perform tumorigenic and genome instability assays. Additionally, we analyzed the transcriptomic data of human cutaneous melanoma tumors. Our results show the enhanced tumorigenic properties of JMJD1B knockout melanoma cells both in vitro and in vivo. The γH2AX staining, Micrococcal Nuclease sensitivity, and comet assays demonstrated increased DNA damage and genome instability. The JMJD1B expression in human melanoma tumors correlates with a lower mutational burden and fewer oncogenic driver mutations. Our findings highlight JMJD1B's role in maintaining genome integrity by ensuring a proper histone supply to the nucleus, expanding its function beyond gene expression regulation. JMJD1B emerges as a crucial player in preserving genome stability and the development of melanoma, with a potential role as a safeguard against oncogenic mutations.
Collapse
Affiliation(s)
- Perla Cruz
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Diego Peña-Lopez
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Diego Figueroa
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Isidora Riobó
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Vincenzo Benedetti
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | - Francisco Saavedra
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
| | | | - Thelma M. Escobar
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alvaro Lladser
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| | - Alejandra Loyola
- Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago 8580702, Chile (D.F.); (A.L.)
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago 7510602, Chile
| |
Collapse
|
3
|
Ananthapadmanabhan V, Shows KH, Dickinson AJ, Litovchick L. Insights from the protein interaction Universe of the multifunctional "Goldilocks" kinase DYRK1A. Front Cell Dev Biol 2023; 11:1277537. [PMID: 37900285 PMCID: PMC10600473 DOI: 10.3389/fcell.2023.1277537] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Human Dual specificity tyrosine (Y)-Regulated Kinase 1A (DYRK1A) is encoded by a dosage-dependent gene located in the Down syndrome critical region of human chromosome 21. The known substrates of DYRK1A include proteins involved in transcription, cell cycle control, DNA repair and other processes. However, the function and regulation of this kinase is not fully understood, and the current knowledge does not fully explain the dosage-dependent function of this kinase. Several recent proteomic studies identified DYRK1A interacting proteins in several human cell lines. Interestingly, several of known protein substrates of DYRK1A were undetectable in these studies, likely due to a transient nature of the kinase-substrate interaction. It is possible that the stronger-binding DYRK1A interacting proteins, many of which are poorly characterized, are involved in regulatory functions by recruiting DYRK1A to the specific subcellular compartments or distinct signaling pathways. Better understanding of these DYRK1A-interacting proteins could help to decode the cellular processes regulated by this important protein kinase during embryonic development and in the adult organism. Here, we review the current knowledge of the biochemical and functional characterization of the DYRK1A protein-protein interaction network and discuss its involvement in human disease.
Collapse
Affiliation(s)
- Varsha Ananthapadmanabhan
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Kathryn H. Shows
- Department of Biology, Virginia State University, Petersburg, VA, United States
| | - Amanda J. Dickinson
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Larisa Litovchick
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
- Massey Cancer Center, Richmond, VA, United States
| |
Collapse
|
4
|
Tchou G, Ponce-Balbuena D, Liu N, Gore-Panter S, Hsu J, Liu F, Opoku E, Brubaker G, Schumacher SM, Moravec CS, Barnard J, Van Wagoner DR, Chung MK, Smith JD. Decreased FAM13B Expression Increases Atrial Fibrillation Susceptibility by Regulating Sodium Current and Calcium Handling. JACC Basic Transl Sci 2023; 8:1357-1378. [PMID: 38094680 PMCID: PMC10714175 DOI: 10.1016/j.jacbts.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 04/17/2024]
Abstract
A specific genetic variant associated with atrial fibrillation risk, rs17171731, was identified as a regulatory variant responsible for controlling FAM13B expression. The atrial fibrillation risk allele decreases FAM13B expression, whose knockdown alters the expression of many genes in stem cell-derived cardiomyocytes, including SCN2B, and led to pro-arrhythmogenic changes in the late sodium current and Ca2+ cycling. Fam13b knockout mice had increased P-wave and QT interval duration and were more susceptible to pacing-induced arrhythmias vs control mice. FAM13B expression, its regulation, and downstream effects are potential targets for investigation of patient-specific therapeutics.
Collapse
Affiliation(s)
- Gregory Tchou
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Nana Liu
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shamone Gore-Panter
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeffrey Hsu
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fang Liu
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emmanuel Opoku
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Gregory Brubaker
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sarah M. Schumacher
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christine S. Moravec
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio, USA
| | - David R. Van Wagoner
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Mina K. Chung
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jonathan D. Smith
- Departments of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Zhao X, Yu T, Tang J, Yao RE, Li N, Wang J. Two patients with KDM3B variants and new presentations of Diets-Jongmans syndrome. Neurogenetics 2023; 24:95-101. [PMID: 36757469 DOI: 10.1007/s10048-023-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/07/2023] [Indexed: 02/10/2023]
Abstract
KDM3B is located on chromosome 5q31 and encodes KDM3B, which is involved in histone demethylation and epigenetic regulation. Pathogenic KDM3B variants cause a dominantly inherited disorder presenting with intellectual disability (ID), short stature, and facial dysmorphism, named Diets-Jongmans syndrome. We describe two patients with KDM3B variants presenting with Diets-Jongmans syndrome. Genetic testing was performed because of the clinical data and a lack of a clear diagnosis in both patients. Candidate variants were verified by Sanger sequencing. After KDM3B variants were detected, in silico tools were used to predict the pathogenicity of the missense variants. A minigene assay was performed to evaluate the splicing effects of the c.5070 + 1G > A variant on KDM3B. Patient 1 mainly presented with repetitive upper respiratory tract infection and patient 2 presented with palpitation, shortness of breath, and pitting edema; both had ID. Whole exome sequencing identified variants of KDM3B. Patient 1 had the de novo KDM3B c.5070 + 1G > A variant, whereas patient 2 had the c.2828G > A (p.R943Q) variant. Transcriptional experiments of the splicing variant c.5070 + 1G > A revealed aberrant transcripts leading to truncated protein products. We found two pathogenic variants in KDM3B, one of which is novel. Both patients had additional clinical presentations, and patient 1 had transient neutropenia. KDM3B c.5070 + 1G > A is the first KDM3B splice-site variant and was identified as a germline variant. Neutropenia and cardiomyopathy are newly found presentations of Diets-Jongmans syndrome. Our report enriches our knowledge of the genotypic spectrum of the KDM3B variants and phenotypic diversity of Diets-Jongmans syndrome.
Collapse
Affiliation(s)
- Xiangyue Zhao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jie Tang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ru-En Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Liu Z, Chen X, Zhou S, Liao L, Jiang R, Xu J. The histone H3K9 demethylase Kdm3b is required for somatic growth and female reproductive function. Int J Biol Sci 2015; 11:494-507. [PMID: 25892958 PMCID: PMC4400382 DOI: 10.7150/ijbs.11849] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/01/2015] [Indexed: 11/05/2022] Open
Abstract
Kdm3b is a Jumonji C domain-containing protein that demethylates mono- and di-methylated lysine 9 of histone H3 (H3K9me1 and H3K9me2). Although the enzyme activity of Kdm3b is well characterized in vitro, its genetic and physiological function remains unknown. Herein, we generated Kdm3b knockout (Kdm3bKO) mice and observed restricted postnatal growth and female infertility in these mice. We found that Kdm3b ablation decreased IGFBP-3 expressed in the kidney by 53% and significantly reduced IGFBP-3 in the blood, which caused an accelerated degradation of IGF-1 and a 36% decrease in circulating IGF-1 concentration. We also found Kdm3b was highly expressed in the female reproductive organs including ovary, oviduct and uterus. Knockout of Kdm3b in female mice caused irregular estrous cycles, decreased 45% of the ovulation capability and 47% of the fertilization rate, and reduced 44% of the uterine decidual response, which were accompanied with a more than 50% decrease in the circulating levels of the 17beta-estradiol. Importantly, these female reproductive phenotypes were associated with significantly increased levels of H3K9me1/2/3 in the ovary and uterus. These results demonstrate that Kdm3b-mediated H3K9 demethylation plays essential roles in maintenance of the circulating IGF-1, postnatal somatic growth, circulating 17beta-estradiol, and female reproductive function.
Collapse
Affiliation(s)
- Zhaoliang Liu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA. ; 3. Institute of Cancer Prevention and Treatment, Harbin Medical University, Harbin, China
| | - Xian Chen
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Suoling Zhou
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Lan Liao
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Rui Jiang
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA. ; 2. Luzhou Medical College, Luzhou, Sichuan, China
| | - Jianming Xu
- 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA. ; 2. Luzhou Medical College, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Baik SH, Jee BK, Choi JS, Yoon HK, Lee KH, Kim YH, Lim Y. DNA profiling by array comparative genomic hybridization (CGH) of peripheral blood mononuclear cells (PBMC) and tumor tissue cell in non-small cell lung cancer (NSCLC). Mol Biol Rep 2009; 36:1767-78. [PMID: 18975135 DOI: 10.1007/s11033-008-9380-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
Abstract
Lung tumor cell DNA copy number alteration (CNA) was expected to display specific patterns such as a large-scale amplification or deletion of chromosomal arms, as previously published data have reported. Peripheral blood mononuclear cell (PBMC) CNA however, was expected to show normal variations in cancer patients as well as healthy individuals, and has thus been used as normal control DNA samples in various published studies. We performed array CGH to measure and compare genetic changes in terms of the CNA of PBMC samples as well as DNA isolated from tumor tissue samples, obtained from 24 non-small cell lung cancer patients. Contradictory to expectations, our studies showed that the PBMC CNA also showed chromosomal variant regions. The list included well-known tumor-associated NTRK1, FGF8, TP53, and TGFbeta1 genes and potentially novel oncogenes such as THPO (3q27.1), JMJD1B, and EGR1 (5q31.2), which was investigated in this study. The results of this study highlighted the connection between PBMC and tumor cell genomic DNA in lung cancer patients. However, the application of these studies to cancer prognosis may pose a challenge due to the large amount of information contained in genetic predisposition and family history that has to be processed for useful downstream clinical applications.
Collapse
Affiliation(s)
- Seung-Ho Baik
- Catholic Neuroscience Center, The Catholic University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
8
|
Knebel J, De Haro L, Janknecht R. Repression of transcription by TSGA/Jmjd1a, a novel interaction partner of the ETS protein ER71. J Cell Biochem 2006; 99:319-29. [PMID: 16619273 DOI: 10.1002/jcb.20945] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Testis-specific gene A (TSGA) was originally identified in rat and shown to be expressed within the testes. Here, we have cloned the murine homolog [also known as jumonji domain-containing 1a (Jmjd1a)] and for the first time characterized the TSGA protein and its functions. Although murine TSGA is expressed in testes, its mRNA is also present in many other tissues, including heart, thymus, liver, and skin. Immunostaining revealed that TSGA is a nuclear protein, whose N-terminus contains a putative nuclear localization signal. TSGA displays significant homology to a suspected tumor suppressor and coactivator (5qNCA), to a thyroid hormone receptor interacting protein (TRIP8) and to the corepressor Hairless, pointing at a role of TSGA in transcription regulation. Indeed, TSGA contains several functional transcription repression domains. In addition, TSGA interacts both in vitro and in vivo with ER71 (ETS related 71), a transcription factor that is expressed in the testes of adult mice and during embryogenesis. Specifically, the N-terminus of TSGA and the C-terminus of ER71 are primarily engaged in their complex formation. Furthermore, TSGA impairs the ability of ER71 to activate transcription from the matrix metalloproteinase-1 promoter. Thus, TSGA may modulate the function of ER71 and thereby affect spermatogenesis as well as embryonic development.
Collapse
Affiliation(s)
- Julia Knebel
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
9
|
Kamakari S, Roussou A, Jefferson A, Ragoussis I, Anagnou NP. Structural analysis and expression profile of a novel gene on chromosome 5q23 encoding a Golgi-associated protein with six splice variants, and involved within the 5q deletion of a Ph(-) CML patient. Leuk Res 2005; 29:17-31. [PMID: 15541471 DOI: 10.1016/j.leukres.2004.04.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 04/28/2004] [Indexed: 10/26/2022]
Abstract
We have identified a novel gene, upstream of the cytokine gene cluster region in 5q23-31, residing within one of the most common deleted segments associated with MDS. The novel gene exhibits significant alternative splicing generating at least six splice variants encoding four putative proline-rich protein isoforms, one of which is Golgi-associated. The gene is ubiquitously expressed and conserved among species with the C. elegans homologue being the most interesting, since it resides within an operon with two other genes, phospholipase D and dishevelled, a member of the Wnt pathway, suggesting a functional association. In addition, the novel gene and other key regulatory genes of the region, such IL3, Ril, AF5q31 and TCF-1, were found to be deleted in an atypical CML case, thus underscoring the significance of this subregion in the leukemogenesis process.
Collapse
Affiliation(s)
- Smaragda Kamakari
- Institute of Molecular Biology and Biotechnology, University of Crete School of Medicine, FORTH, Vassilika Vouton, P.O. Box 1527, 71 110 Heraklion, Greece.
| | | | | | | | | |
Collapse
|
10
|
Jun L, Balboni AL, Laitman JT, Bergemann AD. Isolation of DNTNP, which encodes a potential nuclear protein that is expressed in the developing, dorsal neural tube. Dev Dyn 2002; 224:116-23. [PMID: 11984880 DOI: 10.1002/dvdy.10090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have performed a screen to identify genes expressed in a functionally significant anatomic region of the vertebrate dorsal neural tube, the dorsomedial roof of the third ventricle (DMRTV). The DMRTV includes the primordia of a series of circumventricular organs. The screen searched for genes preferentially expressed in the DMRTV of stage 18-25 chicken embryos, relative to their telencephala and ventral diencephalon. Through this screen, we have cloned a series of genes strongly expressed in the dorsal but not ventral neural tube. We describe here the first of these genes, DNTNP (dorsal neural tube nuclear protein). DNTNP is highly expressed in the dorsal regions of the diencephalon, the midbrain, the hindbrain, and the spinal neural tube in the chicken stage 18 embryo. Expression is also observed in the telencephalon, the branchial arches, the heart, and somites, but is absent from the presomitic mesoderm. The amino acid sequence of DNTNP reveals that it belongs to an uncharacterized protein family with at least two additional members. All the members of this family possess a basic region reminiscent of a nuclear localization signal (NLS). We demonstrate that the putative NLS of DNTNP can indeed direct nuclear localization of green fluorescent protein (GFP). The dorsal localization of DNTNP in the early embryonic central nervous system suggests roles for this molecule in specifying dorsal cell fates within the neural tube.
Collapse
Affiliation(s)
- Lin Jun
- The Lillian and Henry M. Stratton-Hans Popper, Department of Pathology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
11
|
Dubourg C, Toutain B, Hélias C, Henry C, Lessard M, Le Gall JY, Le Treut A, Guenet L. Evaluation of ETF1/eRF1, mapping to 5q31, as a candidate myeloid tumor suppressor gene. CANCER GENETICS AND CYTOGENETICS 2002; 134:33-7. [PMID: 11996793 DOI: 10.1016/s0165-4608(01)00605-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Interstitial deletion of the long arm of chromosome 5 is a recurrent abnormality, mainly associated with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and it has been proposed therefore that the deleted region may contain a myeloid tumor suppressor gene. We have recently mapped a human translation termination factor gene, ETF1, to band 5q31 at D5S500, and thus to the smallest commonly deleted segment. We have evaluated ETF1 as a candidate myeloid tumor suppressor gene by analysis of the human acute myeloid leukemia cell line HL60, and of patients suffering from malignant myeloid diseases with cytogenetically-defined abnormalities of chromosome 5. Fluorescence in situ hybridization analysis revealed hemizygous loss of the ETF1 locus in HL60 cells and in four of five leukemic samples, but no inactivating mutations were identified by sequencing of the remaining ETF1 allele.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Chromosome Mapping
- Chromosomes, Human, Pair 5/genetics
- DNA Mutational Analysis
- DNA, Neoplasm/chemistry
- DNA, Neoplasm/genetics
- Female
- Genes, Tumor Suppressor
- HL-60 Cells
- Humans
- In Situ Hybridization, Fluorescence
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Male
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/pathology
- Peptide Termination Factors/genetics
Collapse
Affiliation(s)
- Christèle Dubourg
- Département de Biochimie et Biologie Moléculaire, UMR 6061, Faculté de Médecine CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hu Z, Gomes I, Horrigan SK, Kravarusic J, Mar B, Arbieva Z, Chyna B, Fulton N, Edassery S, Raza A, Westbrook CA. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene 2001; 20:6946-54. [PMID: 11687974 DOI: 10.1038/sj.onc.1204850] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2001] [Revised: 07/09/2001] [Accepted: 07/17/2001] [Indexed: 11/08/2022]
Abstract
Interstitial deletion or loss of chromosome 5, del(5q) or -5, is a frequent finding in myeloid leukemias and myelodysplasias, suggesting the presence of a tumor suppressor gene within the deleted region. In our search for this gene, we identified a candidate, 5qNCA (LOC51780), which lies within a consistently-deleted segment of 5q31. 5qNCA expresses a 7.2-kb transcript with a 5286-bp open reading frame which is present at high levels in heart, skeletal muscle, kidney, placenta, and liver as well as CD34+ cells and AML cell lines. 5qNCA encodes a 191-kD nuclear protein which contains a highly-conserved C-terminus containing a zinc finger with the unique spacing Cys-X2-Cys-X7-His-X2-Cys-X2-Cys-X4-Cys-X2-Cys and a jmjC domain, which is often found in proteins that regulate chromatin remodeling. Expression of 5qNCA in a del(5q) cell line results in suppression of clonogenic growth. Preliminary sequence results in AML and MDS samples and cell lines has revealed a possible mutation in the KG-1 cell line resulting in a THR to ALA substitution that has not been found in over 100 normal alleles to date. We propose 5qNCA is a good candidate for the del(5q) tumor suppressor gene based on its predicted function and growth suppressive activities, and suggest that further mutational and functional study of this interesting gene is warranted.
Collapse
MESH Headings
- Acute Disease
- Amino Acid Motifs
- Amino Acid Sequence
- Cell Division
- Chromosomes, Human, Pair 5
- Cloning, Molecular
- Genes, Tumor Suppressor
- Humans
- Jumonji Domain-Containing Histone Demethylases
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid/pathology
- Molecular Sequence Data
- Mutation
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- RNA, Neoplasm/biosynthesis
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Z Hu
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607-7170, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lai F, Godley LA, Joslin J, Fernald AA, Liu J, Espinosa R, Zhao N, Pamintuan L, Till BG, Larson RA, Qian Z, Le Beau MM. Transcript map and comparative analysis of the 1.5-Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics 2001; 71:235-45. [PMID: 11161817 DOI: 10.1006/geno.2000.6414] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Loss of a whole chromosome 5, or a del(5q), are recurring abnormalities in malignant myeloid diseases. In previous studies, we defined a commonly deleted segment (CDS) of 1.5 Mb between D5S479 and D5S500 in patients with a del(5q), and we established a P1 artificial chromosome-based contig encompassing this interval. To identify candidate tumor suppressor genes (TSGs), we developed a transcript map of the CDS. The map contains 18 genes and 12 expressed sequence tags/UniGenes. Among the 18 genes are 10 genes that were previously cloned and 8 novel genes. The newly identified genes include CDC23, which encodes a component of the anaphase-promoting complex; RAB6KIFL, which encodes a kinesin-like protein involved in organelle transport; and KLHL3, which encodes a human homologue of the Drosophila ring canal protein, kelch. We determined the intron/exon organization of 14 genes and eliminated each gene as a classical TSG by mutation analysis. In addition, we established a single-nucleotide polymorphism map as well as a map of the mouse genome that is syntenic to the CDS of human 5q31. The development of a transcription map will facilitate the molecular cloning of a myeloid leukemia suppressor gene on 5q.
Collapse
Affiliation(s)
- F Lai
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|