1
|
Karagianni AE, Lisowski ZM, Hume DA, Scott Pirie R. The equine mononuclear phagocyte system: The relevance of the horse as a model for understanding human innate immunity. Equine Vet J 2020; 53:231-249. [PMID: 32881079 DOI: 10.1111/evj.13341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
The mononuclear phagocyte system (MPS) is a family of cells of related function that includes bone marrow progenitors, blood monocytes and resident tissue macrophages. Macrophages are effector cells in both innate and acquired immunity. They are a major resident cell population in every organ and their numbers increase in response to proinflammatory stimuli. Their function is highly regulated by a wide range of agonists, including lymphokines, cytokines and products of microorganisms. Macrophage biology has been studied most extensively in mice, yet direct comparisons of rodent and human macrophages have revealed many functional differences. In this review, we provide an overview of the equine MPS, describing the variation in the function and phenotype of macrophages depending on their location and the similarities and differences between the rodent, human and equine immune response. We discuss the use of the horse as a large animal model in which to study macrophage biology and pathological processes shared with humans. Finally, following the recent update to the horse genome, facilitating further comparative analysis of regulated gene expression between the species, we highlight the importance of future transcriptomic macrophage studies in the horse, the findings of which may also be applicable to human as well as veterinary research.
Collapse
Affiliation(s)
- Anna E Karagianni
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Zofia M Lisowski
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - David A Hume
- Mater Research Institute-UQ, Translational Research Institute, Woolloongabba, QLD, Australia
| | - R Scott Pirie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
2
|
Karere GM, Froenicke L, Millon L, Womack JE, Lyons LA. A high-resolution radiation hybrid map of rhesus macaque chromosome 5 identifies rearrangements in the genome assembly. Genomics 2008; 92:210-8. [PMID: 18601997 PMCID: PMC2605074 DOI: 10.1016/j.ygeno.2008.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/16/2008] [Accepted: 05/21/2008] [Indexed: 11/21/2022]
Abstract
A 10,000-rad radiation hybrid (RH) cell panel of the rhesus macaque was generated to construct a comprehensive RH map of chromosome 5. The map represents 218 markers typed in 185 RH clones. The 4846-cR map has an average marker spacing of 798 kb. Alignments of the RH map to macaque and human genome sequences confirm a large inversion and reveal a previously unreported telomeric inversion. The macaque genome sequence indicates small translocations from the ancestral homolog of macaque chromosome 5 to macaque chromosomes 1 and 6. The RH map suggests that these are probably assembly artifacts. Unlike the genome sequence, the RH mapping data indicate the conservation of synteny between macaque chromosome 5 and human chromosome 4. This study shows that the 10,000-rad panel is appropriate for the generation of a high-resolution whole-genome RH map suitable for the verification of the rhesus genome assembly.
Collapse
Affiliation(s)
- Genesio M. Karere
- Department of Population Health and Reproduction, School of Veterinary Medicine, California National Primate Research Center, University of California - Davis, Davis, CA 95616, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
| | - Lutz Froenicke
- Department of Population Health and Reproduction, School of Veterinary Medicine, California National Primate Research Center, University of California - Davis, Davis, CA 95616, USA
| | - Lee Millon
- Veterinary Genetics Laboratory, University of California - Davis, Davis, CA 95616, USA
| | - James E. Womack
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Leslie A. Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, California National Primate Research Center, University of California - Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Chowdhary BP, Raudsepp T. The horse genome derby: racing from map to whole genome sequence. Chromosome Res 2008; 16:109-27. [PMID: 18274866 DOI: 10.1007/s10577-008-1204-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The map of the horse genome has undergone unprecedented expansion during the past six years. Beginning from a modest collection of approximately 300 mapped markers scattered on the 31 pairs of autosomes and the X chromosome in 2001, today the horse genome is among the best-mapped in domestic animals. Presently, high-resolution linearly ordered gene maps are available for all autosomes as well as the X and the Y chromosome. The approximately 4350 mapped markers distributed over the approximately 2.68 Gbp long equine genome provide on average 1 marker every 620 kb. Among the most remarkable developments in equine genome analysis is the availability of the assembled sequence (EquCab2) of the female horse genome and the generation approximately 1.5 million single nucleotide polymorphisms (SNPs) from diverse breeds. This has triggered the creation of new tools and resources like the 60K SNP-chip and whole genome expression microarrays that hold promise to study the equine genome and transcriptome in ways not previously envisaged. As a result of these developments it is anticipated that, during coming years, the genetics underlying important monogenic traits will be analyzed with improved accuracy and speed. Of larger interest will be the prospects of dissecting the genetic component of various complex/multigenic traits that are of vital significance for equine health and welfare. The number of investigations recently initiated to study a multitude of such traits hold promise for improved diagnostics, prevention and therapeutic approaches for horses.
Collapse
Affiliation(s)
- Bhanu P Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| | | |
Collapse
|
4
|
Goodstadt L, Ponting CP. Phylogenetic reconstruction of orthology, paralogy, and conserved synteny for dog and human. PLoS Comput Biol 2006; 2:e133. [PMID: 17009864 PMCID: PMC1584324 DOI: 10.1371/journal.pcbi.0020133] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 08/21/2006] [Indexed: 01/22/2023] Open
Abstract
Accurate predictions of orthology and paralogy relationships are necessary to infer human molecular function from experiments in model organisms. Previous genome-scale approaches to predicting these relationships have been limited by their use of protein similarity and their failure to take into account multiple splicing events and gene prediction errors. We have developed PhyOP, a new phylogenetic orthology prediction pipeline based on synonymous rate estimates, which accurately predicts orthology and paralogy relationships for transcripts, genes, exons, or genomic segments between closely related genomes. We were able to identify orthologue relationships to human genes for 93% of all dog genes from Ensembl. Among 1:1 orthologues, the alignments covered a median of 97.4% of protein sequences, and 92% of orthologues shared essentially identical gene structures. PhyOP accurately recapitulated genomic maps of conserved synteny. Benchmarking against predictions from Ensembl and Inparanoid showed that PhyOP is more accurate, especially in its predictions of paralogy. Nearly half (46%) of PhyOP paralogy predictions are unique. Using PhyOP to investigate orthologues and paralogues in the human and dog genomes, we found that the human assembly contains 3-fold more gene duplications than the dog. Species-specific duplicate genes, or "in-paralogues," are generally shorter and have fewer exons than 1:1 orthologues, which is consistent with selective constraints and mutation biases based on the sizes of duplicated genes. In-paralogues have experienced elevated amino acid and synonymous nucleotide substitution rates. Duplicates possess similar biological functions for either the dog or human lineages. Having accounted for 2,954 likely pseudogenes and gene fragments, and after separating 346 erroneously merged genes, we estimated that the human genome encodes a minimum of 19,700 protein-coding genes, similar to the gene count of nematode worms. PhyOP is a fast and robust approach to orthology prediction that will be applicable to whole genomes from multiple closely related species. PhyOP will be particularly useful in predicting orthology for mammalian genomes that have been incompletely sequenced, and for large families of rapidly duplicating genes.
Collapse
Affiliation(s)
- Leo Goodstadt
- Medical Research Council Functional Genetics Unit, University of Oxford, Department of Physiology, Anatomy, and Genetics, Oxford, United Kingdom.
| | | |
Collapse
|
5
|
Goetting-Minesky MP, Makova KD. Mammalian Male Mutation Bias: Impacts of Generation Time and Regional Variation in Substitution Rates. J Mol Evol 2006; 63:537-44. [PMID: 16955237 DOI: 10.1007/s00239-005-0308-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 06/12/2006] [Indexed: 12/01/2022]
Abstract
In mammals, males undergo a greater number of germline cell divisions compared with females. Thus, the male germline accumulates more DNA replication errors, which result in male mutation bias-a higher mutation rate for males than for females. The phenomenon of male mutation bias has been investigated mostly for rodents and primates, however, it has not been studied in detail for other mammalian orders. Here we sequenced and analyzed five introns of three genes (DBX/DBY, UTX/UTY, and ZFX/ZFY) homologous between X and Y chromosomes in several species of perissodactyls (horses and rhinos) and of primates. Male mutation bias was evident: substitution rate was higher for a Y chromosome intron than for its X chromosome homologue for all five intron pairs studied. Substitution rates varied regionally among introns sequenced on the same chromosome and this variation influenced male mutation bias inferred from each intron pair. Interestingly, we observed a positive correlation in substitution rates between homologous X and homologous Y introns as well as between orthologous primate and perissodactyl introns. The male-to-female mutation rate ratio estimated from concatenated sequences of five perissodactyl introns was 3.88 (95% CI = 2.90-6.07). Using the data generated here and estimates available in the literature, we compared male mutation bias among several mammalian orders. We conclude that male mutation bias is significantly higher for organisms with long generation times (primates, perissodactyls, and felids) than for organisms with short generation times (e.g., rodents) since the former undergo a greater number of male germline cell divisions.
Collapse
Affiliation(s)
- M Paula Goetting-Minesky
- Department of Biology, Center for Comparative Genomics and Bioinformatics, 518A Mueller Lab, Penn State University, University Park, PA 16803, USA
| | | |
Collapse
|
6
|
Perrocheau M, Boutreux V, Chadi S, Mata X, Decaunes P, Raudsepp T, Durkin K, Incarnato D, Iannuzzi L, Lear TL, Hirota K, Hasegawa T, Zhu B, de Jong P, Cribiu EP, Chowdhary BP, Guérin G. Construction of a medium-density horse gene map. Anim Genet 2006; 37:145-55. [PMID: 16573529 DOI: 10.1111/j.1365-2052.2005.01401.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A medium-density map of the horse genome (Equus caballus) was constructed using genes evenly distributed over the human genome. Three hundred and twenty-three exonic primer pairs were used to screen the INRA and the CHORI-241 equine BAC libraries by polymerase chain reaction and by filter hybridization respectively. Two hundred and thirty-seven BACs containing equine gene orthologues, confirmed by sequencing, were isolated. The BACs were localized to horse chromosomes by fluorescent in situ hybridization (FISH). Overall, 165 genes were assigned to the equine genomic map by radiation hybrid (RH) (using an equine RH(5000) panel) and/or by FISH mapping. A comparison of localizations of 713 genes mapped on the horse genome and on the human genome revealed 59 homologous segments and 131 conserved segments. Two of these homologies (ECA27/HSA8 and ECA12p/HSA11p) had not been previously identified. An enhanced resolution of conserved and rearranged chromosomal segments presented in this study provides clarification of chromosome evolution history.
Collapse
Affiliation(s)
- M Perrocheau
- Département de Génétique animale, Laboratoire de Génétique biochimique et de Cytogénétique, Centre de Recherches de Jouy, INRA, 78350, Jouy-en-Josas, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Genome research in animals used in agriculture has progressed rapidly in recent years, moving from rudimentary genome maps to trait maps to gene discovery. These advances are the result of animal genome projects following closely in the footsteps of the Human Genome Project, which has opened the door to genome research in farm animals. In return, genome research in livestock species is contributing to our understanding of chromosome evolution and to informing the human genome. Enhancement of these contributions plus the much anticipated application of DNA-based tools to animal health and production can be expected as livestock genomics enters its sequencing era.
Collapse
Affiliation(s)
- James E Womack
- Department of Veterinary Pathobiology, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas 77843-4467, USA.
| |
Collapse
|
8
|
Swinburne JE, Boursnell M, Hill G, Pettitt L, Allen T, Chowdhary B, Hasegawa T, Kurosawa M, Leeb T, Mashima S, Mickelson JR, Raudsepp T, Tozaki T, Binns M. Single linkage group per chromosome genetic linkage map for the horse, based on two three-generation, full-sibling, crossbred horse reference families. Genomics 2005; 87:1-29. [PMID: 16314071 DOI: 10.1016/j.ygeno.2005.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 08/19/2005] [Accepted: 09/03/2005] [Indexed: 11/30/2022]
Abstract
A genetic linkage map of the horse consisting of 742 markers, which comprises a single linkage group for each of the autosomes and the X chromosome, is presented. The map has been generated from two three-generation full-sibling reference families, sired by the same stallion, in which there are 61 individuals in the F2 generation. Each linkage group has been assigned to a chromosome and oriented with reference to markers mapped by fluorescence in situ hybridization. The average interval between markers is 3.7 cM and the linkage groups collectively span 2772 cM. The 742 markers comprise 734 microsatellite and 8 gene-based markers. The utility of the microsatellite markers for comparative mapping has been significantly enhanced by comparing their flanking sequences with the human genome sequence; this enabled conserved segments between human and horse to be identified. The new map provides a valuable resource for genetically mapping traits of interest in the horse.
Collapse
|
9
|
Brinkmeyer-Langford C, Raudsepp T, Lee EJ, Goh G, Schäffer AA, Agarwala R, Wagner ML, Tozaki T, Skow LC, Womack JE, Mickelson JR, Chowdhary BP. A high-resolution physical map of equine homologs of HSA19 shows divergent evolution compared with other mammals. Mamm Genome 2005; 16:631-49. [PMID: 16180145 DOI: 10.1007/s00335-005-0023-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 04/28/2005] [Indexed: 11/25/2022]
Abstract
A high-resolution (1 marker/700 kb) physically ordered radiation hybrid (RH) and comparative map of 122 loci on equine homologs of human Chromosome 19 (HSA19) shows a variant evolution of these segments in equids/Perissodactyls compared with other mammals. The segments include parts of both the long and the short arm of horse Chromosome 7 (ECA7), the proximal part of ECA21, and the entire short arm of ECA10. The map includes 93 new markers, of which 89 (64 gene-specific and 25 microsatellite) were genotyped on a 5000-rad horse x hamster RH panel, and 4 were mapped exclusively by FISH. The orientation and alignment of the map was strengthened by 21 new FISH localizations, of which 15 represent genes. The approximately sevenfold-improved map resolution attained in this study will prove extremely useful for candidate gene discovery in the targeted equine chromosomal regions. The highlight of the comparative map is the fine definition of homology between the four equine chromosomal segments and corresponding HSA19 regions specified by physical coordinates (bp) in the human genome sequence. Of particular interest are the regions on ECA7 and ECA21 that correspond to the short arm of HSA19-a genomic rearrangement discovered to date only in equids/Perissodactyls as evidenced through comparative Zoo-FISH analysis of the evolution of ancestral HSA19 segments in eight mammalian orders involving about 50 species.
Collapse
Affiliation(s)
- Candice Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lee EJ, Raudsepp T, Kata SR, Adelson D, Womack JE, Skow LC, Chowdhary BP. A 1.4-Mb interval RH map of horse chromosome 17 provides detailed comparison with human and mouse homologues. Genomics 2004; 83:203-15. [PMID: 14706449 DOI: 10.1016/j.ygeno.2003.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comparative genomics has served as a backbone for the rapid development of gene maps in domesticated animals. The integration of this approach with radiation hybrid (RH) analysis provides one of the most direct ways to obtain physically ordered comparative maps across evolutionarily diverged species. We herein report the development of a detailed RH and comparative map for horse chromosome 17 (ECA17). With markers distributed at an average interval of every 1.4 Mb, the map is currently the most informative among the equine chromosomes. It comprises 75 markers (56 genes and 19 microsatellites), of which 50 gene specific and 5 microsatellite markers were generated in this study and typed to our 5000-rad horse x hamster whole genome RH panel. The markers are dispersed over six RH linkage groups and span 825 cR(5000). The map is among the most comprehensive whole chromosome comparative maps currently available for domesticated animals. It finely aligns ECA17 to human and mouse homologues (HSA13 and MMU1, 3, 5, 8, and 14, respectively) and homologues in other domesticated animals. Comparisons provide insight into their relative organization and help to identify evolutionarily conserved segments. The new ECA17 map will serve as a template for the development of clusters of BAC contigs in regions containing genes of interest. Sequencing of these regions will help to initiate studies aimed at understanding the molecular mechanisms for various diseases and inherited disorders in horse as well as human.
Collapse
Affiliation(s)
- Eun-Joon Lee
- Department of Veterinary Anatomy & Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Sandstedt SA, Tucker PK. Evolutionary strata on the mouse X chromosome correspond to strata on the human X chromosome. Genome Res 2004; 14:267-72. [PMID: 14762062 PMCID: PMC327101 DOI: 10.1101/gr.1796204] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lahn and Page previously observed that genes on the human X chromosome were physically arranged along the chromosome in "strata," roughly ordered by degree of divergence from related genes on the Y chromosome. They hypothesized that this ordering results from a historical series of suppressions of recombination along the mammalian Y chromosome, thereby allowing formerly recombining X and Y chromosomal genes to diverge independently. Here predictions of this hypothesis are confirmed in a nonprimate mammalian order, Rodentia, through an analysis of eight gene pairs from the X and Y chromosomes of the house mouse, Mus musculus. The mouse X chromosome has been rearranged relative to the human X, so strata were not found in the same physical order on the mouse X. However, based on synonymous evolutionary distances, X-linked genes in M. musculus fall into the same strata as orthologous genes in humans, as predicted. The boundary between strata 2 and 3 is statistically significant, but the boundary between strata 1 and 2 is not significant in mice. An analysis of smaller fragments of Smcy, Smcx, Zfy, and Zfx from seven species of Mus confirmed that the strata in Mus musculus were representative of the genus Mus.
Collapse
Affiliation(s)
- Sara A Sandstedt
- Department of Ecology and Evolutionary Biology, and Museum of Zoology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
12
|
Raudsepp T, Lee EJ, Kata SR, Brinkmeyer C, Mickelson JR, Skow LC, Womack JE, Chowdhary BP. Exceptional conservation of horse-human gene order on X chromosome revealed by high-resolution radiation hybrid mapping. Proc Natl Acad Sci U S A 2004; 101:2386-91. [PMID: 14983019 PMCID: PMC356960 DOI: 10.1073/pnas.0308513100] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Development of a dense map of the horse genome is key to efforts aimed at identifying genes controlling health, reproduction, and performance. We herein report a high-resolution gene map of the horse (Equus caballus) X chromosome (ECAX) generated by developing and typing 116 gene-specific and 12 short tandem repeat markers on the 5,000-rad horse x hamster whole-genome radiation hybrid panel and mapping 29 gene loci by fluorescence in situ hybridization. The human X chromosome sequence was used as a template to select genes at 1-Mb intervals to develop equine orthologs. Coupled with our previous data, the new map comprises a total of 175 markers (139 genes and 36 short tandem repeats, of which 53 are fluorescence in situ hybridization mapped) distributed on average at approximately 880-kb intervals along the chromosome. This is the densest and most uniformly distributed chromosomal map presently available in any mammalian species other than humans and rodents. Comparison of the horse and human X chromosome maps shows remarkable conservation of gene order along the entire span of the chromosomes, including the location of the centromere. An overview of the status of the horse map in relation to mouse, livestock, and companion animal species is also provided. The map will be instrumental for analysis of X linked health and fertility traits in horses by facilitating identification of targeted chromosomal regions for isolation of polymorphic markers, building bacterial artificial chromosome contigs, or sequencing.
Collapse
Affiliation(s)
- Terje Raudsepp
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Iwase M, Satta Y, Hirai Y, Hirai H, Imai H, Takahata N. The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci U S A 2003; 100:5258-63. [PMID: 12672962 PMCID: PMC154332 DOI: 10.1073/pnas.0635848100] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mammalian amelogenin (AMEL) genes are found on both the X and Y chromosomes (gametologous). Comparison of the genomic AMEL sequences in five primates and three other mammals reveals that the 5' portion of the gametologous AMEL loci began to differentiate in the common ancestor of extant mammals, whereas the 3' portion differentiated independently within species of different mammals. The boundary is marked by a transposon insertion in intron 2 and is shared by all species examined. In addition, 540-kb DNA sequences from the short arm of the human X chromosome are aligned with their Y gametologous sequences. The pattern and extent of sequence differences in the 5' portion of the AMEL loci extend to a proximal region that contains the ZFX locus, and those in the 3' portion extend all the way down to the pseudoautosomal boundary (PAB)1. We concluded that the AMEL locus spans an ancient PAB, and that both the ancient and present PABs were determined by chance events during the evolution of mammals and primates. Sex chromosome differentiation likely took place in a region that contains the male-determining loci by suppressing homologous recombination.
Collapse
Affiliation(s)
- Mineyo Iwase
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Chowdhary BP, Raudsepp T, Kata SR, Goh G, Millon LV, Allan V, Piumi F, Guérin G, Swinburne J, Binns M, Lear TL, Mickelson J, Murray J, Antczak DF, Womack JE, Skow LC. The first-generation whole-genome radiation hybrid map in the horse identifies conserved segments in human and mouse genomes. Genome Res 2003; 13:742-51. [PMID: 12671008 PMCID: PMC430160 DOI: 10.1101/gr.917503] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A first-generation radiation hybrid (RH) map of the equine (Equus caballus) genome was assembled using 92 horse x hamster hybrid cell lines and 730 equine markers. The map is the first comprehensive framework map of the horse that (1) incorporates type I as well as type II markers, (2) integrates synteny, cytogenetic, and meiotic maps into a consensus map, and (3) provides the most detailed genome-wide information to date on the organization and comparative status of the equine genome. The 730 loci (258 type I and 472 type II) included in the final map are clustered in 101 RH groups distributed over all equine autosomes and the X chromosome. The overall marker retention frequency in the panel is approximately 21%, and the possibility of adding any new marker to the map is approximately 90%. On average, the mapped markers are distributed every 19 cR (4 Mb) of the equine genome--a significant improvement in resolution over previous maps. With 69 new FISH assignments, a total of 253 cytogenetically mapped loci physically anchor the RH map to various chromosomal segments. Synteny assignments of 39 gene loci complemented the RH mapping of 27 genes. The results added 12 new loci to the horse gene map. Lastly, comparison of the assembly of 447 equine genes (256 linearly ordered RH-mapped and additional 191 FISH-mapped) with the location of draft sequences of their human and mouse orthologs provides the most extensive horse-human and horse-mouse comparative map to date. We expect that the foundation established through this map will significantly facilitate rapid targeted expansion of the horse gene map and consequently, mapping and positional cloning of genes governing traits significant to the equine industry.
Collapse
Affiliation(s)
- Bhanu P Chowdhary
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pascual I, Dhar AK, Fan Y, Paradis MR, Arruga MV, Alcivar-Warren A. Isolation of expressed sequence tags from a Thoroughbred horse (Equus caballus) 5'-RACE cDNA library. Anim Genet 2002; 33:231-2. [PMID: 12030932 DOI: 10.1046/j.1365-2052.2002.t01-2-00876.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- I Pascual
- Department of Environmental and Population Health, Tufts University School of Veterinary Medicine, North Grafton, MA 01536, USA
| | | | | | | | | | | |
Collapse
|