1
|
Zhu M, Jin S, Li T. A novel compound heterozygous mutation in the DNAH9 gene causes primary ciliary dyskinesia. QJM 2024; 117:818-820. [PMID: 39115416 DOI: 10.1093/qjmed/hcae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Indexed: 12/29/2024] Open
Affiliation(s)
- M Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - S Jin
- Department of Respiration, Hunan Children's Hospital, Changsha, China
| | - T Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Schatten H. The Impact of Centrosome Pathologies on Ovarian Cancer Development and Progression with a Focus on Centrosomes as Therapeutic Target. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:37-64. [PMID: 38805124 DOI: 10.1007/978-3-031-58311-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The impact of centrosome abnormalities on cancer cell proliferation has been recognized as early as 1914 (Boveri, Zur Frage der Entstehung maligner Tumoren. Jena: G. Fisher, 1914), but vigorous research on molecular levels has only recently started when it became fully apparent that centrosomes can be targeted for new cancer therapies. While best known for their microtubule-organizing capabilities as MTOC (microtubule organizing center) in interphase and mitosis, centrosomes are now further well known for a variety of different functions, some of which are related to microtubule organization and consequential activities such as cell division, migration, maintenance of cell shape, and vesicle transport powered by motor proteins, while other functions include essential roles in cell cycle regulation, metabolic activities, signal transduction, proteolytic activity, and several others that are now heavily being investigated for their role in diseases and disorders (reviewed in Schatten and Sun, Histochem Cell Biol 150:303-325, 2018; Schatten, Adv Anat Embryol Cell Biol 235:43-50, 2022a; Schatten, Adv Anat Embryol Cell Biol 235:17-35, 2022b).Cancer cell centrosomes differ from centrosomes in noncancer cells in displaying specific abnormalities that include phosphorylation abnormalities, overexpression of specific centrosomal proteins, abnormalities in centriole and centrosome duplication, formation of multipolar spindles that play a role in aneuploidy and genomic instability, and several others that are highlighted in the present review on ovarian cancer. Ovarian cancer cell centrosomes, like those in other cancers, display complex abnormalities that in part are based on the heterogeneity of cells in the cancer tissues resulting from different etiologies of individual cancer cells that will be discussed in more detail in this chapter.Because of the critical role of centrosomes in cancer cell proliferation, several lines of research are being pursued to target centrosomes for therapeutic intervention to inhibit abnormal cancer cell proliferation and control tumor progression. Specific centrosome abnormalities observed in ovarian cancer will be addressed in this chapter with a focus on targeting such aberrations for ovarian cancer-specific therapies.
Collapse
Affiliation(s)
- Heide Schatten
- University of Missouri-Columbia Department of Veterinary Pathobiology, Columbia, MO, USA.
| |
Collapse
|
3
|
Levkova M, Radanova M, Angelova L. Potential role of dynein-related genes in the etiology of male infertility: A systematic review and a meta-analysis. Andrology 2022; 10:1484-1499. [PMID: 36057791 DOI: 10.1111/andr.13287] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The dynein-related genes may have a role in the etiology of male infertility, particularly in cases of impaired sperm motility. OBJECTIVES The goal of this review is to compile a list of the most important dynein-related candidate genes that may contribute to male factor infertility. MATERIALS AND METHODS Databases were searched using the keywords "dynein", "male", "infertility" and by applying strict inclusion criteria. A meta-analysis was also performed by using the eligible case-control studies. The odd ratios (OR), the Z-test score, and the level of significance were determined using a fixed model with a p value of 0.05. Funnel plots were used to check for publication bias. RESULTS There were 35 studies that met the inclusion criteria. There were a total of fifteen genes responsible for the production of dynein structural proteins, the production of dynein assembling factors, and potentially associated with male infertility. A total of five case-control studies were eligible for inclusion in the meta-analysis. Variants in the dynein-related genes were linked to an increased the risk of male infertility (OR = 21.52, 95% Confidence Interval (CI) 8.34 - 55.50, Z test = 6.35, p < 0.05). The percentage of heterogeneity, I2 , was 47.00%. The lack of variants in the dynein genes was an advantage and this was statistically significant. DISCUSSION The results from the present review illustrate that pathogenic variants in genes both for dynein synthesis and for dynein assembly factors could be associated with isolated cases of male infertility without any other symptoms. CONCLUSIONS The genes addressed in this study, which are involved in both the production and assembly of dynein, could be used as molecular targets for future research into the etiology of sperm motility problems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mariya Levkova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria.,Laboratory of Medical Genetics, St. Marina Hospital, Hristo Smirnenski Blv 1, Varna, 9000, Bulgaria
| | - Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University Varna, Tzar Osvoboditel Str 84b, Varna, 9000, Bulgaria
| | - Lyudmila Angelova
- Department of Medical Genetics, Medical University Varna, Marin Drinov Str 55, Varna, 9000, Bulgaria
| |
Collapse
|
4
|
Ye Z, Jiang L, Zhao M, Liu J, Dai H, Hou Y, Wang Z. Epigenome-wide screening of CpG markers to develop a multiplex methylation SNaPshot assay for age prediction. Leg Med (Tokyo) 2022; 59:102115. [PMID: 35810521 DOI: 10.1016/j.legalmed.2022.102115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/05/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022]
Abstract
Age prediction can provide important information about the contributors of biological evidence left at crime scenes. DNA methylation has been regarded as the most promising age-predictive biomarker. Measuring themethylation level at the genome-wide scaleis an important step to screen specific markers for forensic age prediction. In present study, we screened out five age-related CpG sites from the public EPIC BeadChip data and evaluated them in a training set (115 blood) by multiplex methylation SNaPshot assay. Through full subset regression, the five markers were narrowed down to three, namely cg10501210 (C1orf132), cg16867657 (ELOVL2), and cg13108341 (DNAH9), of which the last one was a newly discovered age-related CpG site. An age prediction model was built based on these three markers, explaining 86.8% of the variation of age with a mean absolute deviation (MAD) of 4.038 years. Then, the multiplex methylation SNaPshot assay was adjusted according to the age prediction model. Considering that bloodstains are one of the most common biological samples in practical cases, three validation sets composed of 30 blood, 30 fresh bloodstains and 30 aged bloodstains were used for evaluation of the age prediction model. The MAD of each set was estimated as 4.734, 4.490, and 5.431 years, respectively, suggesting that our age prediction model was applicable for age prediction for blood and bloodstains in Chinese Han population of 11-71 age. In general, this study describes a workflow of screening CpG markers from public chip data and presents a 3-CpG markers model for forensic age prediction.
Collapse
Affiliation(s)
- Ziwei Ye
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing 100088, China
| | - Lirong Jiang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengyao Zhao
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yiping Hou
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Zheng Wang
- Institute of Forensic Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Key Laboratory of Evidence Science (China University of Political Science and Law), Ministry of Education, Beijing 100088, China.
| |
Collapse
|
5
|
Arora D, Park JE, Lim D, Cho IC, Kang KS, Kim TH, Park W. Multi-omics approaches for comprehensive analysis and understanding of the immune response in the miniature pig breed. PLoS One 2022; 17:e0263035. [PMID: 35587479 PMCID: PMC9119490 DOI: 10.1371/journal.pone.0263035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
The porcine immune system has an important role in pre-clinical studies together with understanding the biological response mechanisms before entering into clinical trials. The size distribution of the Korean minipig is an important feature that make this breed ideal for biomedical research and safe practice in post clinical studies. The extremely tiny (ET) minipig serves as an excellent model for various biomedical research studies, but the comparatively frail and vulnerable immune response to the environment over its Large (L) size minipig breed leads to additional after born care. To overcome this pitfall, comparative analysis of the genomic regions under selection in the L type breed could provide a better understanding at the molecular level and lead to the development of an enhanced variety of ET type minipig. In this study, we utilized whole genome sequencing (WGS) to identify traces of artificial selection and integrated them with transcriptome data generated from blood samples to find strongly selected and differentially expressed genes of interest. We identified a total of 35 common genes among which 7 were differentially expressed and showed selective sweep in the L type over the ET type minipig breed. The stabilization of these genes were further confirmed using nucleotide diversity analysis, and these genes could serve as potential biomarkers for the development of a better variety of ET type pig breed.
Collapse
Affiliation(s)
- Devender Arora
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - In-Cheol Cho
- Subtropical Livestock Research Institute, National Institute of Animal Science, RDA, Jeju, Korea
| | - Kyung Soo Kang
- Department of Animal Sciences, Shingu College, Jungwon-gu, Seongnam-si, Korea
| | - Tae-Hun Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| |
Collapse
|
6
|
Tang D, Sha Y, Gao Y, Zhang J, Cheng H, Zhang J, Ni X, Wang C, Xu C, Geng H, He X, Cao Y. Novel variants in DNAH9 lead to nonsyndromic severe asthenozoospermia. Reprod Biol Endocrinol 2021; 19:27. [PMID: 33610189 PMCID: PMC7896388 DOI: 10.1186/s12958-021-00709-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Asthenozoospermia is one of the most common causes of male infertility, and its genetic etiology is poorly understood. DNAH9 is a core component of outer dynein arms in cilia and flagellum. It was reported that variants of DNAH9 (OMIM: 603330) might cause primary ciliary dyskinesia (PCD). However, variants in DNAH9 lead to nonsyndromic severe asthenozoospermia have yet to be reported. METHODS Whole exome sequencing (WES) was performed for two individuals with nonsyndromic severe asthenozoospermia from two non-consanguineous families, and Sanger sequencing was performed to verify the identified variants and parental origins. Sperm routine analysis, sperm vitality rate and sperm morphology analysis were performed according the WHO guidelines 2010 (5th edition). Transmission electron microscopy (TEM, TECNAI-10, 80 kV, Philips, Holland) was used to observe ultrastructures of sperm tail. Quantitative realtime-PCR and immunofluorescence staining were performed to detect the expression of DNAH9-mRNA and location of DNAH9-protein. Furthermore, assisted reproductive procedures were applied. RESULTS By WES and Sanger sequencing, compound heterozygous DNAH9 (NM_001372.4) variants were identified in the two individuals with nonsyndromic severe asthenozoospermia (F1 II-1: c.302dupT, p.Leu101fs*47 / c.6956A > G, p.Asp2319Gly; F2 II-1: c.6294 T > A, p.Phe2098Leu / c.10571 T > A, p.Leu3524Gln). Progressive rates less than 1% with normal sperm morphology rates and normal vitality rates were found in both of the two subjects. No respiratory phenotypes, situs inversus or other malformations were found by detailed medical history, physical examination and lung CT scans etc. Moreover, the expression of DNAH9-mRNA was significantly decreased in sperm from F1 II-1. And expression of DNAH9 is lower in sperm tail by immunofluorescence staining in F1 II-1 compared with normal control. Notably, by intracytoplasmic sperm injection (ICSI), F1 II-1 and his partner successfully achieved clinical pregnancy. CONCLUSIONS We identified DNAH9 as a novel pathogenic gene for nonsyndromic severe asthenospermia, and ICSI can contribute to favorable pregnancy outcomes for these patients.
Collapse
Affiliation(s)
- Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, 361005, Fujian, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jingjing Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Huiru Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Junqiang Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaoqing Ni
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chuan Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei, 230022, Anhui, China.
- NHC Key Laboratory of study on abnormal gametes and reproductive tract (Anhui Medical University), No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Liu L, Gu H, Hou F, Xie X, Li X, Zhu B, Zhang J, Wei WH, Song R. Dyslexia associated functional variants in Europeans are not associated with dyslexia in Chinese. Am J Med Genet B Neuropsychiatr Genet 2019; 180:488-495. [PMID: 31264768 DOI: 10.1002/ajmg.b.32750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/30/2019] [Accepted: 06/14/2019] [Indexed: 01/09/2023]
Abstract
Genome-wide association studies (GWAS) of developmental dyslexia (DD) often used European samples and identified only a handful associations with moderate or weak effects. This study aims to identify DD functional variants by integrating the GWAS associations with tissue-specific functional data and test the variants in a Chinese DD study cohort named READ. We colocalized associations from nine DD related GWAS with expression quantitative trait loci (eQTL) derived from brain tissues and identified two eSNPs rs349045 and rs201605. Both eSNPs had supportive evidence of chromatin interactions observed in human hippocampus tissues and their respective target genes ZNF45 and DNAH9 both had lower expression in brain tissues in schizophrenia patients than controls. In contrast, an eSNP rs4234898 previously identified based on eQTL from the lymphoblastic cell lines of dyslexic children had no chromatin interaction with its target gene SLC2A3 in hippocampus tissues and SLC2A3 expressed higher in the schizophrenia patients than controls. We genotyped the three eSNPs in the READ cohort of 372 cases and 354 controls and discovered only weak associations in rs201605 and rs4234898 with three DD symptoms (p < .05). The lack of associations could be due to low power in READ but could also implicate different etiology of DD in Chinese.
Collapse
Affiliation(s)
- Lingfei Liu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaiting Gu
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Hou
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Xie
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Li
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Zhu
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Wen-Hua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ranran Song
- Department of Maternal and Child Health and MOE (Ministry of Education) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Fassad MR, Shoemark A, Legendre M, Hirst RA, Koll F, le Borgne P, Louis B, Daudvohra F, Patel MP, Thomas L, Dixon M, Burgoyne T, Hayes J, Nicholson AG, Cullup T, Jenkins L, Carr SB, Aurora P, Lemullois M, Aubusson-Fleury A, Papon JF, O’Callaghan C, Amselem S, Hogg C, Escudier E, Tassin AM, Mitchison HM. Mutations in Outer Dynein Arm Heavy Chain DNAH9 Cause Motile Cilia Defects and Situs Inversus. Am J Hum Genet 2018; 103:984-994. [PMID: 30471717 DOI: 10.1016/j.ajhg.2018.10.016] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
Motile cilia move body fluids and gametes and the beating of cilia lining the airway epithelial surfaces ensures that they are kept clear and protected from inhaled pathogens and consequent respiratory infections. Dynein motor proteins provide mechanical force for cilia beating. Dynein mutations are a common cause of primary ciliary dyskinesia (PCD), an inherited condition characterized by deficient mucociliary clearance and chronic respiratory disease coupled with laterality disturbances and subfertility. Using next-generation sequencing, we detected mutations in the ciliary outer dynein arm (ODA) heavy chain gene DNAH9 in individuals from PCD clinics with situs inversus and in one case male infertility. DNAH9 and its partner heavy chain DNAH5 localize to type 2 ODAs of the distal cilium and in DNAH9-mutated nasal respiratory epithelial cilia we found a loss of DNAH9/DNAH5-containing type 2 ODAs that was restricted to the distal cilia region. This confers a reduced beating frequency with a subtle beating pattern defect affecting the motility of the distal cilia portion. 3D electron tomography ultrastructural studies confirmed regional loss of ODAs from the distal cilium, manifesting as either loss of whole ODA or partial loss of ODA volume. Paramecium DNAH9 knockdown confirms an evolutionarily conserved function for DNAH9 in cilia motility and ODA stability. We find that DNAH9 is widely expressed in the airways, despite DNAH9 mutations appearing to confer symptoms restricted to the upper respiratory tract. In summary, DNAH9 mutations reduce cilia function but some respiratory mucociliary clearance potential may be retained, widening the PCD disease spectrum.
Collapse
|
9
|
Dual origin of relapses in retinoic-acid resistant acute promyelocytic leukemia. Nat Commun 2018; 9:2047. [PMID: 29795382 PMCID: PMC5967331 DOI: 10.1038/s41467-018-04384-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Retinoic acid (RA) and arsenic target the t(15;17)(q24;q21) PML/RARA driver of acute promyelocytic leukemia (APL), their combination now curing over 95% patients. We report exome sequencing of 64 matched samples collected from patients at initial diagnosis, during remission, and following relapse after historical combined RA-chemotherapy treatments. A first subgroup presents a high incidence of additional oncogenic mutations disrupting key epigenetic or transcriptional regulators (primarily WT1) or activating MAPK signaling at diagnosis. Relapses retain these cooperating oncogenes and exhibit additional oncogenic alterations and/or mutations impeding therapy response (RARA, NT5C2). The second group primarily exhibits FLT3 activation at diagnosis, which is lost upon relapse together with most other passenger mutations, implying that these relapses derive from ancestral pre-leukemic PML/RARA-expressing cells that survived RA/chemotherapy. Accordingly, clonogenic activity of PML/RARA-immortalized progenitors ex vivo is only transiently affected by RA, but selectively abrogated by arsenic. Our studies stress the role of cooperating oncogenes in direct relapses and suggest that targeting pre-leukemic cells by arsenic contributes to its clinical efficacy. Historical acute promyelocytic leukemia patients treated with retinoic acid and chemotherapy sometimes did relapse. Here the authors performed exome sequencing on 64 patient's samples from diagnosis/relapse/remission and show relapse associates either with cooperating oncogenes at diagnosis, or with unexpected persistence of ancestral pre-leukemic clones.
Collapse
|
10
|
Yan Q, Weeks DE, Tiwari HK, Yi N, Zhang K, Gao G, Lin WY, Lou XY, Chen W, Liu N. Rare-Variant Kernel Machine Test for Longitudinal Data from Population and Family Samples. Hum Hered 2016; 80:126-38. [PMID: 27161037 DOI: 10.1159/000445057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 02/24/2016] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE The kernel machine (KM) test reportedly performs well in the set-based association test of rare variants. Many studies have been conducted to measure phenotypes at multiple time points, but the standard KM methodology has only been available for phenotypes at a single time point. In addition, family-based designs have been widely used in genetic association studies; therefore, the data analysis method used must appropriately handle familial relatedness. A rare-variant test does not currently exist for longitudinal data from family samples. Therefore, in this paper, we aim to introduce an association test for rare variants, which includes multiple longitudinal phenotype measurements for either population or family samples. METHODS This approach uses KM regression based on the linear mixed model framework and is applicable to longitudinal data from either population (L-KM) or family samples (LF-KM). RESULTS In our population-based simulation studies, L-KM has good control of Type I error rate and increased power in all the scenarios we considered compared with other competing methods. Conversely, in the family-based simulation studies, we found an inflated Type I error rate when L-KM was applied directly to the family samples, whereas LF-KM retained the desired Type I error rate and had the best power performance overall. Finally, we illustrate the utility of our proposed LF-KM approach by analyzing data from an association study between rare variants and blood pressure from the Genetic Analysis Workshop 18 (GAW18). CONCLUSION We propose a method for rare-variant association testing in population and family samples using phenotypes measured at multiple time points for each subject. The proposed method has the best power performance compared to competing approaches in our simulation study.
Collapse
Affiliation(s)
- Qi Yan
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pa., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Niu J, Liu C, Yang F, Wang Z, Wang B, Zhang Q, He Y, Qi J. Characterization and genomic structure of Dnah9, and its roles in nodal signaling pathways in the Japanese flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:167-178. [PMID: 26377939 DOI: 10.1007/s10695-015-0127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The nodal signaling pathway has been shown to play crucial roles in inducing and patterning the mesoderm and endoderm, as well as in regulating neurogenesis and left-right axis asymmetry. Here, we present the first complete cDNA and genomic sequences as well as the promoter predication of the Dnah9 gene in the Japanese flounder. The 15,558-bp-long cDNA is divided into 96 exons and spread over 138 kb of genomic DNA. Protein sequence comparison showed that it shares higher identity with other vertebrate orthologs, with an ATP binding dynein motor, AAA domain and microtubule binding stalk of dynein motor. Dnah9 exhibited maternal and ubiquitous expression in all cells of the early development stages, but became concentrated in the head at 1 DAH, as identified by qRT-PCR and in situ hybridization methods. Furthermore, after nodal signaling was inhibited, the level of Southpaw did not change significantly at early development stage (50 % epiboly) but increased significantly at late stages (27-somite stages and 1 DAH), as well as the expression of Lefty, an inhibitor of nodal signaling, increased continuously. On the other hand, the expression level of Dnah9 decreased. The transcription factor binding site of FAST-1 (SMAD interacting protein) was identified in the transcription region of Dnah9 by the promoter analysis, which might format the complexes of SMADs, FAST-1 and the transcription region of Dnah9 served as a bridge of Dnah9 and nodal signaling. All evidences indicated that Dnah9 might be downstream of nodal during the early development stages, and an indirect function through SMADs for nodal signaling pathway.
Collapse
Affiliation(s)
- Jingjing Niu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Conghui Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Fang Yang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Zhenwei Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Bo Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Quanqi Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China
| | - Yan He
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Jie Qi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
12
|
Sha YW, Ding L, Li P. Management of primary ciliary dyskinesia/Kartagener's syndrome in infertile male patients and current progress in defining the underlying genetic mechanism. Asian J Androl 2014; 16:101-6. [PMID: 24369140 PMCID: PMC3901865 DOI: 10.4103/1008-682x.122192] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Kartagener's syndrome (KS) is an autosomal recessive genetic disease accounting for approximately 50% of the cases of primary ciliary dyskinesia (PCD). As it is accompanied by many complications, PCD/KS severely affects the patient's quality of life. Therapeutic approaches for PCD/KS aim to enhance prevention, facilitate rapid definitive diagnosis, avoid misdiagnosis, maintain active treatment, control infection and postpone the development of lesions. In male patients, sperm flagella may show impairment in or complete absence of the ability to swing, which ultimately results in male infertility. Assisted reproductive technology will certainly benefit such patients. For PCD/KS patients with completely immotile sperm, intracytoplasmic sperm injection may be very important and even indispensable. Considering the number of PCD/KS susceptibility genes and mutations that are being identified, more extensive genetic screening is indispensable in patients with these diseases. Moreover, further studies into the potential molecular mechanisms of these diseases are required. In this review, we summarize the available information on various aspects of this disease in order to delineate the therapeutic objectives more clearly, and clarify the efficacy of assisted reproductive technology as a means of treatment for patients with PCD/KS-associated infertility.
Collapse
Affiliation(s)
| | | | - Ping Li
- Reproductive Medicine Center, Maternal and Child Health Hospital of Xiamen, Xiamen, China
| |
Collapse
|
13
|
Yang KE, Kwon J, Rhim JH, Choi JS, Kim SI, Lee SH, Park J, Jang IS. Differential expression of extracellular matrix proteins in senescent and young human fibroblasts: a comparative proteomics and microarray study. Mol Cells 2011; 32:99-106. [PMID: 21573704 PMCID: PMC3887658 DOI: 10.1007/s10059-011-0064-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/20/2011] [Accepted: 04/20/2011] [Indexed: 01/16/2023] Open
Abstract
The extracellular matrix (ECM) provides an essential structural framework for cell attachment, proliferation, and differentiation, and undergoes progressive changes during senescence. To investigate changes in protein expression in the extracellular matrix between young and senescent fibroblasts, we compared proteomic data (LTQ-FT) with cDNA microarray results. The peptide counts from the proteomics analysis were used to evaluate the level of ECM protein expression by young cells and senescent cells, and ECM protein expression data were compared with the microarray data. After completing the comparative analysis, we grouped the genes into four categories. Class I included genes with increased expression levels in both analyses, while class IV contained genes with reduced expression in both analyses. Class II and Class III contained genes with an inconsistent expression pattern. Finally, we validated the comparative analysis results by examining the expression level of the specific gene from each category using Western blot analysis and semiquantitative RT-PCR. Our results demonstrate that comparative analysis can be used to identify differentially expressed genes.
Collapse
Affiliation(s)
- Kyeong Eun Yang
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Korea
- These authors contributed equally to this work
| | - Joseph Kwon
- Korea Basic Science Institute, Gwangju Center, Gwangju 500-757, Korea
- These authors contributed equally to this work
| | - Ji-Heon Rhim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jong Soon Choi
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Korea
| | - Seung Il Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| | - Seung-Hoon Lee
- Department of Biological Science, Yong-In University, Yongin 449-719, Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju 220-100, Korea
| | - Ik-Soon Jang
- Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Korea
| |
Collapse
|
14
|
Berg JS, Evans JP, Leigh MW, Omran H, Bizon C, Mane K, Knowles MR, Weck KE, Zariwala MA. Next generation massively parallel sequencing of targeted exomes to identify genetic mutations in primary ciliary dyskinesia: implications for application to clinical testing. Genet Med 2011; 13:218-29. [PMID: 21270641 PMCID: PMC3755008 DOI: 10.1097/gim.0b013e318203cff2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Advances in genetic sequencing technology have the potential to enhance testing for genes associated with genetically heterogeneous clinical syndromes, such as primary ciliary dyskinesia. The objective of this study was to investigate the performance characteristics of exon-capture technology coupled with massively parallel sequencing for clinical diagnostic evaluation. METHODS We performed a pilot study of four individuals with a variety of previously identified primary ciliary dyskinesia mutations. We designed a custom array (NimbleGen) to capture 2089 exons from 79 genes associated with primary ciliary dyskinesia or ciliary function and sequenced the enriched material using the GS FLX Titanium (Roche 454) platform. Bioinformatics analysis was performed in a blinded fashion in an attempt to detect the previously identified mutations and validate the process. RESULTS Three of three substitution mutations and one of three small insertion/deletion mutations were readily identified using this methodology. One small insertion mutation was clearly observed after adjusting the bioinformatics handling of previously described SNPs. This process failed to detect two known mutations: one single-nucleotide insertion and a whole-exon deletion. Additional retrospective bioinformatics analysis revealed strong sequence-based evidence for the insertion but failed to detect the whole-exon deletion. Numerous other variants were also detected, which may represent potential genetic modifiers of the primary ciliary dyskinesia phenotype. CONCLUSIONS We conclude that massively parallel sequencing has considerable potential for both research and clinical diagnostics, but further development is required before widespread adoption in a clinical setting.
Collapse
Affiliation(s)
- Jonathan S Berg
- Departments of Genetics, the University of North Carolina Chapel Hill, North Carolina 27599-7264, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, Knowles MR, Zariwala MA. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med 2009; 11:473-87. [PMID: 19606528 PMCID: PMC3739704 DOI: 10.1097/gim.0b013e3181a53562] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary ciliary dyskinesia is a genetically heterogeneous disorder of motile cilia. Most of the disease-causing mutations identified to date involve the heavy (dynein axonemal heavy chain 5) or intermediate(dynein axonemal intermediate chain 1) chain dynein genes in ciliary outer dynein arms, although a few mutations have been noted in other genes. Clinical molecular genetic testing for primary ciliary dyskinesia is available for the most common mutations. The respiratory manifestations of primary ciliary dyskinesia (chronic bronchitis leading to bronchiectasis, chronic rhino-sinusitis, and chronic otitis media)reflect impaired mucociliary clearance owing to defective axonemal structure. Ciliary ultrastructural analysis in most patients (>80%) reveals defective dynein arms, although defects in other axonemal components have also been observed. Approximately 50% of patients with primary ciliary dyskinesia have laterality defects (including situs inversus totalis and, less commonly, heterotaxy, and congenital heart disease),reflecting dysfunction of embryological nodal cilia. Male infertility is common and reflects defects in sperm tail axonemes. Most patients with primary ciliary dyskinesia have a history of neonatal respiratory distress, suggesting that motile cilia play a role in fluid clearance during the transition from a fetal to neonatal lung. Ciliopathies involving sensory cilia, including autosomal dominant or recessive polycystic kidney disease, Bardet-Biedl syndrome, and Alstrom syndrome, may have chronic respiratory symptoms and even bronchiectasis suggesting clinical overlap with primary ciliary dyskinesia.
Collapse
Affiliation(s)
- Margaret W. Leigh
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Jessica E. Pittman
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Johnny L. Carson
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Thomas W. Ferkol
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharon D. Dell
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephanie D. Davis
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Michael R. Knowles
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Maimoona A. Zariwala
- Department of Pathology/Lab Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
16
|
D'Angelo A, Franco B. The dynamic cilium in human diseases. PATHOGENETICS 2009; 2:3. [PMID: 19439065 PMCID: PMC2694804 DOI: 10.1186/1755-8417-2-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 05/13/2009] [Indexed: 01/09/2023]
Abstract
Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity.
Collapse
Affiliation(s)
- Anna D'Angelo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.
| | | |
Collapse
|
17
|
Yang Z, Wu J. Mouse dynein axonemal intermediate chain 2: cloning and expression. DNA Cell Biol 2008; 27:479-88. [PMID: 18547164 DOI: 10.1089/dna.2008.0752] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ovarian follicular development is a complex process. Investigation of the mechanisms regulating the initiation of follicular growth, and the growth and differentiation of preantral follicles is of great interest. In an effort to clone follicular development-related genes, we selected a partial cDNA fragment by differential display reverse-transcription PCR using total RNA extracted from 5-day-old and 10-day-old mouse ovaries, and its open reading frame was obtained by rapid amplification of cDNA ends. Sequencing showed that the fragment is the mouse dynein axonemal intermediate chain 2 gene (Dnaic2), which has an 87% homology with human DNAI2, a candidate gene for primary ciliary dyskinesia. Northern and western analyses indicate that Dnaic2 produces an approximate 3 kb mRNA that is translated into an approximate 70 kDa protein. The mRNA is predominantly expressed in mouse ovary, testis, and lung. In mouse ovaries, Dnaic2 mRNA was detected at high levels in vivo on day 10, with a subsequent decrease on days 15 and 20, in adult and old ovaries. However, Dnaic2 expression was weak on day 5. Dnaic2 protein was localized on the surface of the oocyte. No obvious fluorescence signal was detected in primordial and primary follicles, while strong signals were detected on the oocyte surface of secondary and antral follicles, in particular for secondary follicles in day 10. These data suggest that Dnaic2 plays a role in ovarian follicular development.
Collapse
Affiliation(s)
- Zhaojuan Yang
- School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | |
Collapse
|
18
|
Failly M, Saitta A, Muñoz A, Falconnet E, Rossier C, Santamaria F, de Santi MM, Lazor R, DeLozier-Blanchet CD, Bartoloni L, Blouin JL. DNAI1 mutations explain only 2% of primary ciliary dykinesia. Respiration 2008; 76:198-204. [PMID: 18434704 DOI: 10.1159/000128567] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 01/21/2008] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a rare recessive hereditary disorder characterized by dysmotility to immotility of ciliated and flagellated structures. Its main symptoms are respiratory, caused by defective ciliary beating in the epithelium of the upper airways (nose, bronchi and paranasal sinuses). Impairing the drainage of inhaled microorganisms and particles leads to recurrent infections and pulmonary complications. To date, 5 genes encoding 3 dynein protein arm subunits (DNAI1, DNAH5 and DNAH11), the kinase TXNDC3 and the X-linked RPGR have been found to be mutated in PCD. OBJECTIVES We proposed to determine the impact of the DNAI1 gene on a cohort of unrelated PCD patients (n = 104) recruited without any phenotypic preselection. METHODS We used denaturing high-performance liquid chromatography and sequencing to screen for mutations in the coding and splicing site sequences of the gene DNAI1. RESULTS Three mutations were identified: a novel missense variant (p.Glu174Lys) was found in 1 patient and 2 previously reported variants were identified (p.Trp568Ser in 1 patient and IVS1+2_3insT in 3 patients). Overall, mutations on both alleles of gene DNAI1 were identified in only 2% of our clinically heterogeneous cohort of patients. CONCLUSION We conclude that DNAI1 gene mutation is not a common cause of PCD, and that major or several additional disease gene(s) still remain to be identified before a sensitive molecular diagnostic test can be developed for PCD.
Collapse
Affiliation(s)
- Mike Failly
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, de Santi MM, Olbrich H, Fliegauf M, Failly M, Liebers U, Collura M, Gaedicke G, Mundlos S, Wahn U, Blouin JL, Niggemann B, Omran H, Antonarakis SE, Bartoloni L. Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 mutations. Hum Mutat 2008; 29:289-98. [PMID: 18022865 DOI: 10.1002/humu.20656] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Primary ciliary dyskinesia (PCD) is an inherited disorder characterized by perturbed or absent beating of motile cilia, which is referred to as Kartagener syndrome (KS) when associated with situs inversus. We present a German family in which five individuals have PCD and one has KS. PCD was confirmed by analysis of native and cultured respiratory ciliated epithelia with high-speed video microscopy. Respiratory ciliated cells from the affected individuals showed an abnormal nonflexible beating pattern with a reduced cilium bending capacity and a hyperkinetic beat. Interestingly, the axonemal ultrastructure of these respiratory cilia was normal and outer dynein arms were intact, as shown by electron microscopy and immunohistochemistry. Microsatellite analysis indicated genetic linkage to the dynein heavy chain DNAH11 on chromosome 7p21. All affected individuals carried the compound heterozygous DNAH11 mutations c.12384C>G and c.13552_13608del. Both mutations are located in the C-terminal domain and predict a truncated DNAH11 protein (p.Y4128X, p.A4518_A4523delinsQ). The mutations described here were not present in a cohort of 96 PCD patients. In conclusion, our findings support the view that DNAH11 mutations indeed cause PCD and KS, and that the reported DNAH11 nonsense mutations are associated with a normal axonemal ultrastructure and are compatible with normal male fertility.
Collapse
Affiliation(s)
- Georg C Schwabe
- Department for General Pediatrics, Charité University Hospital, Campus Virchow, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Morillas HN, Zariwala M, Knowles MR. Genetic causes of bronchiectasis: primary ciliary dyskinesia. Respiration 2007; 74:252-63. [PMID: 17534128 DOI: 10.1159/000101783] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder reflecting abnormalities in the structure and function of motile cilia and flagella, causing impairment of mucociliary clearance, left-right body asymmetry, and sperm motility. Clinical manifestations include respiratory distress in term neonates, recurrent otosinopulmonary infections, bronchiectasis, situs inversus and/or heterotaxy, and male infertility. Genetic discoveries are emerging from family-based linkage studies and from testing candidate genes. Mutations in 2 genes, DNAI1 and DNAH5, frequently cause PCD as an autosomal recessive disorder. A clinical genetic test has been recently established for DNAI1 and DNAH5, which involves sequencing 9 exons that harbor the most common mutations. This approach will identify at least one mutation in these 2 genes in approximately 25% of PCD patients. If biallelic mutations are identified, the test is diagnostic. If only one mutation is identified, the full gene may be sequenced to search for a trans-allelic mutation. As more disease-causing gene mutations are identified, broader genetic screening panels will further identify patients with PCD. Ongoing investigations are beginning to identify genetic mutations in novel clinical phenotypes for PCD, such as congenital heart disease and male infertility, and new associations are being established between 'ciliary' genetic mutations and clinical phenotypes.
Collapse
Affiliation(s)
- Hilda N Morillas
- CF/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27599-7248, USA.
| | | | | |
Collapse
|
21
|
Abstract
Cilia, hair-like structures extending from the cell membrane, perform diverse biological functions. Primary (genetic) defects in the structure and function of sensory and motile cilia result in multiple ciliopathies. The most prominent genetic abnormality involving motile cilia (and the respiratory tract) is primary ciliary dyskinesia (PCD). PCD is a rare, usually autosomal recessive, genetically heterogeneous disorder characterized by sino-pulmonary disease, laterality defects, and male infertility. Ciliary ultrastructural defects are identified in approximately 90% of PCD patients and involve the outer dynein arms, inner dynein arms, or both. Diagnosing PCD is challenging and requires a compatible clinical phenotype together with tests such as ciliary ultrastructural analysis, immunofluorescent staining, ciliary beat assessment, and/or nasal nitric oxide measurements. Recent mutational analysis demonstrated that 38% of PCD patients carry mutations of the dynein genes DNAI1 and DNAH5. Increased understanding of the pathogenesis will aid in better diagnosis and treatment of PCD.
Collapse
Affiliation(s)
- Maimoona A Zariwala
- Department of Medicine, Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
22
|
Duriez B, Duquesnoy P, Escudier E, Bridoux AM, Escalier D, Rayet I, Marcos E, Vojtek AM, Bercher JF, Amselem S. A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A 2007; 104:3336-41. [PMID: 17360648 PMCID: PMC1805560 DOI: 10.1073/pnas.0611405104] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Thioredoxins belong to a large family of enzymatic proteins that function as general protein disulfide reductases, therefore participating in several cellular processes via redox-mediated reactions. So far, none of the 18 members of this family has been involved in human pathology. Here we identified TXNDC3, which encodes a thioredoxin-nucleoside diphosphate kinase, as a gene implicated in primary ciliary dyskinesia (PCD), a genetic condition characterized by chronic respiratory tract infections, left-right asymmetry randomization, and male infertility. We show that the disease, which segregates as a recessive trait, results from the unusual combination of the following two transallelic defects: a nonsense mutation and a common intronic variant found in 1% of control chromosomes. This variant affects the ratio of two physiological TXNDC3 transcripts: the full-length isoform and a novel isoform, TXNDC3d7, carrying an in-frame deletion of exon 7. In vivo and in vitro expression data unveiled the physiological importance of TXNDC3d7 (whose expression was reduced in the patient) and the corresponding protein that was shown to bind microtubules. PCD is known to result from defects of the axoneme, an organelle common to respiratory cilia, embryonic nodal cilia, and sperm flagella, containing dynein arms, with, to date, the implication of genes encoding dynein proteins. Our findings, which identify a another class of molecules involved in PCD, disclose the key role of TXNDC3 in ciliary function; they also point to an unusual mechanism underlying a Mendelian disorder, which is an SNP-induced modification of the ratio of two physiological isoforms generated by alternative splicing.
Collapse
Affiliation(s)
- Bénédicte Duriez
- *Institut National de la Santé et de la Recherche Médicale, Unité 654, F-94000 Créteil, France
- Faculté de Médecine, Université Paris 12, IFR10, F-94000 Créteil, France
| | - Philippe Duquesnoy
- *Institut National de la Santé et de la Recherche Médicale, Unité 654, F-94000 Créteil, France
- Faculté de Médecine, Université Paris 12, IFR10, F-94000 Créteil, France
| | - Estelle Escudier
- Institut National de la Santé et de la Recherche Médicale, Unité 651, F-94000 Créteil, France
- Université Pierre et Marie Curie, Paris 75005, France
- Groupe Hospitalier Pitié-Salpêtrière, Département de Génétique-Cytogénétique-Embryologie, Assistance Publique–Hôpitaux de Paris, 75013 Paris, France
| | - Anne-Marie Bridoux
- *Institut National de la Santé et de la Recherche Médicale, Unité 654, F-94000 Créteil, France
- Faculté de Médecine, Université Paris 12, IFR10, F-94000 Créteil, France
| | - Denise Escalier
- Hôpital de Bicêtre, Service d'Andrologie, Assistance Publique–Hôpitaux de Paris, Le Kremlin-Bicêtre 94275, France
| | - Isabelle Rayet
- **Service de Réanimation Pédiatrique, Hôpital Nord, Centre Hospitalier Universitaire de Saint-Etienne, F-42055 Saint-Etienne Cedex 2, France
| | - Elisabeth Marcos
- Faculté de Médecine, Université Paris 12, IFR10, F-94000 Créteil, France
| | - Anne-Marie Vojtek
- Laboratoire de Microscopie électronique, Service d'Anatomie Pathologique, Centre Hospitalier Intercommunal de Créteil, F-94000 Créteil, France; and
| | - Jean-François Bercher
- Département de Mathématiques, Ecole Supérieure d'Ingénieurs en Electronique et Electrotechnique, Cité Descartes, F-93162 Noisy-Le-Grand, France
| | - Serge Amselem
- *Institut National de la Santé et de la Recherche Médicale, Unité 654, F-94000 Créteil, France
- Université Pierre et Marie Curie, Paris 75005, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Rashid S, Breckle R, Hupe M, Geisler S, Doerwald N, Neesen J. The murine Dnali1 gene encodes a flagellar protein that interacts with the cytoplasmic dynein heavy chain 1. Mol Reprod Dev 2007; 73:784-94. [PMID: 16496424 DOI: 10.1002/mrd.20475] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Axonemal dyneins are large motor protein complexes generating the force for the movement of eukaryotic cilia and flagella. Disruption of axonemal dynein function leads to loss of ciliary motility and can result in male infertility or lateralization defects. Here, we report the molecular analysis of a murine gene encoding the dynein axonemal light intermediate chain Dnali1. The Dnali1 gene is localized on chromosome 4 and consists of six exons. It is predominantly expressed within the testis but at a lower level Dnali1 transcripts were also observed in different murine tissues, which exhibit cilia. Two transcript variants were detected, generated by the usage of two alternative polyadenylation signals within exon 6. Antibodies were raised against a GST-Dnali1 fusion protein and used to localize Dnali1 within differentiating male germ cells. Dnali1 is strongly expressed in spermatids but was also detected in spermatocytes. Moreover, the Dnali1 protein was localized in cilia of the trachea as well as in flagella of mature sperm supporting its function as an axonemal dynein. To identify putative Dnali1 interacting polypeptides, a yeast two-hybrid approach was performed using a murine testicular cDNA library. By this assay, the C-terminal part of the cytoplasmic dynein heavy chain 1 was identified as a putative interacting polypeptide of Dnali1. The interaction between the axonemal and the cytoplasmic dynein fragments was proven by co-immuno and co-localization experiments.
Collapse
Affiliation(s)
- Sajid Rashid
- Institute of Human Genetics, University of Goettingen, Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Roomans GM, Ivanovs A, Shebani EB, Johannesson M. Transmission electron microscopy in the diagnosis of primary ciliary dyskinesia. Ups J Med Sci 2006; 111:155-68. [PMID: 16553254 DOI: 10.3109/2000-1967-010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disease with extensive genetic heterogeneity. Dyskinetic or completely absent motility of cilia predisposes to recurrent pulmonary and upper respiratory tract infections resulting in bronchiectasis. Also infections of the middle ear are common due to lack of ciliary movement in the Eustachian tube. Men have reduced fertility due to spermatozoa with absent motility or abnormalities in the ductuli efferentes. Female subfertility and tendency to ectopic pregnancy has also been suggested. Headache, a common complaint in PCD patients, has been associated with absence of cilia in the brain ventricles, leading to decreased circulation of the cerebrospinal fluid. Finally, half of the patients with PCD has situs inversus, probably due to the absence of ciliary motility in Hensen's node in the embryo, which is responsible for the unidirectional flow of fluid on the back of the embryo, which determines sidedness. PCD, which is an inborn disease, should be distinguished from secondary ciliary dyskinesia (SCD) which is an acquired disease. Transmission electron microscopy is the most commonly used method for diagnosis of PCD, even though alternative methods, such as determination of ciliary motility and measurement of exhaled nitric oxide (NO) may be considered. The best method to distinguish PCD from SCD is the determination of the number of inner and outer dynein arms, which can be carried out reliably on a limited number of ciliary cross-sections. There is also a significant difference in the ciliary orientation (determined by the direction of a line drawn through the central microtubule pair) between PCD and SCD, but there is some overlap in the values, making this parameter less suitable to distinguish PCD from SCD.
Collapse
Affiliation(s)
- Godfried M Roomans
- Department of Medical Cell Biology, University of Uppsala, Box 571, Uppsala, Sweden
| | | | | | | |
Collapse
|
25
|
Pazour GJ, Agrin N, Walker BL, Witman GB. Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J Med Genet 2006; 43:62-73. [PMID: 15937072 PMCID: PMC2593024 DOI: 10.1136/jmg.2005.033001] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/10/2005] [Accepted: 05/18/2005] [Indexed: 11/03/2022]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD) is a severe inherited disorder characterised by chronic respiratory disease, male infertility, and, in approximately 50% of affected individuals, a left-right asymmetry defect called situs inversus. PCD is caused by defects in substructures of the ciliary and flagellar axoneme, most commonly loss of the outer dynein arms. Although PCD is believed to involve mutations in many genes, only three have been identified. METHODS To facilitate discovery of new PCD genes, we have used database searching and analysis to systematically identify the human homologues of proteins associated with the Chlamydomonas reinhardtii outer dynein arm, the best characterised outer arm of any species. RESULTS We find that 12 out of 14 known Chlamydomonas outer arm subunits have one or more likely orthologues in humans. The results predict a total of 24 human genes likely to encode outer dynein arm subunits and associated proteins possibly necessary for outer arm assembly, plus 12 additional closely related human genes likely to encode inner dynein arm subunits. CONCLUSION These genes, which have been located on the human chromosomes for easy comparison with known or suspected PCD loci, are excellent candidates for screening for disease-causing mutations in PCD patients with outer and/or inner dynein arm defects.
Collapse
|
26
|
Vernon GG, Neesen J, Woolley DM. Further studies on knockout mice lacking a functional dynein heavy chain (MDHC7). 1. Evidence for a structural deficit in the axoneme. ACTA ACUST UNITED AC 2005; 61:65-73. [PMID: 15838838 DOI: 10.1002/cm.20066] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Male mice had previously been generated in which the inner dynein arm heavy chain 7 gene (MDHC7) was inactivated by the substitution of four exons encoding the ATP-binding site (P1-loop) with the neomycin resistance gene, giving a putative non-functional gene product. We have used additional techniques of electron microscopy to determine what effect the truncated, non-functional heavy chain has on the assembly of the inner dynein arm complex. From a comparison of MDHC7-/- with the wild-type morphology, we have found that the expected loss of a C-terminal (globular) domain is associated with inner dynein arm 3, a change from two visible "heads" to one. This deficit was seen in replicas of rapidly-frozen, deeply-etched spermatozoa, and was confirmed in filtered images of 20-nm-thin sections, cut in longitudinal planes. Assembly of the other IDAs appeared unaffected. This study is the first to reveal the location of a specific dynein heavy chain within the 96-nm repeat pattern of the inner dynein arms of the mammalian axoneme.
Collapse
Affiliation(s)
- Geraint G Vernon
- Department of Physiology, School of Medical Sciences, University of Bristol, Bristol, United Kingdom
| | | | | |
Collapse
|
27
|
Tsang KW, Tipoe G, Sun J, Tan KC, Leung R, Yan C, Ko C, Ooi GC, Ho JC, Lam WK. Clinical value of ciliary assessment in bronchiectasis. Lung 2005; 183:73-86. [PMID: 16026012 DOI: 10.1007/s00408-004-2520-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although ciliary dysfunction and numerous ultrastructural defects have been described, and these could be etiologically important in the development of bronchiectasis, their correlation with relevant clinical parameters have not been systematically evaluated. We have prospectively evaluated the prevalence and clinical significance of ciliary beat frequency and ultrastructural defects of nasal respiratory mucosa obtained from 152 stable patients with idiopathic bronchiectasis (100F, 57.7 +/- 15.2 yrs) and 127 control subjects (58F, 56.0 +/- 24.2 yrs). Bronchiectasis patients had significantly slower ciliary beat frequency (p < 0.05), and a greater percent of patients had central and peripheral microtubular defects (OR 14.4, 95% CI 5.6-36.8), namely, extra peripheral microtubules, "9 + 1", "8 + 2", and compound cilia (p < 0.05), but not microtubular disarrangement, extra matrix or ciliary tail abnormalities (p > 0.05), than controls. Bronchiectasis patients also had a greater proportion of cilia with any ultrastructural microtubular defects, compound cilia, and ciliary tails than controls (p < 0.05). Ciliary beat frequency did not correlate with clinically relevant parameters (p > 0.05). However, the percent of cilia with central, but not peripheral, microtubular defects correlated with 24 h sputum volume (r = 0.40, p = 0.001, and r = -0.04, p = 0.70, respectively) and FEV1 (r = -0.24, p = 0.01, and r = 0.00, p = 0.99 respectively). Our results strongly suggest a pathogenic role for central microtubular defects in the development of idiopathic bronchiectasis.
Collapse
Affiliation(s)
- Kenneth W Tsang
- University Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Pokfulam Road, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Braun JJ, Hoffmann L, Gentine A. [The respiratory mucociliary system and its exploration in primary ciliary dyskinesia]. ACTA ACUST UNITED AC 2005; 122:69-75. [PMID: 15976622 DOI: 10.1016/s0003-438x(05)82327-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND We analyzed the main characteristic features of the respiratory epithelium mucociliary system and the different tests of ciliary beat and mucociliary transport (mucociliary clearance). This knowledge is necessary for an often interdisciplinary diagnosis and treatment of primary ciliary dyskinesia. METHODS Review of the literature and personal experience of the different tests of ciliary structure and function. RESULTS This disease is characterized by abnormalities in ciliary structure/function. The genetic mechanisms and the ultrastructural abnormalities that are involved are heterogenous compared to the relative homogeneity of the clinical presentation. CONCLUSION The diagnostic criteria are compatible clinical features (chronic upper airway and bronchopulmonary infections, situs inversus...) coupled with tests of ciliary structure and function.
Collapse
Affiliation(s)
- J-J Braun
- Service ORL, Hôpital de Hautepierre, 67098 Strasbourg Cedex.
| | | | | |
Collapse
|
29
|
Specific Features of Centriole Formation and Ciliogenesis in Ciliary Epithelium Cells of Respiratory Tracts in Patients with Kartagener Syndrome. Russ J Dev Biol 2005. [DOI: 10.1007/s11174-005-0024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Abstract
Primary ciliary dyskinesia (PCD) is a phenotypically and genetically heterogeneous disorder with an autosomal-recessive inheritance pattern. Only rarely other modes of inheritance such as X-linked transmission are observed. The disease phenotype is caused by defects of respiratory cilia, sperm tails and the cilia of the embryonic node. The lack of mucociliary clearance contributes to recurrent respiratory tract infections, that might progress to permanent lung damage (bronchiectasis). The goal of therapy is prevention of bronchiectasis. Male infertility due to sperm tail dysmotility is another frequent finding in PCD. Half of affected individuals have situs inversus (Kartagener's syndrome) due to randomization of left/right body asymmetry. Currently three genes (DNAI1, DNAH5, DNAH11) that encode for dynein proteins have been linked to recessive PCD. Mutations in RPGR located on the X chromosome have been identified in males with retinitis pigmentosa and PCD. As a screening test nasal nitric oxide (NO) measurement is widely used. Establishment of diagnosis currently relies on electron microscopy, direct evaluation of ciliary beat by light microscopy, and/or the novel method of high-resolution immunofluorecent analysis of respiratory cilia.
Collapse
|
31
|
Abstract
Primary ciliary dyskinesia (PCD) is a phenotypically and genetically heterogeneous condition in which three genetic mutations have already been identified. The primary defect is in the ultrastructure or function of cilia, highly complex organelles that are structurally related to the flagella of sperm and protozoa. The clinical features of PCD include recurrent sinopulmonary infections, subfertility and laterality defects; the latter due to ciliary dysfunction at the embryological node. Completion of the human genome sequence has accelerated the identification and characterisation of disease genes, and the current molecular strategy in PCD includes candidate gene analysis, positional cloning, model organism analysis and proteomic analysis. The identification of these genes will provide new insights into the molecular mechanisms involved in the assembly and function of cilia and the pathway that determines left-right axis in man. This may also allow the development of new methods for diagnosis, prevention and treatment of PCD.
Collapse
Affiliation(s)
- R Chodhari
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, Bloomsbury Campus, Rayne Building, 5 University Street, WC1 E 6JJ, UK
| | | | | |
Collapse
|
32
|
Neesen J, Drenckhahn JD, Tiede S, Burfeind P, Grzmil M, Konietzko J, Dixkens C, Kreutzberger J, Laccone F, Omran H. Identification of the human ortholog of the t-complex-encoded protein TCTE3 and evaluation as a candidate gene for primary ciliary dyskinesia. Cytogenet Genome Res 2003; 98:38-44. [PMID: 12584439 DOI: 10.1159/000068545] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a heterogeneous autosomal recessive disease that is caused by impaired ciliary and flagellar functions. About 50% of PCD patients show situs inversus, denoted as Kartagener syndrome. In most cases, axonemal defects in cilia and sperm tails can be demonstrated by electron microscopy, i.e. PCD patients often lack inner and/or outer dynein arms in their sperm tails and cilia, supporting the hypothesis that mutations in dynein genes may cause PCD. In order to identify novel PCD genes we have isolated the human ortholog of the murine TCTE3 gene. The human TCTE3 gene encodes a dynein light chain and shares high similarity to dynein light chains of other species. The TCTE3 gene is expressed in tissues containing cilia or flagella, it is composed of four exons and located on chromosome 6q25-->q27. To elucidate the role of TCTE3 as a candidate gene for PCD a mutational analysis of thirty-six PCD patients was performed. We detected five polymorphisms in the coding sequence and in the 5' UTR of the TCTE3 gene. In one patient a heterozygous nucleotide exchange was identified resulting in an arginine to isoleucine substitution at the amino acid level. However, this exchange was also detected in one control DNA. Our results indicate that mutations in the TCTE3 gene are not a main cause of primary ciliary dyskinesia.
Collapse
Affiliation(s)
- J Neesen
- Institute of Human Genetics, University of Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Flagella and cilia are two very similar organelles that "beat" to move cells and to propel fluid over tissues. They are highly conserved, being found in organisms ranging from prokaryotes to plant and animal eukaryotes. In humans, cilia are present in almost every organ, and several human conditions involve dysfunctional cilia; for example, lateralization defects, where the positions of organs are reversed, and primary ciliary dyskinesia, a rare condition where patients suffer from recurrent respiratory infections. In this article, we will discuss how information gained from studies on algae has aided research into these human diseases. These studies found a variety of functions that was previously unsuspected, renewing interest in cilia.
Collapse
Affiliation(s)
- Loubna El Zein
- Laboratoire de Génétique Moléculaire Humaine, Faculté de Médecine Pharmacie, 8 avenue Rockefeller, 69373 Lyon Cedex 8, France
| | | | | |
Collapse
|
34
|
Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M, Mitchison HM, Chung EMK, Delozier-Blanchet CD, Craigen WJ, Antonarakis SE. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci U S A 2002; 99:10282-6. [PMID: 12142464 PMCID: PMC124905 DOI: 10.1073/pnas.152337699] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Primary ciliary dyskinesia (PCD; MIM 242650) is an autosomal recessive disorder of ciliary dysfunction with extensive genetic heterogeneity. PCD is characterized by bronchiectasis and upper respiratory tract infections, and half of the patients with PCD have situs inversus (Kartagener syndrome). We characterized the transcript and the genomic organization of the axonemal heavy chain dynein type 11 (DNAH11) gene, the human homologue of murine Dnah11 or lrd, which is mutated in the iv/iv mouse model with situs inversus. To assess the role of DNAH11, which maps on chromosome 7p21, we searched for mutations in the 82 exons of this gene in a patient with situs inversus totalis, and probable Kartagener syndrome associated with paternal uniparental disomy of chromosome 7 (patUPD7). We identified a homozygous nonsense mutation (R2852X) in the DNAH11 gene. This patient is remarkable because he is also homozygous for the F508del allele of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Sequence analysis of the DNAH11 gene in an additional 6 selected PCD sibships that shared DNAH11 alleles revealed polymorphic variants and an R3004Q substitution in a conserved position that might be pathogenic. We conclude that mutations in the coding region of DNAH11 account for situs inversus totalis and probably a minority of cases of PCD.
Collapse
Affiliation(s)
- Lucia Bartoloni
- Division of Medical Genetics, University of Geneva Medical School, and University Hospitals, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zhang YJ, O'Neal WK, Randell SH, Blackburn K, Moyer MB, Boucher RC, Ostrowski LE. Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J Biol Chem 2002; 277:17906-15. [PMID: 11877439 DOI: 10.1074/jbc.m200348200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the basic structure of the axoneme has been highly conserved throughout evolution, the varied functions of specialized axonemes require differences in structure and regulation. Cilia lining the respiratory tract propel mucus along airway surfaces, providing a critical function to the defense mechanisms of the pulmonary system, yet little is known of their molecular structure. We have identified and cloned a dynein heavy chain that is a component of the inner dynein arm. Bronchial epithelial cells were obtained from normal donors and from a patient with primary ciliary dyskinesia (PCD) whose cilia demonstrated an absence of inner dynein arms by electron microscopy. Cilia from normal and PCD cells were compared by gel electrophoresis, and mass spectrometry was used to identify DNAH7 as a protein absent in PCD cilia. The full-length DNAH7 cDNA was cloned and shares 68% similarity with an inner arm dynein heavy chain from Drosophila. DNAH7 was induced during ciliated cell differentiation, and immunohistochemistry demonstrated the presence of DNAH7 in normal cilia. In cilia from PCD cells, DNAH7 was undetectable, whereas intracellular DNAH7 was clearly present. These studies identify DNAH7 as an inner arm component of human cilia that is synthesized but not assembled in a case of PCD.
Collapse
Affiliation(s)
- Yan J Zhang
- Cystic Fibrosis/Pulmonary Research and Treatment Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|