1
|
Demas GE, Munley KM, Jasnow AM. A seasonal switch hypothesis for the neuroendocrine control of aggression. Trends Endocrinol Metab 2023; 34:799-812. [PMID: 37722999 DOI: 10.1016/j.tem.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Aggression is a well-studied social behavior that is universally exhibited by animals across a wide range of contexts. Prevailing knowledge suggests gonadal steroids primarily mediate aggression; however, this is based mainly on studies of male-male aggression in laboratory rodents. When males and females of other species, including humans, are examined, a positive relationship between gonadal steroids and aggression is less substantiated. For instance, hamsters housed in short 'winter-like' days show increased aggression compared with long-day housed hamsters, despite relatively low circulating gonadal steroids. These results suggest alternative, non-gonadal mechanisms controlling aggression. Here, we propose the seasonal switch hypothesis, which employs a multidisciplinary approach to describe how seasonal variation in extra-gonadal steroids, orchestrated by melatonin, drives context-specific changes in aggression.
Collapse
Affiliation(s)
- Gregory E Demas
- Department of Biology, Program in Neuroscience, and Program in Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Kathleen M Munley
- Department of Psychology, University of Houston, Houston, TX 77204, USA
| | - Aaron M Jasnow
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
2
|
Song Y, Kim J, Park Y, Yoon M. Association between the plasma concentration of melatonin and behavioral temperament in horses. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2023; 65:1094-1104. [PMID: 37969346 PMCID: PMC10640934 DOI: 10.5187/jast.2023.e12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 11/17/2023]
Abstract
Aggression in horses may cause serious accidents during riding and non-riding activities. Hence, predicting the temperament of horses is essential for selecting suitable horses and ensuring safety during the activity. In certain animals, such as hamsters, plasma melatonin concentrations have been correlated with aggressive behavior. However, whether this relationship applies to horses remains unclear. To address this research gap, this study aimed to evaluate differences in the plasma melatonin concentrations among horses of different breeds, ages, and sexes and examine the correlation between plasma melatonin concentrations and the temperament of the horses, including docility, affinity, dominance, and trainability. Blood samples from 32 horses were collected from the Horse Industry Complex Center of Jeonju Kijeon College. The docility, affinity, dominance, and trainability of the horses were assessed by three professional trainers who were well-acquainted with the horses. Plasma melatonin concentrations were measured using an enzyme-linked immunosorbent assay. The consequent values were compared between the horses of different breeds, ages, and sexes using a three-way analysis of variance and least significant difference post hoc test. Linear regression analysis was employed to identify the relationship between plasma melatonin concentrations and docility, affinity, dominance, and trainability. The results showed that the plasma melatonin concentrations significantly differed with breeds in Thoroughbred and cold-blooded horses. However, there were no differences in the plasma melatonin concentrations between the horse ages and sexes. Furthermore, plasma melatonin concentrations did not exhibit a significant correlation with the ranking of docility, affinity, dominance, and trainability.
Collapse
Affiliation(s)
- Yubin Song
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Junyoung Kim
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Youngjae Park
- Department of Equine Industry and Sports
with Therapeutic Riding, Jeonju Kijeon College, Jeonju 54989,
Korea
| | - Minjung Yoon
- Department of Animal Science and
Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Department of Horse, Companion and Wild
Animal Science, Kyungpook National University, Sangju 37224,
Korea
- Research Center for Horse Industry,
Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
3
|
Munley KM, Han Y, Lansing MX, Demas GE. Winter madness: Melatonin as a neuroendocrine regulator of seasonal aggression. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:873-889. [PMID: 35451566 PMCID: PMC9587138 DOI: 10.1002/jez.2601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/16/2022] [Accepted: 04/07/2022] [Indexed: 12/25/2022]
Abstract
Individuals of virtually all vertebrate species are exposed to annual fluctuations in the deterioration and renewal of their environments. As such, organisms have evolved to restrict energetically expensive processes and activities to a specific time of the year. Thus, the precise timing of physiology and behavior is critical for individual reproductive success and subsequent fitness. Although the majority of research on seasonality has focused on seasonal reproduction, pronounced fluctuations in other non-reproductive social behaviors, including agonistic behaviors (e.g., aggression), also occur. To date, most studies that have investigated the neuroendocrine mechanisms underlying seasonal aggression have focused on the role of photoperiod (i.e., day length); prior findings have demonstrated that some seasonally breeding species housed in short "winter-like" photoperiods display increased aggression compared with those housed in long "summer-like" photoperiods, despite inhibited reproduction and low gonadal steroid levels. While fewer studies have examined how the hormonal correlates of environmental cues regulate seasonal aggression, our previous work suggests that the pineal hormone melatonin acts to increase non-breeding aggression in Siberian hamsters (Phodopus sungorus) by altering steroid hormone secretion. This review addresses the physiological and cellular mechanisms underlying seasonal plasticity in aggressive and non-aggressive social behaviors, including a key role for melatonin in facilitating a "neuroendocrine switch" to alternative physiological mechanisms of aggression across the annual cycle. Collectively, these studies highlight novel and important mechanisms by which melatonin regulates aggressive behavior in vertebrates and provide a more comprehensive understanding of the neuroendocrine bases of seasonal social behaviors broadly.
Collapse
Affiliation(s)
- Kathleen M. Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Yuqi Han
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Matt X. Lansing
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E. Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Guenther A, Trillmich F. Photoperiod influences the development and the expression of personality traits and social behaviour in wild cavies (
Cavia aperea
). Ethology 2022. [DOI: 10.1111/eth.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anja Guenther
- Research Group Behavioural Ecology of Individual Differences, Department for Evolutionary Genetics Max Planck Institute for Evolutionary Biology Plön Germany
- Animal Behaviour University of Bielefeld Bielefeld Germany
| | | |
Collapse
|
5
|
Munley KM, Trinidad JC, Demas GE. Sex-specific endocrine regulation of seasonal aggression in Siberian hamsters. Proc Biol Sci 2022; 289:20220668. [PMID: 36100021 PMCID: PMC9470250 DOI: 10.1098/rspb.2022.0668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022] Open
Abstract
Coordinating physiological and behavioural processes across the annual cycle is essential in enabling individuals to maximize fitness. While the mechanisms underlying seasonal reproduction and its associated behaviours are well characterized, fewer studies have examined the hormonal basis of non-reproductive social behaviours (e.g. aggression) on a seasonal time scale. Our previous work suggests that the pineal hormone melatonin facilitates a 'seasonal switch' in neuroendocrine regulation of aggression in male and female Siberian hamsters (Phodopus sungorus), specifically by acting on the adrenal glands to increase the production of the androgen dehydroepiandrosterone (DHEA) during the short-day (SD) photoperiods of the non-breeding season. Here, we provide evidence that the activity of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase (3β-HSD), a key enzyme within the steroidogenic pathway that mediates DHEA synthesis and metabolism, varies in a sex-specific and melatonin-dependent manner. Although both male and female hamsters displayed increased aggression in response to SDs and SD-like melatonin, only males showed an increase in adrenal 3β-HSD activity. Conversely, SD and melatonin-treated females exhibited reductions in both adrenal and neural 3β-HSD activity. Collectively, these results suggest a potential role for 3β-HSD in modulating non-breeding aggression and, more broadly, demonstrate how distinct neuroendocrine mechanisms may underlie the same behavioural phenotype in males and females.
Collapse
Affiliation(s)
- Kathleen M. Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| | - Jonathan C. Trinidad
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN 47405, USA
| | - Gregory E. Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
6
|
Lemonnier C, Bize P, Boonstra R, Dobson FS, Criscuolo F, Viblanc VA. Effects of the social environment on vertebrate fitness and health in nature: Moving beyond the stress axis. Horm Behav 2022; 145:105232. [PMID: 35853411 DOI: 10.1016/j.yhbeh.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology. On the other, ecological studies are attempting an understanding of how social interactions shape individual phenotypes in the wild, and the consequences this entails in terms of adaptation. Whereas numerous studies in wild vertebrates have focused on the relationships between social environments and the stress axis, much remains to be done in understanding how socially-related activation of the stress axis coordinates other key physiological functions related to health. Here, we review the state of our current knowledge on the effects that social interactions may have on other markers of vertebrate fitness and health. Building upon complementary findings from the biomedical and ecological fields, we identify 6 key physiological functions (cellular metabolism, oxidative stress, cellular senescence, immunity, brain function, and the regulation of biological rhythms) which are intimately related to the stress axis, and likely directly affected by social interactions. Our goal is a holistic understanding of how social environments affect vertebrate fitness and health in the wild. Whereas both social interactions and social environments are recognized as important sources of phenotypic variation, their consequences on vertebrate fitness, and the adaptive nature of social-stress-induced phenotypes, remain unclear. Social flexibility, or the ability of an animal to change its social behavior with resulting changes in social systems in response to fluctuating environments, has emerged as a critical underlying factor that may buffer the beneficial and detrimental effects of social environments on vertebrate fitness and health.
Collapse
Affiliation(s)
- Camille Lemonnier
- Ecole Normale Supérieur de Lyon, 69342 Lyon, France; Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France.
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; Swiss Institute of Ornithology, Sempach, Switzerland
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
7
|
Liao SS, Liu W, Cao J, Zhao ZJ. Territory aggression and energy budget in food-restricted striped hamsters. Physiol Behav 2022; 254:113897. [PMID: 35788009 DOI: 10.1016/j.physbeh.2022.113897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Food resource availability is one of the most important factors affecting interindividual competition in a variety of animal species. However, the energy budget and territory aggression strategy of small mammals during periods of food restriction remain uncertain. In this study, metabolic rate, body temperature, territory aggression behavior, and fat deposit were measured in male striped hamster (Cricetulus barabensis) restricted by 20% of ad libitum food intake with or without supplementary methimazole. Serum thyroid hormone (tri-iodothyronine, T3 and thyroxine, T4), and cytochrome c oxidase (COX) activity in liver, brown adipose tissue, and skeletal muscle, were also measured. Attack latency, total attack times and duration, and the interval duration between attacks of resident hamsters were not significantly changed during food restriction, which was not significantly affected by supplementary methimazole. Metabolic rate and body temperature was significantly increased in food-restricted hamsters following introduction of an intruder, which was not completely blocked by supplementary methimazole. Serum T3 and T4 levels and BAT COX activity were not significantly changed following aggression, and were significantly decreased by supplementary methimazole. These findings suggest that striped hamsters increase energy expenditure for territory aggression during food restriction, and consequently lead to excessive energy depletion. Territory aggression behavior may decrease the capacity to cope with food shortage, which may be independent of thyroid hormone.
Collapse
Affiliation(s)
- Sha-Sha Liao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wei Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Taylor JH, Walton JC, McCann KE, Norvelle A, Liu Q, Vander Velden JW, Borland JM, Hart M, Jin C, Huhman KL, Cox DN, Albers HE. CRISPR-Cas9 editing of the arginine-vasopressin V1a receptor produces paradoxical changes in social behavior in Syrian hamsters. Proc Natl Acad Sci U S A 2022; 119:e2121037119. [PMID: 35512092 PMCID: PMC9171636 DOI: 10.1073/pnas.2121037119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 11/18/2022] Open
Abstract
Studies from a variety of species indicate that arginine–vasopressin (AVP) and its V1a receptor (Avpr1a) play a critical role in the regulation of a range of social behaviors by their actions in the social behavior neural network. To further investigate the role of AVPRs in social behavior, we performed CRISPR-Cas9–mediated editing at the Avpr1a gene via pronuclear microinjections in Syrian hamsters (Mesocricetus auratus), a species used extensively in behavioral neuroendocrinology because they produce a rich suite of social behaviors. Using this germ-line gene-editing approach, we generated a stable line of hamsters with a frame-shift mutation in the Avpr1a gene resulting in the null expression of functional Avpr1as. Avpr1a knockout (KO) hamsters exhibited a complete lack of Avpr1a-specific autoradiographic binding throughout the brain, behavioral insensitivity to centrally administered AVP, and no pressor response to a peripherally injected Avpr1a-specific agonist, thus confirming the absence of functional Avpr1as in the brain and periphery. Contradictory to expectations, Avpr1a KO hamsters exhibited substantially higher levels of conspecific social communication (i.e., odor-stimulated flank marking) than their wild-type (WT) littermates. Furthermore, sex differences in aggression were absent, as both male and female KOs exhibited more aggression toward same-sex conspecifics than did their WT littermates. Taken together, these data emphasize the importance of comparative studies employing gene-editing approaches and suggest the startling possibility that Avpr1a-specific modulation of the social behavior neural network may be more inhibitory than permissive.
Collapse
Affiliation(s)
- Jack H. Taylor
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - James C. Walton
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Katharine E. McCann
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Alisa Norvelle
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Qian Liu
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, GA 30303
| | - Jacob W. Vander Velden
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Johnathan M. Borland
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Michael Hart
- Institute for Biomedical Science, Georgia State University, Atlanta, GA 30303
| | - Chengliu Jin
- Transgenic and Gene Targeting Core, Georgia State University, Atlanta, GA 30303
| | - Kim L. Huhman
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| | - H. Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
- Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
9
|
Paribello P, Manchia M, Bosia M, Pinna F, Carpiniello B, Comai S. Melatonin and aggressive behavior: A systematic review of the literature on preclinical and clinical evidence. J Pineal Res 2022; 72:e12794. [PMID: 35192237 PMCID: PMC9285357 DOI: 10.1111/jpi.12794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
The melatonin system and circadian disruption have well-established links with aggressive behaviors; however, the biological underpinnings have not been thoroughly investigated. Here, we aimed at examining the current knowledge regarding the neurobiological and psychopharmacological involvement of the melatonin system in aggressive/violent behaviors. To this end, we performed a systematic review on Embase and Pubmed/MEDLINE of preclinical and clinical evidence linking the melatonin system, melatonin, and melatoninergic drugs with aggressive/violent behaviors. Two blinded raters performed an independent screening of the relevant literature. Overall, this review included 38 papers distributed between clinical and preclinical models. Eleven papers specifically addressed the existing evidence in rodent models, five in fish models, and 21 in humans. The data indicate that depending on the species, model, and timing of administration, melatonin may exert a complex influence on aggressive/violent behaviors. Particularly, the apparent contrasting findings on the link between the melatonin system and aggression/violence (with either increased, no, or decreased effect) shown in preclinical models underscore the need for further research to develop more accurate and fruitful translational models. Likewise, the significant heterogeneity found in the results of clinical studies does not allow yet to draw any firm conclusion on the efficacy of melatonin or melatonergic drugs on aggressive/violent behaviors. However, findings in children and in traits associated with aggressive/violent behavior, including irritability and anger, are emerging and deserve empirical attention given the low toxicity of melatonin and melatonergic drugs.
Collapse
Affiliation(s)
- Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
- Department of PharmacologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Marta Bosia
- Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
- School of MedicineVita Salute San Raffaele UniversityMilanItaly
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public HealthUniversity of CagliariCagliariItaly
- Unit of Clinical PsychiatryUniversity Hospital Agency of CagliariCagliariItaly
| | - Stefano Comai
- Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
- Department of PsychiatryMcGill UniversityMontrealQuebecCanada
- Department of Pharmaceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| |
Collapse
|
10
|
Quintana L, Jalabert C, Fokidis HB, Soma KK, Zubizarreta L. Neuroendocrine Mechanisms Underlying Non-breeding Aggression: Common Strategies Between Birds and Fish. Front Neural Circuits 2021; 15:716605. [PMID: 34393727 PMCID: PMC8358322 DOI: 10.3389/fncir.2021.716605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Aggression is an adaptive behavior that plays an important role in gaining access to limited resources. Aggression may occur uncoupled from reproduction, thus offering a valuable context to further understand its neural and hormonal regulation. This review focuses on the contributions from song sparrows (Melospiza melodia) and the weakly electric banded knifefish (Gymnotus omarorum). Together, these models offer clues about the underlying mechanisms of non-breeding aggression, especially the potential roles of neuropeptide Y (NPY) and brain-derived estrogens. The orexigenic NPY is well-conserved between birds and teleost fish, increases in response to low food intake, and influences sex steroid synthesis. In non-breeding M. melodia, NPY increases in the social behavior network, and NPY-Y1 receptor expression is upregulated in response to a territorial challenge. In G. omarorum, NPY is upregulated in the preoptic area of dominant, but not subordinate, individuals. We hypothesize that NPY may signal a seasonal decrease in food availability and promote non-breeding aggression. In both animal models, non-breeding aggression is estrogen-dependent but gonad-independent. In non-breeding M. melodia, neurosteroid synthesis rapidly increases in response to a territorial challenge. In G. omarorum, brain aromatase is upregulated in dominant but not subordinate fish. In both species, the dramatic decrease in food availability in the non-breeding season may promote non-breeding aggression, via changes in NPY and/or neurosteroid signaling.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Cecilia Jalabert
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada
| | - H Bobby Fokidis
- Department of Biology, Rollins College, Winter Park, FL, United States
| | - Kiran K Soma
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.,Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Lucia Zubizarreta
- Unidad Bases Neurales de la Conducta, Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
11
|
Maternal effects in mammals: Broadening our understanding of offspring programming. Front Neuroendocrinol 2021; 62:100924. [PMID: 33992652 DOI: 10.1016/j.yfrne.2021.100924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.
Collapse
|
12
|
Bao MH, Xu XM, Huo DL, Cao J, Zhao ZJ. The effect of aggression II: Acclimation to a high ambient temperature reduces territorial aggression in male striped hamsters (Cricetulus barabensis). Horm Behav 2021; 132:104993. [PMID: 33991799 DOI: 10.1016/j.yhbeh.2021.104993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/01/2022]
Abstract
Thyroid hormones have a profound influence on development, cellular differentiation and metabolism, and are also suspected of playing a role in aggression. We measured territorial aggression, body temperature (Tb) and serum thyroid hormones levels of male striped hamsters (Cricetulus barabensis) acclimated to either cold (5 °C), cool (21 °C) or hot (34 °C) ambient temperatures. The effects of methimazole on territorial aggression, food intake, metabolic rate and serum thyroid hormone levels, were also examined. Territorial aggression was significantly lower in male hamsters acclimated to the hot temperature compared to those acclimated to the cool or cold temperatures. Tb significantly increased during aggressive territorial interactions with intruders but did not significantly differ among the three temperature treatments. Serum T3, T4 and cortisol levels of hamsters acclimated to 34 °C were significantly lower than those acclimated to 21 °C. In addition to significantly reducing territorial aggression, treatment with methimazole also significantly reduced serum T3 and T4 levels, Tb and metabolic rate. These results suggest that exposure to high temperatures reduces the capacity of hamsters to dissipate heat causing them to lower their metabolic rate, which, in turn, causes them to reduce territorial aggression to prevent hyperthermia. The lower metabolic rate mediated by down-regulated thyroid hormones inhibits territorial aggression and could thereby determine the outcome of territorial conflicts.
Collapse
Affiliation(s)
- Meng-Huan Bao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Da-Liang Huo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
13
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
14
|
Munley KM, Trinidad JC, Deyoe JE, Adaniya CH, Nowakowski AM, Ren CC, Murphy GV, Reinhart JM, Demas GE. Melatonin-dependent changes in neurosteroids are associated with increased aggression in a seasonally breeding rodent. J Neuroendocrinol 2021; 33:e12940. [PMID: 33615607 DOI: 10.1111/jne.12940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Aggression is a complex social behaviour that allows individuals to compete for access to limited resources (eg, mates, food and territories). Excessive or inappropriate aggression, however, has become problematic in modern societies, and current treatments are largely ineffective. Although previous work in mammals suggests that aggressive behaviour varies seasonally, seasonality is largely overlooked when developing clinical treatments for inappropriate aggression. Here, we investigated how the hormone melatonin regulates seasonal changes in neurosteroid levels and aggressive behaviour in Siberian hamsters, a rodent model of seasonal aggression. Specifically, we housed males in long-day (LD) or short-day (SD) photoperiods, administered timed s.c. melatonin injections (which mimic a SD-like signal) or control injections, and measured aggression using a resident-intruder paradigm after 9 weeks of treatment. Moreover, we quantified five steroid hormones in circulation and in brain regions associated with aggressive behaviour (lateral septum, anterior hypothalamus, medial amygdala and periaqueductal gray) using liquid chromatography-tandem mass spectrometry. SD hamsters and LD hamsters administered timed melatonin injections (LD-M) displayed increased aggression and exhibited region-specific decreases in neural dehydroepiandrosterone, testosterone and oestradiol, but showed no changes in progesterone or cortisol. Male hamsters also showed distinct associations between neurosteroids and aggressive behaviour, in which neural progesterone and dehydroepiandrosterone were positively correlated with aggression in all treatment groups, whereas neural testosterone, oestradiol and cortisol were negatively correlated with aggression only in LD-M and SD hamsters. Collectively, these results provide insight into a novel neuroendocrine mechanism of mammalian aggression, in which melatonin reduces neurosteroid levels and elevates aggressive behaviour.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | | | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Catherine H Adaniya
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Andrea M Nowakowski
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Grace V Murphy
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - John M Reinhart
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
15
|
Bakalov DV, Andreeva Gateva P, Tafradjiiska-Hadjiolova RK. Differences between paediatric and adult suspected neuropsychiatric adverse drug reactions of Melatonin reported to the European Medicines Agency. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1932595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Dimitar Vaskov Bakalov
- Department of Pathophysiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Pavlina Andreeva Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | | |
Collapse
|
16
|
Rendon NM, Petersen CL, Munley KM, Amez AC, Boyes DL, Kingsbury MA, Demas GE. Seasonal patterns of melatonin alter aggressive phenotypes of female Siberian hamsters. J Neuroendocrinol 2020; 32:e12894. [PMID: 32808694 DOI: 10.1111/jne.12894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Many animal species exhibit year-round aggression, a behaviour that allows individuals to compete for limited resources in their environment (eg, food and mates). Interestingly, this high degree of territoriality persists during the non-breeding season, despite low levels of circulating gonadal steroids (ie, testosterone [T] and oestradiol [E2 ]). Our previous work suggests that the pineal hormone melatonin mediates a 'seasonal switch' from gonadal to adrenal regulation of aggression in Siberian hamsters (Phodopus sungorus); solitary, seasonally breeding mammals that display increased aggression during the short, 'winter-like' days (SDs) of the non-breeding season. To test the hypothesis that melatonin elevates non-breeding aggression by increasing circulating and neural steroid metabolism, we housed female hamsters in long days (LDs) or SDs, administered them timed or mis-timed melatonin injections (mimic or do not mimic a SD-like signal, respectively), and measured aggression, circulating hormone profiles and aromatase (ARO) immunoreactivity in brain regions associated with aggressive or reproductive behaviours (paraventricular hypothalamic nucleus [PVN], periaqueductal gray [PAG] and ventral tegmental area [VTA]). Females that were responsive to SD photoperiods (SD-R) and LD females given timed melatonin injections (Mel-T) exhibited gonadal regression and reduced circulating E2 , but increased aggression and circulating dehydroepiandrosterone (DHEA). Furthermore, aggressive challenges differentially altered circulating hormone profiles across seasonal phenotypes; reproductively inactive females (ie, SD-R and Mel-T females) reduced circulating DHEA and T, but increased E2 after an aggressive interaction, whereas reproductively active females (ie, LD females, SD non-responder females and LD females given mis-timed melatonin injections) solely increased circulating E2 . Although no differences in neural ARO abundance were observed, LD and SD-R females showed distinct associations between ARO cell density and aggressive behaviour in the PVN, PAG and VTA. Taken together, these results suggest that melatonin increases non-breeding aggression by elevating circulating steroid metabolism after an aggressive encounter and by regulating behaviourally relevant neural circuits in a region-specific manner.
Collapse
Affiliation(s)
- Nikki M Rendon
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | | | - Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Andrea C Amez
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Daniel L Boyes
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| |
Collapse
|
17
|
Bakalov D, Sabit Z, Tafradjiiska-Hadjiolova R. Commentary regarding "neuroactive compounds in foods: Occurrence, mechanism and potential health effects". Food Res Int 2020; 132:109088. [PMID: 32331651 DOI: 10.1016/j.foodres.2020.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
A letter to the Editor focusing on some safety concerns about melatonin, provoked by the article "Neuroactive compounds in foods: Occurrence, mechanism and potential health effects" published in Journal of Food Research International.
Collapse
Affiliation(s)
- Dimitar Bakalov
- Department of Pathophysiology, Medical University of Sofia, 1431, Bulgaria.
| | - Zafer Sabit
- Department of Pathophysiology, Medical University of Sofia, 1431, Bulgaria
| | | |
Collapse
|
18
|
Raitiere MN. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Med Hypotheses 2020; 135:109447. [DOI: 10.1016/j.mehy.2019.109447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
19
|
Munley KM, Deyoe JE, Ren CC, Demas GE. Melatonin mediates seasonal transitions in aggressive behavior and circulating androgen profiles in male Siberian hamsters. Horm Behav 2020; 117:104608. [PMID: 31669179 PMCID: PMC6980702 DOI: 10.1016/j.yhbeh.2019.104608] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023]
Abstract
Some seasonally-breeding animals are more aggressive during the short, "winter-like" days (SD) of the non-breeding season, despite gonadal regression and reduced circulating androgen levels. While the mechanisms underlying SD increases in aggression are not well understood, previous work from our lab suggests that pineal melatonin (MEL) and the adrenal androgen dehydroepiandrosterone (DHEA) are important in facilitating non-breeding aggression in Siberian hamsters (Phodopus sungorus). To characterize the role of MEL in modulating seasonal transitions in aggressive behavior, we housed male hamsters in long days (LD) or SD, treated them with timed MEL (M) or saline injections, and measured aggression after 3, 6, and 9 weeks. Furthermore, to assess whether MEL mediates seasonal shifts in gonadal and adrenal androgen synthesis, serum testosterone (T) and DHEA concentrations were quantified 36 h before and immediately following an aggressive encounter. LD-M and SD males exhibited similar physiological and behavioral responses to treatment. Specifically, both LD-M and SD males displayed higher levels of aggression than LD males and reduced circulating DHEA and T in response to an aggressive encounter, whereas LD males elevated circulating androgens. Interestingly, LD and SD males exhibited distinct relationships between circulating androgens and aggressive behavior, in which changes in serum T following an aggressive interaction (∆T) were negatively correlated with aggression in LD males, while ∆DHEA was positively correlated with aggression in SD males. Collectively, these findings suggest that SD males transition from synthesis to metabolism of circulating androgens following an aggressive encounter, a mechanism that is modulated by MEL.
Collapse
Affiliation(s)
- Kathleen M Munley
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Jessica E Deyoe
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Clarissa C Ren
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
20
|
Wang Y, Wang X, Chen J, Li S, Zhai H, Wang Z. Melatonin pretreatment attenuates acute methamphetamine-induced aggression in male ICR mice. Brain Res 2019; 1715:196-202. [PMID: 30953606 DOI: 10.1016/j.brainres.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 11/30/2022]
Abstract
Aggression is one of the symptoms of methamphetamine (MA) use and withdrawal, which can exacerbate MA addiction and relapse. Many studies have demonstrated that poor sleep is significantly associated with aggression. Melatonin has been indicated to be effective in treating sleep disorders induced by MA, and it can also protect neuronal cells against MA-induced neurotoxicity. However, the underlying effects of melatonin on MA-reduced aggression remain unclarified. This study was designed to evaluate the effects of melatonin on acute MA-induced aggressive behavior in male ICR mice and the effects on neurotransmitters related to aggression. Fifty male ICR mice were randomly assigned to control and treatment groups pretreated with MA (3 mg/kg) or melatonin (2.5, 5, 10 mg/kg) plus MA. Aggressive behaviors were observed through isolation-induced aggression in the resident-intruder model. High-performance liquid chromatography combined with electrochemical detection (HPLC-ECD) was used to anatomize the levels of dopamine (DA) and its metabolites, 3,4-dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA), and the concentrations of serotonin (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in the hippocampus involved in behavior processing. The results showed that acute MA administration decreased latency to initial attacks and thereby increased the number and total duration of attacks. Furthermore, HVA level as well as 5-HIAA and 5-HT turnover estimated by 5-HIAA/5-HT ratios declined compared to those in the vehicle group. The medium melatonin pretreatment dose (5 mg/kg) could significantly reverse acute MA-induced aggressive behavior in the form of prolonging latency to initial attacks and thereby attenuating the number of attacks and total duration of attacks. HVA and 5-HIAA levels, 5-HT turnover estimated by 5-HIAA/5-HT ratios, and DA turnover estimated by HVA/DA ratios and (DOPAC + HVA)/DA ratios were elevated compared to those in the MA group. These results indicate that the DA and 5-HT systems are involved in the processes of MA-induced aggressive behaviors and that melatonin has the capacity to reverse MA-induced aggressive behaviors.
Collapse
Affiliation(s)
- Yuncui Wang
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; School of Nursing, Hubei University of Chinese Medicine, No. 1 West Huangjia Lake Road, Hong Shan District, Wuhan 430065, China.
| | - Xiaohong Wang
- School of Chinese Materia Medicine, Beijing University of Chinese Medicine, Liangxiang Town, Fangshan District, Beijing 102488, China.
| | - Jiayan Chen
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Shuaiqi Li
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| | - Haifeng Zhai
- National Institute on Drug Dependence, Peking University, 38#, Xueyuan Road, Haidian District, Beijing 100191, China.
| | - Zengzhen Wang
- Department of Epidemiology & Health Statistics, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China.
| |
Collapse
|
21
|
Abstract
Fish social behavior can be affected by artificial environments, particularly by factors that act upon species that show aggressive behavior to set social rank hierarchy. Although aggressive interactions are part of the natural behavior in fish, if constant and intense, such interactions can cause severe body injuries, increase energy expenditure, and lead the animals to suffer from social stress. The immediate consequence of these factors is a reduced welfare in social fish species. In this paper, we consider the factors that impact on the social behavior and welfare of Nile tilapia, an African cichlid fish widely used both in fish farms and in research; this species is frequently used as a model for physiology and behavior research. This is a polygynous species whose males interact aggressively, establishing a territorial based hierarchy, where a dominant male and several subordinate males arise. When social stability is shrunk, the negative effects of prolonged fighting emerge. In this paper, we summarized how some of the common practices in aquaculture, such as classifying individuals by matching their sizes, water renewal, stock density, and environment lighting affect Nile tilapia social aggressive interactions and, in turn, impact on its welfare. We also discuss some ways to decrease the effects of aggressive interactions in Nile tilapia, such as environment color and body tactile stimulation.
Collapse
|
22
|
Mogavero F, Jager A, Glennon JC. Clock genes, ADHD and aggression. Neurosci Biobehav Rev 2018; 91:51-68. [DOI: 10.1016/j.neubiorev.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 12/25/2022]
|
23
|
Zapletal D, Macháček M, Suchý P, Straková E, Vitula F. Male-to-female aggression in cage-housed common pheasants (Phasianus colchicus) during the breeding season was not related to male plasma testosterone level. Br Poult Sci 2018; 59:256-263. [PMID: 29393676 DOI: 10.1080/00071668.2018.1436159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The aim of this study was to investigate if male-to-female aggression of common pheasants in the course of the breeding season was related to the concentration of plasma testosterone and/or other biochemical plasma indicators in male pheasants housed in breeding cages. The influence of season on the concentration of testosterone and biochemical indicators was also investigated. 2. Males were divided into non-aggressive and aggressive groups during the breeding season based on ethological evaluation. At the beginning, in the middle and at the end of the breeding season, a blood sample was taken from all males on the same day and the concentration of selected biochemical indicators and the total circulating testosterone in the plasma were determined. 3. Male-to-female aggression during the breeding season of pheasants was not influenced by the total plasma testosterone of males. 4. The concentration of total plasma testosterone in males decreased gradually during the breeding season. 5. Male-to-female aggression of pheasants did not have a significant effect on any of the assessed biochemical indicators. 6. The influence of the breeding season affected the activities of alanine aminotransferase and aspartate aminotransferase as well as the concentrations of glucose, magnesium, potassium and chloride in the blood plasma of cage-housed male pheasants.
Collapse
Affiliation(s)
- D Zapletal
- a Department of Animal Husbandry and Animal Hygiene, Faculty of Veterinary Hygiene and Ecology , University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - M Macháček
- a Department of Animal Husbandry and Animal Hygiene, Faculty of Veterinary Hygiene and Ecology , University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - P Suchý
- a Department of Animal Husbandry and Animal Hygiene, Faculty of Veterinary Hygiene and Ecology , University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - E Straková
- b Department of Animal Nutrition, Faculty of Veterinary Hygiene and Ecology , University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| | - F Vitula
- c Department of Ecology and Diseases of Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology , University of Veterinary and Pharmaceutical Sciences Brno , Brno , Czech Republic
| |
Collapse
|
24
|
Xu XM, Chi QS, Cao J, Zhao ZJ. The effect of aggression I: The increases of metabolic cost and mobilization of fat reserves in male striped hamsters. Horm Behav 2018; 98:55-62. [PMID: 29288636 DOI: 10.1016/j.yhbeh.2017.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 12/14/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
Abstract
Aggression can benefit individuals by enhancing their dominance and thereby their ability to acquire and retain resources that increase survival or fitness. Engaging in aggressive behavior costs energy and how animals manage their energy budget to accommodate aggression remains unclear. We conducted three experiments to examine changes in physiological, behavioral and hormonal markers indicative of energy budget in male striped hamsters subject to resident-intruder aggression tests. Body temperature, metabolic rate and serum corticosterone levels significantly increased in resident hamsters immediately after the introduction of intruders. Energy intake did not change, but the metabolic rate of residents increased by 16.1% after 42-days of repeated encounters with intruders. Residents had significantly decreased body fat content and serum thyroxine (T4) levels, and a considerably elevated tri-iodothyronine (T3)/T4 ratio compared to a control group that had no intruders. Attack latency considerably shortened, and the number of attack bouts and total duration of attacks, significantly increased in residents on day 42 compared to day 1 of experiments. These findings may suggest that the conversion of T4 to T3 is involved in defensive aggression behavior. The mobilization of fat reserves resulting in lean body mass is probably common response to the increased metabolic cost of aggression in small mammals. Aggressive behavior, which is important for the successful acquisition and defense of resources, may be of significance for adaptation and evolution of metabolic rate.
Collapse
Affiliation(s)
- Xiao-Ming Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qing-Sheng Chi
- State Key Laboratory of Integrated Management for Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jing Cao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhi-Jun Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
25
|
Munley KM, Rendon NM, Demas GE. Neural Androgen Synthesis and Aggression: Insights From a Seasonally Breeding Rodent. Front Endocrinol (Lausanne) 2018; 9:136. [PMID: 29670576 PMCID: PMC5893947 DOI: 10.3389/fendo.2018.00136] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
Aggression is an essential social behavior that promotes survival and reproductive fitness across animal systems. While research on the neuroendocrine mechanisms underlying this complex behavior has traditionally focused on the classic neuroendocrine model, in which circulating gonadal steroids are transported to the brain and directly mediate neural circuits relevant to aggression, recent studies have suggested that this paradigm is oversimplified. Work on seasonal mammals that exhibit territorial aggression outside of the breeding season, such as Siberian hamsters (Phodopus sungorus), has been particularly useful in elucidating alternate mechanisms. These animals display elevated levels of aggression during the non-breeding season, in spite of gonadal regression and reduced levels of circulating androgens. Our laboratory has provided considerable evidence that the adrenal hormone precursor dehydroepiandrosterone (DHEA) is important in maintaining aggression in both male and female Siberian hamsters during the non-breeding season, a mechanism that appears to be evolutionarily-conserved in some seasonal rodent and avian species. This review will discuss research on the neuroendocrine mechanisms of aggression in Siberian hamsters, a species that displays robust neural, physiological, and behavioral changes on a seasonal basis. Furthermore, we will address how these findings support a novel neuroendocrine pathway for territorial aggression in seasonal animals, in which adrenal DHEA likely serves as an essential precursor for neural androgen synthesis during the non-breeding season.
Collapse
|
26
|
Melatonin increases reactive aggression in humans. Psychopharmacology (Berl) 2017; 234:2971-2978. [PMID: 28733812 DOI: 10.1007/s00213-017-4693-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/03/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Melatonin, a hormone released preferentially by the pineal gland during the night, affects circadian rhythms and aging processes. As animal studies have shown that melatonin increases resident-intruder aggression, this study aimed to investigate the impact of melatonin treatment on human aggression. METHODS In a double-blind, randomized, placebo-controlled between-participant design, 63 healthy male volunteers completed the Taylor Aggression Paradigm (TAP) after oral administration of melatonin or placebo. RESULTS We found that when given the opportunity to administer high or low punishments to an opponent, participants who ingested melatonin selected the high punishment more often than those who ingested placebo. The increased reactive aggression under melatonin administration remained after controlling for inhibitory ability, trait aggression, trait impulsiveness, circadian preference, perceptual sensibility to noise, and changes in subjective sleepiness and emotional states. CONCLUSION This study provides novel and direct evidence for the involvement of melatonin in human social processes.
Collapse
|
27
|
Kulkarni S, Sharda S, Watve M. Bi-stability in type 2 diabetes mellitus multi-organ signalling network. PLoS One 2017; 12:e0181536. [PMID: 28767672 PMCID: PMC5540287 DOI: 10.1371/journal.pone.0181536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/03/2017] [Indexed: 01/21/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is believed to be irreversible although no component of the pathophysiology is irreversible. We show here with a network model that the apparent irreversibility is contributed by the structure of the network of inter-organ signalling. A network model comprising all known inter-organ signals in T2DM showed bi-stability with one insulin sensitive and one insulin resistant attractor. The bi-stability was made robust by multiple positive feedback loops suggesting an evolved allostatic system rather than a homeostatic system. In the absence of the complete network, impaired insulin signalling alone failed to give a stable insulin resistant or hyperglycemic state. The model made a number of correlational predictions many of which were validated by empirical data. The current treatment practice targeting obesity, insulin resistance, beta cell function and normalization of plasma glucose failed to reverse T2DM in the model. However certain behavioural and neuro-endocrine interventions ensured a reversal. These results suggest novel prevention and treatment approaches which need to be tested empirically.
Collapse
Affiliation(s)
- Shubhankar Kulkarni
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Sakshi Sharda
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Milind Watve
- Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| |
Collapse
|
28
|
Rendon NM, Amez AC, Proffitt MR, Bauserman ER, Demas GE. Aggressive behaviours track transitions in seasonal phenotypes of female Siberian hamsters. Funct Ecol 2017; 31:1071-1081. [PMID: 28757672 PMCID: PMC5526640 DOI: 10.1111/1365-2435.12816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Seasonally breeding animals exhibit profound physiological and behavioural responses to changes in ambient day length (photoperiod), including changes in reproductive function and territorial aggression.Species where aggression persists when gonads are regressed and circulating levels of gonadal hormones are low, such as Siberian hamsters (Phodopus sungorus) and song sparrows (Melospiza melodia), challenge the well-established framework that gonadal hormones are important mediators of aggression.A solution to this apparent paradox is that a season-specific increase in sensitivity to hormones in brain areas associated with aggression offsets low levels of gonadal hormones during periods of reproductive quiescence.To test this hypothesis, we manipulated photoperiod to induce natural fluctuations in seasonal phenotype across multiple stages of the annual reproductive cycle in female Siberian hamsters that display increased aggression during short-day reproductive quiescence, suggesting that behaviour persists independent of gonadal steroids.Females were housed in long "summer" days or short "winter" days for 10, 24 or 30 weeks to capture gonadal regression, transition back to a reproductively functional state and full gonadal recrudescence, respectively.Long-day animals maintained reproductive functionality and displayed low aggression across all time points. By week 10, short-day reproductively responsive females underwent gonadal regression and displayed increased aggression; non-responsive animals showed no such changes. At week 24, animals were in a transitional period and displayed an intermediate phenotype with respect to reproduction and aggression. By week 30, short-day females were fully recrudesced and returned to long-day-like levels of aggression.Consistent with our hypothesis, gonadally regressed females displayed decreases in 17β-oestradiol (oestradiol) levels, but site-specific increases in the abundance of brain oestrogen receptor-alpha (ERα) in regions associated with aggression, but not reproduction. Increased site-specific ERα may function as a compensatory mechanism to allow increased responsiveness to oestradiol in regulating aggression in lieu of high circulating concentrations of hormones.Collectively, these results broaden our understanding of how breeding phenology maps onto social behaviour and the mechanisms that have evolved to coordinate behaviours that occur in non-breeding contexts.
Collapse
Affiliation(s)
- Nikki M Rendon
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Andrea C Amez
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Melissa R Proffitt
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Elizabeth R Bauserman
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Center for the Integrative Study of Animal Behavior, Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
29
|
Sylvia KE, Jewell CP, Rendon NM, St John EA, Demas GE. Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters. Brain Behav Immun 2017; 60:51-62. [PMID: 27816476 DOI: 10.1016/j.bbi.2016.10.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/28/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is a diverse, host-specific, and symbiotic bacterial environment that is critical for mammalian survival and exerts a surprising yet powerful influence on brain and behavior. Gut dysbiosis has been linked to a wide range of physical and psychological disorders, including autism spectrum disorders and anxiety, as well as autoimmune and inflammatory disorders. A wealth of information on the effects of dysbiosis on anxiety and depression has been reported in laboratory model systems (e.g., germ-free mice); however, the effects of microbiome disruption on social behaviors (e.g., aggression) of non-model species that may be particularly important in understanding many aspects of physiology and behavior have yet to be fully explored. Here we assessed the sex-specific effects of a broad-spectrum antibiotic on the gut microbiome and its effects on social behaviors in male and female Siberian hamsters (Phodopus sungorus). In Experiment 1, we administered a broad-spectrum antibiotic on a short-term basis and found that antibiotic treatment altered the microbial communities in the gut in male and female hamsters. In Experiment 2, we tested the effects of single versus repeated antibiotic treatment (including a recovery phase) on behavior, and found that two, but not one, treatments caused marked decreases in aggressive behavior, but not other social behaviors, in males; aggression returned to normal levels following recovery. Antibiotic-treated females, in contrast, showed decreased aggression after a single treatment, with all other social behaviors unaffected. Unlike males, female aggression did not return to normal during either recovery period. The present findings demonstrate that modest antibiotic treatment results in marked disruption of the gut microbiome in hamsters, akin to research done in other rodent species and humans. Further, we show that treatment with a broad-spectrum antibiotic, which has dysbiotic effects, also has robust, sex-specific effects on aggression, a critical behavior in the survival and reproductive success of many rodent species.
Collapse
Affiliation(s)
- Kristyn E Sylvia
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA.
| | - Cathleen P Jewell
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Nikki M Rendon
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Emma A St John
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
30
|
Rendon NM, Rudolph LM, Sengelaub DR, Demas GE. The agonistic adrenal: melatonin elicits female aggression via regulation of adrenal androgens. Proc Biol Sci 2016; 282:rspb.2015.2080. [PMID: 26582025 DOI: 10.1098/rspb.2015.2080] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Classic findings have demonstrated an important role for sex steroids as regulators of aggression, but this relationship is lacking within some environmental contexts. In mammals and birds, the adrenal androgen dehydroepiandrosterone (DHEA), a non-gonadal precursor of biologically active steroids, has been linked to aggression. Although females, like males, use aggression when competing for limited resources, the mechanisms underlying female aggression remain understudied. Here, we propose a previously undescribed endocrine mechanism regulating female aggression via direct action of the pineal hormone melatonin on adrenal androgens. We examined this in a solitary hamster species, Phodopus sungorus, in which both sexes are highly territorial across the seasons, and display increased aggression concomitant with decreased serum levels of sex steroids in short 'winter-like' days. Short- but not long-day females had increased adrenal DHEA responsiveness co-occurring with morphological changes in the adrenal gland. Further, serum DHEA and total adrenal DHEA content were elevated in short days. Lastly, melatonin increased DHEA and aggression and stimulated DHEA release from cultured adrenals. Collectively, these findings demonstrate that DHEA is a key peripheral regulator of aggression and that melatonin coordinates a 'seasonal switch' from gonadal to adrenal regulation of aggression by direct action on the adrenal glands.
Collapse
Affiliation(s)
- Nikki M Rendon
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Lauren M Rudolph
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Dale R Sengelaub
- Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
31
|
Abstract
Humans exhibit seasonal variation in a wide variety of behavioral and physiological processes, and numerous investigators have suggested that this might be because we are sensitive to seasonal variation in day length. The evidence supporting this hypothesis is inconsistent. A new hypothesis is offered here—namely, that some humans indeed are seasonally photoresponsive, but others are not, and that individual variation may be the cause of the inconsistencies that have plagued the study of responsiveness to photoperiod in the past. This hypothesis is examined in relation to seasonal changes in the reproductive activity of humans, and it is developed by reviewing and combining five bodies of knowledge: correlations of human birthrates with photoperiod; seasonal changes in the activity of the neuroendocrine pathway that could link photoperiod to gonadal steroid secretion in humans; what is known about photoperiod, latitude, and reproduction of nonhuman primates; documentation of individual variation in photoresponsiveness in rodents and humans; and what is known about the evolutionary ecology of humans.
Collapse
Affiliation(s)
- F H Bronson
- Center for Behavioral Neuroendocrinology, University of Texas at Austin, 78712, USA.
| |
Collapse
|
32
|
Sipari S, Haapakoski M, Klemme I, Palme R, Sundell J, Ylönen H. Population sex-ratio affecting behavior and physiology of overwintering bank voles (Myodes glareolus). Physiol Behav 2016; 159:45-51. [PMID: 26976741 DOI: 10.1016/j.physbeh.2016.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022]
Abstract
Many boreal rodents are territorial during the breeding season but during winter become social and aggregate for more energy efficient thermoregulation. Communal winter nesting and social interactions are considered to play an important role for the winter survival of these species, yet the topic is relatively little explored. Females are suggested to be the initiators of winter aggregations and sometimes reported to survive better than males. This could be due to the higher social tolerance observed in overwintering females than males. Hormonal status could also affect winter behavior and survival. For instance, chronic stress can have a negative effect on survival, whereas high gonadal hormone levels, such as testosterone, often induce aggressive behavior. To test if the winter survival of females in a boreal rodent is better than that of males, and to assess the role of females in the winter aggregations, we generated bank vole (Myodes glareolus) populations of three different sex ratios (male-biased, female-biased and even density) under semi-natural conditions. We monitored survival, spatial behavior and hormonal status (stress and testosterone) during two winter months. We observed no significant differences in survival between the sexes or among populations with differing sex-ratios. The degree of movement area overlap was used as an indicator of social tolerance and potential communal nesting. Individuals in male biased populations showed a tendency to be solitary, whereas in female biased populations there was an indication of winter aggregation. Females living in male-biased populations had higher stress levels than the females from the other populations. The female-biased sex-ratio induced winter breeding and elevated testosterone levels in males. Thus, our results suggest that the sex-ratio of the overwintering population can lead to divergent overwintering strategies in bank voles.
Collapse
Affiliation(s)
- Saana Sipari
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland.
| | - Marko Haapakoski
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Ines Klemme
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Janne Sundell
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, 16900 Lammi, Finland
| | - Hannu Ylönen
- Department of Biological and Environmental Science, Konnevesi Research Station, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
33
|
Scotti MAL, Rendon NM, Greives TJ, Romeo RD, Demas GE. Short-day aggression is independent of changes in cortisol or glucocorticoid receptors in male Siberian hamsters (Phodopus sungorus). ACTA ACUST UNITED AC 2015; 323:331-41. [DOI: 10.1002/jez.1922] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 11/07/2022]
Affiliation(s)
| | - Nikki M. Rendon
- Department of Biology; Program in Neuroscience; Center for the Integrative Study of Animal Behavior, Indiana University; Bloomington Indiana
| | - Timothy J. Greives
- Department of Biological Sciences; North Dakota State University; Fargo North Dakota
| | - Russell D. Romeo
- Department of Psychology and Neuroscience and Behavior Program; Barnard College of Columbia University; New York New York
| | - Gregory E. Demas
- Department of Biology; Program in Neuroscience; Center for the Integrative Study of Animal Behavior, Indiana University; Bloomington Indiana
| |
Collapse
|
34
|
Kocher L, Brun J, Devillard F, Azabou E, Claustrat B. Phase advance of circadian rhythms in Smith–Magenis syndrome: A case study in an adult man. Neurosci Lett 2015; 585:144-8. [DOI: 10.1016/j.neulet.2014.11.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/17/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
|
35
|
Soma KK, Rendon NM, Boonstra R, Albers HE, Demas GE. DHEA effects on brain and behavior: insights from comparative studies of aggression. J Steroid Biochem Mol Biol 2015; 145:261-72. [PMID: 24928552 DOI: 10.1016/j.jsbmb.2014.05.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
Abstract
Historically, research on the neuroendocrinology of aggression has been dominated by the paradigm that the brain receives sex steroid hormones, such as testosterone (T), from the gonads, and then these gonadal hormones modulate behaviorally relevant neural circuits. While this paradigm has been extremely useful for advancing the field, recent studies reveal important alternatives. For example, most vertebrate species are seasonal breeders, and many species show aggression outside of the breeding season, when the gonads are regressed and circulating levels of gonadal steroids are relatively low. Studies in diverse avian and mammalian species suggest that adrenal dehydroepiandrosterone (DHEA), an androgen precursor and prohormone, is important for the expression of aggression when gonadal T synthesis is low. Circulating DHEA can be converted into active sex steroids within the brain. In addition, the brain can synthesize sex steroids de novo from cholesterol, thereby uncoupling brain steroid levels from circulating steroid levels. These alternative mechanisms to provide sex steroids to specific neural circuits may have evolved to avoid the costs of high circulating T levels during the non-breeding season. Physiological indicators of season (e.g., melatonin) may allow animals to switch from one neuroendocrine mechanism to another across the year. DHEA and neurosteroids are likely to be important for the control of multiple behaviors in many species, including humans. These studies yield fundamental insights into the regulation of DHEA secretion, the mechanisms by which DHEA affects behavior, and the brain regions and neural processes that are modulated by DHEA. It is clear that the brain is an important site of DHEA synthesis and action. This article is part of a Special Issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Kiran K Soma
- Departments of Psychology and Zoology, Graduate Program in Neuroscience, and the Brain Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | - Nikki M Rendon
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - Rudy Boonstra
- Centre for Neurobiology of Stress, Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada M1C 1A4
| | - H Elliott Albers
- Neuroscience Institute, and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30303, USA
| | - Gregory E Demas
- Department of Biology, Program in Neuroscience, and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
36
|
Gonçalves-de-Freitas E, Carvalho TB, Oliveira RF. Photoperiod modulation of aggressive behavior is independent of androgens in a tropical cichlid fish. Gen Comp Endocrinol 2014; 207:41-9. [PMID: 25101841 DOI: 10.1016/j.ygcen.2014.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 10/24/2022]
Abstract
Photoperiod is a major environmental cue that signals breeding conditions in animals living in temperate climates. Therefore, the activity of the reproductive (i.e. hypothalamic-pituitary-gonadal, HPG) axis and of the expression of reproductive behaviors, including territoriality, is responsive to changes in day length. However, at low latitudes the seasonal variation in day length decreases dramatically and photoperiod becomes less reliable as a breeding entraining cue in tropical species. In spite of this, some tropical mammals and birds have been found to still respond to small amplitude changes in photoperiod (e.g. 17min). Here we tested the effect of 2 photoperiod regimes, referred to as long-day (LD: 16L:08D) and short-day (SD: 08L:16D), on the activity of the HPG axis, on aggressive behavior and in the androgen response to social challenges in males of the tropical cichlid fish Tilapia rendalli. For each treatment, fish were transferred from a pre-treatment photoperiod of 12L:12D to their treatment photoperiod (either LD or SD) in which they were kept for 20days on stock tanks. Afterwards, males were isolated for 4days in glass aquaria in order to establish territories and initial androgen levels (testosterone, T; 11-ketotestosterone, KT) were assessed. On the 4th day, territorial intrusions were promoted such that 1/3 of the isolated males acted as residents and another 1/3 as intruders. Territorial intrusions lasted for 1h to test the effects of a social challenge under different photoperiod regimes. Photoperiod treatment (either SD or LD) failed to induce significant changes in the HPG activity, as measured by androgen levels and gonadosomatic index. However, SD increased the intensity of aggressive behaviors and shortened the time to settle a dominance hierarchy in an androgen-independent manner. The androgen responsiveness to the simulated territorial intrusion was only present in KT but not for T. The percent change in KT levels in response to the social challenge was different between treatments (SD>LD) and between male types (resident>intruder). The higher androgen response to a social challenge in residents under SD may be explained by the time course of the androgen response that due to the long time it takes to fight resolution under LD, might have been delayed. This result illustrates the importance of incorporating time response data in social endocrinology studies.
Collapse
Affiliation(s)
- Eliane Gonçalves-de-Freitas
- Universidade Estadual Paulista e Centro de Aquicultura da UNESP, R. Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil.
| | - Thaís Billalba Carvalho
- Universidade Federal do Amazonas, Av. Gal. Rodrigo Octávio Jordão Ramos 3000, Manaus, AM, Brazil.
| | - Rui F Oliveira
- ISPA - Instituto Universitário, R. Jardim do Tabaco 34, 1149-041 Lisboa, Portugal; Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
37
|
Gracceva G, Herde A, Groothuis TGG, Koolhaas JM, Palme R, Eccard JA. Turning Shy on a Winter's Day: Effects of Season on Personality and Stress Response inMicrotus arvalis. Ethology 2014. [DOI: 10.1111/eth.12246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giulia Gracceva
- Behavioural Physiology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
- Behavioural Biology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Antje Herde
- Department of Animal Ecology; Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| | - Ton G. G. Groothuis
- Behavioural Biology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Jaap M. Koolhaas
- Behavioural Physiology; Institute of Behavioural Neurosciences; University of Groningen; Groningen The Netherlands
| | - Rupert Palme
- Institute for Medical Biochemistry; University of Veterinary Medicine; Vienna Austria
| | - Jana A. Eccard
- Department of Animal Ecology; Institute of Biochemistry and Biology; University of Potsdam; Potsdam Germany
| |
Collapse
|
38
|
Laredo SA, Orr VN, McMackin MZ, Trainor BC. The effects of exogenous melatonin and melatonin receptor blockade on aggression and estrogen-dependent gene expression in male California mice (Peromyscus californicus). Physiol Behav 2014; 128:86-91. [PMID: 24518867 DOI: 10.1016/j.physbeh.2014.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/07/2014] [Accepted: 01/23/2014] [Indexed: 12/27/2022]
Abstract
Photoperiodic regulation of aggression has been well established in several vertebrate species, with rodents demonstrating increased aggression in short day photoperiods as compared to long day photoperiods. Previous work suggests that estrogens regulate aggression via rapid nongenomic pathways in short days and act more slowly in long days, most likely via genomic pathways. The current study therefore examines the role of melatonin in mediating aggression and estrogen-dependent gene transcription. In Experiment 1, male California mice were housed under long day photoperiods and were treated with either 0.3 μg/g of melatonin, 40 mg/kg of the melatonin receptor antagonist luzindole, or vehicle for 10 days. We found that melatonin administration significantly increased aggression as compared to mice receiving vehicle, but this phenotype was not completely ameliorated by luzindole. In Experiment 2, male California mice were injected with either 1mg/kg of the aromatase inhibitor letrozole or vehicle, and oxytocin receptor (OTR), estrogen receptor alpha (ERα), and c-fos gene expression was examined in the bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). In the BNST, but not MPOA, OTR mRNA was significantly downregulated following letrozole administration, indicating that OTR is an estrogen-dependent gene in the BNST. In contrast, ERα was not estrogen dependent in either brain region. In the MPOA, OTR mRNA was inhibited by melatonin, and luzindole suppressed this effect. C-fos and ERα did not differ between treatments in any brain region examined. These results suggest that it is unlikely that melatonin facilitates aggression via broad spectrum regulation of estrogen-dependent gene expression. Instead, melatonin may act via regulation of other transcription factors such as extracellular signal regulated kinase.
Collapse
Affiliation(s)
- Sarah A Laredo
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Animal Behavior Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | - Veronica N Orr
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Marissa Z McMackin
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Molecular, Cellular and Integrative Physiology Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology and Center for Neuroscience, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Animal Behavior Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA; Molecular, Cellular and Integrative Physiology Graduate Group, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
39
|
Paul MJ, Indic P, Schwartz WJ. Social forces can impact the circadian clocks of cohabiting hamsters. Proc Biol Sci 2014; 281:20132535. [PMID: 24500164 DOI: 10.1098/rspb.2013.2535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A number of field and laboratory studies have shown that the social environment influences daily rhythms in numerous species. However, underlying mechanisms, including the circadian system's role, are not known. Obstacles to this research have been the inability to track and objectively analyse rhythms of individual animals housed together. Here, we employed temperature dataloggers to track individual body temperature rhythms of pairs of cohabiting male Syrian hamsters (Mesocricetus auratus) in constant darkness and applied a continuous wavelet transform to determine the phase of rhythm onset before, during, and after cohabitation. Cohabitation altered the predicted trajectory of rhythm onsets in 34% of individuals, representing 58% of pairs, compared to 12% of hamsters single-housed as 'virtual pair' controls. Deviation from the predicted trajectory was by a change in circadian period (τ), which tended to be asymmetric-affecting one individual of the pair in nine of 11 affected pairs-with hints that dominance might play a role. These data implicate a change in the speed of the circadian clock as one mechanism whereby social factors can alter daily rhythms. Miniature dataloggers coupled with wavelet analyses should provide powerful tools for future studies investigating the principles and mechanisms mediating social influences on daily timing.
Collapse
Affiliation(s)
- Matthew J Paul
- Department of Neurology, University of Massachusetts Medical School, , Worcester, MA 01655, USA
| | | | | |
Collapse
|
40
|
Morgan C. Plasticity in photoperiodic regulation of adrenal, but not testicular, function in Syrian hamsters. Gen Comp Endocrinol 2012; 178:441-9. [PMID: 22771551 DOI: 10.1016/j.ygcen.2012.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 06/16/2012] [Accepted: 06/20/2012] [Indexed: 01/25/2023]
Abstract
Transfer from long days (LD) to short days (SD) increases aggressive behavior, but it suppresses the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes in male Syrian hamsters. The present study sought to determine whether social instability (group housing from days 1-70, single housing from days 71 to 84, and 10-min social encounters during the light or dark phase on days 82 and 83) could reverse SD-induced quiescence in the aggression-promoting HPA and HPG axes. Controls were housed in stable groups during LD or SD exposure. Euthanasia occurred on day 84 during the light or dark phase (unstable condition) and during the dark phase (stable condition). SD exposure in the unstable condition increased aggression during social pairings, and it elevated circulating corticosterone, cortisol, and adrenocorticotropic hormone (ACTH) concentrations, assessed by RIA, particularly during the dark phase. Although anterior pituitary pro-opiomelanocortin (POMC) immunoreactivity was unaltered by these experimental conditions, SD and the dark phase during social instability elevated POMC mRNA levels, assessed by solution hybridization assay. In socially stable controls, SD exposure increased aggression, assessed by bite marks, reduced cortisol and ACTH, but not corticosterone, secretion, and it reduced anterior pituitary POMC mRNA, but not immunoreactivity, levels. SD exposure in both conditions reduced testicular function, indicated by more than 77% reduction of testis mass. These results suggest that social instability, rather than aggression per se, reversed SD-induced suppression of HPA, but not HPG, function.
Collapse
Affiliation(s)
- Caurnel Morgan
- Department of Nutrition & Food Science, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
41
|
Batista G, Zubizarreta L, Perrone R, Silva A. Non-sex-biased Dominance in a Sexually Monomorphic Electric Fish: Fight Structure and Submissive Electric Signalling. Ethology 2012. [DOI: 10.1111/j.1439-0310.2012.02022.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Abstract
Sociability consists of behaviors that bring animals together and those that keep animals apart. Remarkably, while the neural circuitry that regulates these two "faces" of sociability differ from one another, two neurohormones, oxytocin (Oxt) and vasopressin (Avp), have been consistently implicated in the regulation of both. In this chapter the the structure and function of the Oxt and Avp systems, the ways in which affiliative and aggressive behavior are studied and the roles of Oxt and Avp in the regulation of sociability will be briefly reviewed. Finally, work implicating Oxt and Avp in sociability in humans, with a focus on neuropsychiatric disorders will be highlighted.
Collapse
Affiliation(s)
- Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Ohio, USA.
| |
Collapse
|
43
|
Wang D, Zhang J, Zhang Z. Effect of testosterone and melatonin on social dominance and agonistic behavior in male Tscheskia triton. Behav Processes 2011; 89:271-7. [PMID: 22206994 DOI: 10.1016/j.beproc.2011.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 10/24/2011] [Accepted: 12/11/2011] [Indexed: 02/04/2023]
Abstract
Social dominance and agonistic behavior play important roles in animal societies. Melatonin and testosterone are closely related to social dominance and agonistic behavior in rodents, but interactions between both of them remain unknown. In this study we investigated the effects of testosterone and melatonin by manipulating photoperiod and castration on social dominance and agonistic behavior in male Tscheskia triton. Castration significantly decreases social dominance of both short- and long-day males, suggesting that testosterone benefits social dominance of males in both breeding and non-breeding seasons. In intact conditions, long-day males tended to dominate short-day males, suggesting that the effect of testosterone on social dominance was a little stronger than melatonin. However, castrated short-day males became dominant over their castrated long-day opponents meaning that high melatonin levels obviously benefit social dominance in males. Hormone implantation indicated that testosterone had no effect on non-breeding condition, but that melatonin was important during the breeding season. Our results indicate that both testosterone and melatonin are important in determining social dominance in male hamsters, and the effect of testosterone appears to be stronger than melatonin. Testosterone is responsible for aggression and social dominance in male hamsters during the breeding season, while melatonin regulates behavior during non-breeding, probably due to the different seasonal secretory patterns of the hormones.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
44
|
Walton JC, Weil ZM, Nelson RJ. Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 2011; 32:303-19. [PMID: 21156187 PMCID: PMC3139743 DOI: 10.1016/j.yfrne.2010.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/26/2023]
Abstract
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
45
|
Wang D, Li N, Liu M, Huang B, Liu Q, Liu X. Behavioral evaluation of quinestrol as a sterilant in male Brandt's voles. Physiol Behav 2011; 104:1024-30. [PMID: 21763706 DOI: 10.1016/j.physbeh.2011.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/02/2011] [Accepted: 06/29/2011] [Indexed: 11/25/2022]
Abstract
The theoretical, ecological, physiological, and mathematical aspects of fertility control in mammals have already been well studied, but little attention has been given to the behavioral effects, especially in rodents. We investigated the effects of quinestrol, a synthetic estradiol analog, on social behavior and reproductive physiology in male Brandt's voles (Lasiopodomys brandtii). Over seven successive days, four concentration gradients of quinestrol (none, 0.001%, 0.003%, and 0.006%) were separately mixed into feed and provided to male Brandt's voles. Reproductive parameters, including the reproductive organ indexes, testosterone level and reproductive ability, were observed and collected 2 weeks after finished feeding treatment and again after 4 weeks. Dyadic social encounters and female preferences were then recorded for the control males (no quinestrol) and the highest concentration group (0.006%). Results showed that quinestrol reduced the consumption of feed. Physiological data revealed that quinestrol had also effectively reduced the reproductive organs indexes, testosterone levels, female pregnancy rates and litter size. This phenomenon was especially evident in the highest concentration group only after 2 weeks of feeding. Behavioral results showed that both frequency and duration of female preference were unbiased between control and treated males. In social conflict tests, control pairs (CC) had lower latency toward initial attack than treated pairs (TT) and pairs of one control and one treated male (CT). Among the three pairs, there was no evident difference in patterns of mutual attack and agonistic behavior. In CT pairs, sterile males have the same winning rate and agonistic behavior as control males. Our data revealed that quinestrol has anti-fertility capabilities with little behavioral side effects on Brandt's voles, which suggested quinestrol's potential as a sterilant for Brandt's voles. The palatability, however, should be improved before field practice.
Collapse
Affiliation(s)
- Dawei Wang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan West Road, Beijing, 100193, China
| | | | | | | | | | | |
Collapse
|
46
|
Gutzler SJ, Karom M, Erwin WD, Albers HE. Arginine-vasopressin and the regulation of aggression in female Syrian hamsters (Mesocricetus auratus). Eur J Neurosci 2010; 31:1655-63. [PMID: 20525078 DOI: 10.1111/j.1460-9568.2010.07190.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine-vasopressin (AVP) is critical for the expression of a variety of social behaviors in many species. Previous studies have demonstrated that AVP regulates behaviors such as social communication and aggression in Syrian hamsters through the V1a receptor subtype. In male hamsters, AVP injected into the anterior hypothalamus (AH) stimulates aggression, while injection of a V1a receptor antagonist inhibits the behavior. The purpose of the present studies was to determine whether AVP influences aggression by its action in the AH in female hamsters. In the first experiment, we were surprised to find that injection of the V1a receptor antagonist, Manning compound, into the AH of intact female hamsters increased aggression. The second experiment confirmed the ability of the V1a receptor antagonist to increase aggression and found that the largest effects of the antagonist occurred at intermediate concentrations of the compound. The next experiment found that injection of AVP into the AH significantly reduced the latency to attack and the duration of aggression. Finally, we examined whether the effects of AVP and the V1a receptor antagonist on aggression differed in hamsters exposed to long 'summer-like' photoperiods or short 'winter-like' photoperiods, and found that their effects on aggression were not photoperiod dependent. In summary, contrary to what is observed in males, these data suggest that AVP in the AH may play an inhibitory role on aggression in female Syrian hamsters.
Collapse
Affiliation(s)
- Stephanie J Gutzler
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-3966, USA
| | | | | | | |
Collapse
|
47
|
Lutterschmidt DI, Mason RT. Temporally distinct effects of stress and corticosterone on diel melatonin rhythms of red-sided garter snakes (Thamnophis sirtalis). Gen Comp Endocrinol 2010; 169:11-7. [PMID: 20603122 DOI: 10.1016/j.ygcen.2010.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/23/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
Circadian and circannual rhythms in physiology and behavior are temporally organized via hormonal signals that reflect changing environmental cues. Interactions between endocrine signals are in turn important for integrating multiple physiological and behavioral rhythms. In the present study, we examined interactions between melatonin, the hypothalamus-pituitary-adrenal (HPA) axis, and corticosterone in a well-studied population of red-sided garter snakes (Thamnophis sirtalis parietalis). We demonstrate that 4h of capture stress significantly increased photophasic melatonin and decreased scotophasic melatonin concentrations of male snakes. Treatment with exogenous corticosterone (15 and 60 μg) did not mimic the effects of stress on diel melatonin rhythms. To determine if capture stress decreases scotophasic melatonin by depleting the precursors necessary for melatonin synthesis, we used a paradigm in which snakes were treated with the melatonin precursor 5-hydroxytryptophan (0.6 and 1.2mg) to elevate melatonin concentrations. Pretreatment of snakes with both capture stress and exogenous corticosterone blocked the effect of 5-hydroxytryptophan on scotophasic melatonin. Thus, although corticosterone itself does not influence melatonin rhythms of snakes, corticosterone can inhibit the synthesis of melatonin from 5-hydroxytryptophan. These experiments suggest that the initial versus later phases of an acute physiological stress response have temporally distinct effects on melatonin synthesis: activation of the sympathoadrenal system increases melatonin, while increased glucocorticoids can inhibit melatonin synthesis. Collectively, we demonstrate that a physiological coupling between melatonin, glucocorticoids, and the sympathoadrenal system is conserved in this ectothermic model and propose that such interactions may mediate stress-induced changes in physiology and behavior.
Collapse
|
48
|
Workman JL, Nelson RJ. Potential animal models of seasonal affective disorder. Neurosci Biobehav Rev 2010; 35:669-79. [PMID: 20800614 DOI: 10.1016/j.neubiorev.2010.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 08/13/2010] [Accepted: 08/19/2010] [Indexed: 01/05/2023]
Abstract
Seasonal affective disorder (SAD) is characterized by depressive episodes during winter that are alleviated during summer and by morning bright light treatment. Currently, there is no animal model of SAD. However, it may be possible to use rodents that respond to day length (photoperiod) to understand how photoperiod can shape the brain and behavior in humans. As nights lengthen in the autumn, the duration of the nightly elevation of melatonin increase; seasonally breeding animals use this information to orchestrate seasonal changes in physiology and behavior. SAD may originate from the extended duration of nightly melatonin secretion during fall and winter. These similarities between humans and rodents in melatonin secretion allows for comparisons with rodents that express more depressive-like responses when exposed to short day lengths. For instance, Siberian hamsters, fat sand rats, Nile grass rats, and Wistar rats display a depressive-like phenotype when exposed to short days. Current research in depression and animal models of depression suggests that hippocampal plasticity may underlie the symptoms of depression and depressive-like behaviors, respectively. It is also possible that day length induces structural changes in human brains. Many seasonally breeding rodents undergo changes in whole brain and hippocampal volume in short days. Based on strict validity criteria, there is no animal model of SAD, but rodents that respond to reduced day lengths may be useful to approximate the neurobiological phenomena that occur in people with SAD, leading to greater understanding of the etiology of the disorder as well as novel therapeutic interventions.
Collapse
Affiliation(s)
- Joanna L Workman
- Department of Psychology, The Ohio State University, Columbus, OH 43201, USA.
| | | |
Collapse
|
49
|
Metabolic syndrome: Aggression control mechanisms gone out of control. Med Hypotheses 2010; 74:578-89. [DOI: 10.1016/j.mehy.2009.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/07/2009] [Indexed: 01/13/2023]
|
50
|
Trainor BC, Crean KK, Fry WHD, Sweeney C. Activation of extracellular signal-regulated kinases in social behavior circuits during resident-intruder aggression tests. Neuroscience 2010; 165:325-36. [PMID: 19874872 DOI: 10.1016/j.neuroscience.2009.10.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 02/06/2023]
Abstract
Using a variety of experimental methods, a network of brain areas regulating aggressive behaviors has been identified in several groups of vertebrates. However, aggressive behavior expressed in different contexts is associated with different patterns of activity across hypothalamic and limbic brain regions. Previous studies in rodents demonstrated that short day photoperiods reliably increase both male and female aggression versus long day photoperiods. Here we used immunohistochemistry and western blots to examine the effect of photoperiod on phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK) in male California mice (Peromyscus californicus) during resident-intruder tests. Phosphorylated ERK (pERK) can alter neuronal activity in the short term and in the long term acts as a transcription factor. In the posterior bed nucleus of the stria terminalis (BNST) males tested in aggression tests had more pERK positive cells when housed in short days but not long days. This result was replicated in western blot analyses from microdissected BNST samples. In the medial amygdala (MEA), immunostaining and western analyses showed that pERK expression also was generally increased in short days. Immunostaining was also used to examine phosphorylation of cyclic AMP response element binding protein (CREB). CREB can be phosphorylated by pERK as well as other kinases and functions primarily as a transcription factor. Intriguingly, aggressive interactions reduced the number of cells stained positive for phosphorylated CREB in the infralimbic cortex, ventral lateral septum and MEA. This effect was observed in mice housed in long days but not short days. Overall, these data suggest that different (but overlapping) networks of aggressive behavior operate under different environmental conditions.
Collapse
Affiliation(s)
- B C Trainor
- Department of Psychology, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|