1
|
Hwang Y, Na JG, Lee SJ. Transcriptional regulation of soluble methane monooxygenase via enhancer-binding protein derived from Methylosinus sporium 5. Appl Environ Microbiol 2023; 89:e0210422. [PMID: 37668365 PMCID: PMC10537576 DOI: 10.1128/aem.02104-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/07/2023] [Indexed: 09/06/2023] Open
Abstract
Methane is a major greenhouse gas, and methanotrophs regulate the methane level in the carbon cycle. Soluble methane monooxygenase (sMMO) is expressed in various methanotroph genera, including Alphaproteobacteria and Gammaproteobacteria, and catalyzes the hydroxylation of methane to methanol. It has been proposed that MmoR regulates the expression of sMMO as an enhancer-binding protein under copper-limited conditions; however, details on this transcriptional regulation remain limited. Herein, we elucidate the transcriptional pathway of sMMO depending on copper ion concentration, which affects the interaction of MmoR and sigma factor. MmoR and sigma-54 (σ54) from Methylosinus sporium 5 were successfully overexpressed in Escherichia coli and purified to investigate sMMO transcription in methanotrophs. The results indicated that σ54 binds to a promoter positioned -24 (GG) and -12 (TGC) upstream between mmoG and mmoX1. The binding affinity and selectivity are lower (Kd = 184.6 ± 6.2 nM) than those of MmoR. MmoR interacts with the upstream activator sequence (UAS) with a strong binding affinity (Kd = 12.5 ± 0.5 nM). Mutational studies demonstrated that MmoR has high selectivity to its binding partner (ACA-xx-TGT). Titration assays have demonstrated that MmoR does not coordinate with copper ions directly; however, its binding affinity to UAS decreases in a low-copper-containing medium. MmoR strongly interacts with adenosine triphosphate (Kd = 62.8 ± 0.5 nM) to generate RNA polymerase complex. This study demonstrated that the binding events of both MmoR and σ54 that regulate transcription in M. sporium 5 depend on the copper ion concentration. IMPORTANCE This study provides biochemical evidence of transcriptional regulation of soluble methane monooxygenase (sMMO) in methanotrophs that control methane levels in ecological systems. Previous studies have proposed transcriptional regulation of MMOs, including sMMO and pMMO, while we provide further evidence to elucidate its mechanism using a purified enhancer-binding protein (MmoR) and transcription factor (σ54). The characterization studies of σ54 and MmoR identified the promoter binding sites and enhancer-binding sequences essential for sMMO expression. Our findings also demonstrate that MmoR functions as a trigger for sMMO expression due to the high specificity and selectivity for enhancer-binding sequences. The UV-visible spectrum of purified MmoR suggested an iron coordination like other GAF domain, and that ATP is essential for the initiation of enhancer elements. Binding assays indicated that these interactions are blocked by the copper ion. These results provide novel insights into gene regulation of methanotrophs.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
| | - Jeong-Geol Na
- Department of Chemical Engineering, Sogang University , Seoul, South Korea
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
- Institute of Molecular Biology and Genetics, Jeonbuk National University , Jeonju, South Korea
| |
Collapse
|
2
|
Abstract
Transcription initiation is highly regulated in bacterial cells, allowing adaptive gene regulation in response to environment cues. One class of promoter specificity factor called sigma54 enables such adaptive gene expression through its ability to lock the RNA polymerase down into a state unable to melt out promoter DNA for transcription initiation. Promoter DNA opening then occurs through the action of specialized transcription control proteins called bacterial enhancer-binding proteins (bEBPs) that remodel the sigma54 factor within the closed promoter complexes. The remodelling of sigma54 occurs through an ATP-binding and hydrolysis reaction carried out by the bEBPs. The regulation of bEBP self-assembly into typically homomeric hexamers allows regulated gene expression since the self-assembly is required for bEBP ATPase activity and its direct engagement with the sigma54 factor during the remodelling reaction. Crystallographic studies have now established that in the closed promoter complex, the sigma54 factor occupies the bacterial RNA polymerase in ways that will physically impede promoter DNA opening and the loading of melted out promoter DNA into the DNA-binding clefts of the RNA polymerase. Large-scale structural re-organizations of sigma54 require contact of the bEBP with an amino-terminal glutamine and leucine-rich sequence of sigma54, and lead to domain movements within the core RNA polymerase necessary for making open promoter complexes and synthesizing the nascent RNA transcript.
Collapse
|
3
|
Novel DNA Binding and Regulatory Activities for σ 54 (RpoN) in Salmonella enterica Serovar Typhimurium 14028s. J Bacteriol 2017; 199:JB.00816-16. [PMID: 28373272 DOI: 10.1128/jb.00816-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/27/2017] [Indexed: 01/13/2023] Open
Abstract
The variable sigma (σ) subunit of the bacterial RNA polymerase (RNAP) holoenzyme, which is responsible for promoter specificity and open complex formation, plays a strategic role in the response to environmental changes. Salmonella enterica serovar Typhimurium utilizes the housekeeping σ70 and five alternative sigma factors, including σ54 The σ54-RNAP differs from other σ-RNAP holoenzymes in that it forms a stable closed complex with the promoter and requires ATP hydrolysis by an activated cognate bacterial enhancer binding protein (bEBP) to transition to an open complex and initiate transcription. In S. Typhimurium, σ54-dependent promoters normally respond to one of 13 different bEBPs, each of which is activated under a specific growth condition. Here, we utilized a constitutively active, promiscuous bEBP to perform a genome-wide identification of σ54-RNAP DNA binding sites and the transcriptome of the σ54 regulon of S. Typhimurium. The position and context of many of the identified σ54 RNAP DNA binding sites suggest regulatory roles for σ54-RNAP that connect the σ54 regulon to regulons of other σ factors to provide a dynamic response to rapidly changing environmental conditions.IMPORTANCE The alternative sigma factor σ54 (RpoN) is required for expression of genes involved in processes with significance in agriculture, bioenergy production, bioremediation, and host-microbe interactions. The characterization of the σ54 regulon of the versatile pathogen S. Typhimurium has expanded our understanding of the scope of the σ54 regulon and how it links to other σ regulons within the complex regulatory network for gene expression in bacteria.
Collapse
|
4
|
Lundgren BR, Connolly MP, Choudhary P, Brookins-Little TS, Chatterjee S, Raina R, Nomura CT. Defining the Metabolic Functions and Roles in Virulence of the rpoN1 and rpoN2 Genes in Ralstonia solanacearum GMI1000. PLoS One 2015; 10:e0144852. [PMID: 26659655 PMCID: PMC4676750 DOI: 10.1371/journal.pone.0144852] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/24/2015] [Indexed: 11/18/2022] Open
Abstract
The alternative sigma factor RpoN is a unique regulator found among bacteria. It controls numerous processes that range from basic metabolism to more complex functions such as motility and nitrogen fixation. Our current understanding of RpoN function is largely derived from studies on prototypical bacteria such as Escherichia coli. Bacillus subtilis and Pseudomonas putida. Although the extent and necessity of RpoN-dependent functions differ radically between these model organisms, each bacterium depends on a single chromosomal rpoN gene to meet the cellular demands of RpoN regulation. The bacterium Ralstonia solanacearum is often recognized for being the causative agent of wilt disease in crops, including banana, peanut and potato. However, this plant pathogen is also one of the few bacterial species whose genome possesses dual rpoN genes. To determine if the rpoN genes in this bacterium are genetically redundant and interchangeable, we constructed and characterized ΔrpoN1, ΔrpoN2 and ΔrpoN1 ΔrpoN2 mutants of R. solanacearum GMI1000. It was found that growth on a small range of metabolites, including dicarboxylates, ethanol, nitrate, ornithine, proline and xanthine, were dependent on only the rpoN1 gene. Furthermore, the rpoN1 gene was required for wilt disease on tomato whereas rpoN2 had no observable role in virulence or metabolism in R. solanacearum GMI1000. Interestingly, plasmid-based expression of rpoN2 did not fully rescue the metabolic deficiencies of the ΔrpoN1 mutants; full recovery was specific to rpoN1. In comparison, only rpoN2 was able to genetically complement a ΔrpoN E. coli mutant. These results demonstrate that the RpoN1 and RpoN2 proteins are not functionally equivalent or interchangeable in R. solanacearum GMI1000.
Collapse
Affiliation(s)
- Benjamin R. Lundgren
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Morgan P. Connolly
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Pratibha Choudhary
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Tiffany S. Brookins-Little
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
| | - Snigdha Chatterjee
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Ramesh Raina
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Christopher T. Nomura
- Department of Chemistry, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
- Center for Applied Microbiology, State University of New York–College of Environmental Science and Forestry, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Sharma A, Leach RN, Gell C, Zhang N, Burrows PC, Shepherd DA, Wigneshweraraj S, Smith DA, Zhang X, Buck M, Stockley PG, Tuma R. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic Acids Res 2014; 42:5177-90. [PMID: 24553251 PMCID: PMC4005640 DOI: 10.1093/nar/gku146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ70 or σ54, that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ54 version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ70 and σ54, the domain movements of the latter have evolved to require an activator ATPase.
Collapse
Affiliation(s)
- Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Robert N. Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher Gell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Nan Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Patricia C. Burrows
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Dale A. Shepherd
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Sivaramesh Wigneshweraraj
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - David Alastair Smith
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaodong Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Buck
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- *To whom correspondence should be addressed. Tel: +44 1133 433092; Fax: +44 1133 437897;
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Correspondence may also be addressed to Roman Tuma. Tel: +44 1133 433080; Fax: +44 1133 437897;
| |
Collapse
|
6
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
7
|
Jurado P, Fernández LA, de Lorenzo V. Production and characterization of a recombinant single-chain antibody (scFv) for tracing the σ54 factor of Pseudomonas putida. J Biotechnol 2012; 160:33-41. [PMID: 22206981 DOI: 10.1016/j.jbiotec.2011.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/08/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
Abstract
The number of alternative sigma factor molecules per bacterial cell determines either stochasticity or evenness of transcription of cognate promoters. An approach for examining the abundance of sigmas in any sample of bacterial origin is explained here which relies on the production of a recombinant highly specific, high-affinity single-chain variable Fv domain (scFv) targeted towards unique protein sites of the factor. Purposely, a super-binder scFv recognizing a distinct epitope of the less abundant sigma σ(54) of Pseudomonas putida (also known as σ(N)) was obtained and its properties examined in detail. To this end, an scFv library was generated from mRNA extracted from lymphocytes of mice immunized with the purified σ(54) protein of this bacterium. The library was displayed on a phage system and subjected to various rounds of panning with purified σ(54) for capturing extreme binders. The resulting high-affinity anti-σ(54) phage antibody (Phab) clone named C2 strongly attached a small region located between positions 172 and 183 of the primary amino acid sequence of σ(54) that overlaps its core RNA polymerase-binding region. The purified scFv-C2 detected minute amounts of σ(54) in whole cell protein extracts not only of P. putida but also Escherichia coli cells and putatively in other bacteria as well. The affinity constant of the purified antibody was measured by surface plasmon resonance (SPR) and found to have a K(D) (k(off)/k(on)) in the range of 2×10(-9)M. The considerable affinity and specificity of this recombinant antibody makes it a tool of choice for quantitative studies on gene expression of σ(54)-dependent promoters in P. putida and other Gram-negative bacteria.
Collapse
Affiliation(s)
- Paola Jurado
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, Spain
| | | | | |
Collapse
|
8
|
Zhang N, Joly N, Buck M. A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements. Nucleic Acids Res 2012; 40:9139-52. [PMID: 22772990 PMCID: PMC3467059 DOI: 10.1093/nar/gks661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Initiation of σ(54)-dependent transcription requires assistance to melt DNA at the promoter site but is impeded by numerous protein-protein and nucleo-protein interactions. To alleviate these inhibitory interactions, hexameric bacterial enhancer binding proteins (bEBP), a subset of the ATPases associated with various cellular activities (AAA+) protein family, are required to remodel the transcription complex using energy derived from ATP hydrolysis. However, neither the process of energy conversion nor the internal architecture of the closed promoter complex is well understood. Escherichia coli Phage shock protein F (PspF), a well-studied bEBP, contains a surface-exposed loop 1 (L1). L1 is key to the energy coupling process by interacting with Region I of σ(54) (σ(54)(RI)) in a nucleotide dependent manner. Our analyses uncover new levels of complexity in the engagement of a multimeric bEBP with a basal transcription complex via several L1s. The mechanistic implications for these multivalent L1 interactions are elaborated in the light of available structures for the bEBP and its target complexes.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | | |
Collapse
|
9
|
Hong E, Doucleff M, Wemmer DE. Structure of the RNA polymerase core-binding domain of sigma(54) reveals a likely conformational fracture point. J Mol Biol 2009; 390:70-82. [PMID: 19426742 PMCID: PMC3195411 DOI: 10.1016/j.jmb.2009.04.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 11/22/2022]
Abstract
Transcription initiation by bacterial sigma(54)-RNA polymerase requires a conformational change of the holopolymerase-DNA complex, driven by an enhancer-binding protein. Although structures of the core polymerase and the more common sigma(70) factor have been determined, little is known about the structure of the sigma(54) variant. We report here the structure of an Aquifex aeolicus sigma(54) domain (residues 69-198), which binds core RNA polymerase. The structure is composed of two distinct subdomains held together by a small, conserved hydrophobic interface that appears to act as a fracture point in the structure. The N-terminal, four-helical subdomain has a negative surface and conserved residues that likely contact the core polymerase, while the C-terminal, three-helical bundle has a strongly positive patch that could contact DNA. Sequence conservation indicates that these structural features are conserved and are important for the role of sigma(54) in the polymerase complex.
Collapse
Affiliation(s)
- Eunmi Hong
- Dept. of Chemistry, University of California, Berkeley, CA, 94720-1460, U.S.A
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A
| | - Michaeleen Doucleff
- Dept. of Chemistry, University of California, Berkeley, CA, 94720-1460, U.S.A
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A
| | - David E. Wemmer
- Dept. of Chemistry, University of California, Berkeley, CA, 94720-1460, U.S.A
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A
| |
Collapse
|
10
|
Xiao Y, Wigneshweraraj SR, Weinzierl R, Wang YP, Buck M. Construction and functional analyses of a comprehensive sigma54 site-directed mutant library using alanine-cysteine mutagenesis. Nucleic Acids Res 2009; 37:4482-97. [PMID: 19474350 PMCID: PMC2715252 DOI: 10.1093/nar/gkp419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/05/2009] [Accepted: 05/06/2009] [Indexed: 11/14/2022] Open
Abstract
The sigma(54) factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to initiate transcription unless acted on by an activator protein. sigma(54) is closely involved in many steps of activator-dependent transcription, such as core RNAP binding, promoter recognition, activator interaction and open complex formation. To systematically define sigma(54) residues that contribute to each of these functions and to generate a resource for site specific protein labeling, a complete mutant library of sigma(54) was constructed by alanine-cysteine scanning mutagenesis. Amino acid residues from 3 to 476 of Cys(-)sigma(54) were systematically mutated to alanine and cysteine in groups of two adjacent residues at a time. The influences of each substitution pair upon the functions of sigma(54) were analyzed in vivo and in vitro and the functions of many residues were revealed for the first time. Increased sigma(54) isomerization activity seldom corresponded with an increased transcription activity of the holoenzyme, suggesting the steps after sigma(54) isomerization, likely to be changes in core RNAP structure, are also strictly regulated or rate limiting to open complex formation. A linkage between core RNAP-binding activity and activator responsiveness indicates that the sigma(54)-core RNAP interface changes upon activation.
Collapse
Affiliation(s)
- Yan Xiao
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Siva R. Wigneshweraraj
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Robert Weinzierl
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Yi-Ping Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | - Martin Buck
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China, Division of Investigative Sciences, Faculty of Medicine, Flowers Building and Division of Biology, Faculty of Natural Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
11
|
Organization of an activator-bound RNA polymerase holoenzyme. Mol Cell 2008; 32:337-46. [PMID: 18995832 PMCID: PMC2680985 DOI: 10.1016/j.molcel.2008.09.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/30/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
Transcription initiation involves the conversion from closed promoter complexes, comprising RNA polymerase (RNAP) and double-stranded promoter DNA, to open complexes, in which the enzyme is able to access the DNA template in a single-stranded form. The complex between bacterial RNAP and its major variant sigma factor σ54 remains as a closed complex until ATP hydrolysis-dependent remodeling by activator proteins occurs. This remodeling facilitates DNA melting and allows the transition to the open complex. Here we present cryoelectron microscopy reconstructions of bacterial RNAP in complex with σ54 alone, and of RNAP-σ54 with an AAA+ activator. Together with photo-crosslinking data that establish the location of promoter DNA within the complexes, we explain why the RNAP-σ54 closed complex is unable to access the DNA template and propose how the structural changes induced by activator binding can initiate conformational changes that ultimately result in formation of the open complex.
Collapse
|
12
|
Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K, Buck M. Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol 2008; 68:538-46. [PMID: 18331472 DOI: 10.1111/j.1365-2958.2008.06181.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial sigma (sigma) factors confer gene specificity upon the RNA polymerase, the central enzyme that catalyses gene transcription. The binding of the alternative sigma factor sigma(54) confers upon the RNA polymerase special functional and regulatory properties, making it suited for control of several major adaptive responses. Here, we summarize our current understanding of the interactions the sigma(54) factor makes with the bacterial transcription machinery.
Collapse
Affiliation(s)
- Sivaramesh Wigneshweraraj
- Department of Microbiology, Division of Investigative Sciences, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Rego FGM, Pedrosa FO, Chubatsu LS, Yates MG, Wassem R, Steffens MBR, Rigo LU, Souza EM. The expression ofnifBgene fromHerbaspirillum seropedicaeis dependent upon the NifA and RpoN proteins. Can J Microbiol 2006; 52:1199-207. [PMID: 17473889 DOI: 10.1139/w06-085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The putative nifB promoter region of Herbaspirillum seropedicae contained two sequences homologous to NifA-binding site and a –24/–12 type promoter. A nifB::lacZ fusion was assayed in the backgrounds of both Escherichia coli and H. seropedicae. In E. coli, the expression of nifB::lacZ occurred only in the presence of functional rpoN and Klebsiella pneumoniae nifA genes. In addition, the integration host factor (IHF) stimulated the expression of the nifB::lacZ fusion in this background. In H. seropedicae, nifB expression occurred only in the absence of ammonium and under low levels of oxygen, and it was shown to be strictly dependent on NifA. DNA band shift experiments showed that purified K. pneumoniae RpoN and E. coli IHF proteins were capable of binding to the nifB promoter region, and in vivo dimethylsulfate footprinting showed that NifA binds to both NifA-binding sites. These results strongly suggest that the expression of the nifB promoter of H. seropedicae is dependent on the NifA and RpoN proteins and that the IHF protein stimulates NifA activation of nifB promoter.Key words: Herbaspirillum seropedicae, nif, nitrogen fixation, NifA, RpoN.
Collapse
Affiliation(s)
- Fabiane G M Rego
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wigneshweraraj SR, Savalia D, Severinov K, Buck M. Interplay between the beta' clamp and the beta' jaw domains during DNA opening by the bacterial RNA polymerase at sigma54-dependent promoters. J Mol Biol 2006; 359:1182-95. [PMID: 16725156 DOI: 10.1016/j.jmb.2006.04.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2006] [Revised: 04/17/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
The bacterial RNA polymerase (RNAP) is a multi-subunit, structurally flexible, complex molecular machine, in which activities associated with DNA opening for transcription-competent open promoter complex (OC) formation reside in the catalytic beta and beta' subunits and the dissociable sigma subunit. OC formation is a multi-step process that involves several structurally conserved mobile modules of beta, beta', and sigma. Here, we present evidence that two flexible modules of beta', the beta' jaw and the beta' clamp and a conserved regulatory Region I domain of sigma(54), jointly contribute to the maintenance of stable DNA strand separation around the trancription start site in OCs formed at sigma(54)-dependent promoters. Clearly, regulated interplay between the mobile modules of the beta' and the sigma subunits of the RNAP appears to be necessary for stable OC formation.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Imperial College London, Faculty of Life Sciences, Division of Biology, Sir Alexander Fleming Building, South Kensington Campus, UK
| | | | | | | |
Collapse
|
15
|
Bordes P, Wigneshweraraj SR, Chaney M, Dago AE, Morett E, Buck M. Communication between Esigma(54) , promoter DNA and the conserved threonine residue in the GAFTGA motif of the PspF sigma-dependent activator during transcription activation. Mol Microbiol 2005; 54:489-506. [PMID: 15469519 DOI: 10.1111/j.1365-2958.2004.04280.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conversion of Esigma(54) closed promoter complexes to open promoter complexes requires specialized activators which are members of the AAA (ATPases Associated with various cellular Activities) protein family. The ATP binding and hydrolysis activity of Esigma(54) activators is used in an energy coupling reaction to remodel the Esigma(54) closed promoter complex and to overcome the sigma(54)-imposed block on open complex formation. The remodelling target for the AAA activator within the Esigma(54) closed complex includes a complex interface contributed to by Region I of sigma(54), core RNA polymerase and a promoter DNA fork junction structure, comprising the Esigma(54) regulatory centre. One sigma(54) binding surface on Esigma(54) activators is a conserved sequence known as the GAFTGA motif. Here, we present a detailed characterization of the interaction between Region I of sigma(54) and the Escherichia coli AAA sigma(54) activator Phage shock protein F. Using Esigma(54) promoter complexes that mimic different conformations adopted by the DNA during open complex formation, we investigated the contribution of the conserved threonine residue in the GAFTGA motif to transcription activation. Our results suggest that the organization of the Esigma(54) regulatory centre, and in particular the conformation adopted by the sigma(54) Region I and the DNA fork junction structure during open complex formation, is communicated to the AAA activator via the conserved T residue of the GAFTGA motif.
Collapse
Affiliation(s)
- Patricia Bordes
- Imperial College London, Department of Biological Sciences, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ, UK
| | | | | | | | | | | |
Collapse
|
16
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Burrows PC, Severinov K, Ishihama A, Buck M, Wigneshweraraj SR. Mapping sigma 54-RNA polymerase interactions at the -24 consensus promoter element. J Biol Chem 2003; 278:29728-43. [PMID: 12750380 DOI: 10.1074/jbc.m303596200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma 54 promoter specificity factor is distinct from sigma 70-type factors. The sigma 54-RNA polymerase binds to promoters with conserved sequence elements at -24 and -12 and utilizes specialized enhancer-binding activators to convert, through an ATP-dependent process, closed promoter complexes to open promoter complexes. The interface between sigma 54-RNA polymerase and promoter DNA is poorly characterized, contrasting with sigma 70. Here, sigma 54 was modified with strategically positioned cleavage reagents to provide physical evidence that the highly conserved RpoN box motif of sigma 54 is close to and may therefore interact with the consensus -24 promoter element. We show that the spatial relationship between the sigma 54-RNA polymerase and the -24 promoter element remains unchanged during closed to open complex conversion and transcription initiation but changes during the early elongation phase. In contrast, the spatial relationship between sigma 54-RNA polymerase and the consensus -12 promoter element changes upon conversion of the closed promoter complex to an open one. We provide evidence that some -12 promoter region-sigma 54 interactions are dependent upon either the core RNA polymerase or a fork junction DNA structure at the -12-position, indicating that DNA fork junctions can substitute for core RNAP. We also show the beta-subunit flap domain contributes to different sets of sigma-promoter DNA interactions at sigma 54- and sigma 70-dependent promoters.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Bordes P, Wigneshweraraj SR, Schumacher J, Zhang X, Chaney M, Buck M. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54. Proc Natl Acad Sci U S A 2003; 100:2278-83. [PMID: 12601152 PMCID: PMC151331 DOI: 10.1073/pnas.0537525100] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the protein family called ATPases associated with various cellular activities (AAA(+)) play a crucial role in transforming chemical energy into biological events. AAA(+) proteins are complex molecular machines and typically form ring-shaped oligomeric complexes that are crucial for ATPase activity and mechanism of action. The Escherichia coli transcription activator phage shock protein F (PspF) is an AAA(+) mechanochemical enzyme that functions to sense and relay the energy derived from nucleoside triphosphate hydrolysis to catalyze transcription by the sigma(54)-RNA polymerase. Closed promoter complexes formed by the sigma(54)-RNA polymerase are substrates for the action of PspF. By using a protein fragmentation approach, we identify here at least one sigma(54)-binding surface in the PspF AAA(+) domain. Results suggest that ATP hydrolysis by PspF is coupled to the exposure of at least one sigma(54)-binding surface. This nucleotide hydrolysis-dependent presentation of a substrate binding surface can explain why complexes that form between sigma(54) and PspF are transient and could be part of a mechanism used generally by other AAA(+) proteins to regulate activity.
Collapse
Affiliation(s)
- Patricia Bordes
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
19
|
Wigneshweraraj SR, Kuznedelov K, Severinov K, Buck M. Multiple roles of the RNA polymerase beta subunit flap domain in sigma 54-dependent transcription. J Biol Chem 2003; 278:3455-65. [PMID: 12424241 DOI: 10.1074/jbc.m209442200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent determinations of the structures of the bacterial RNA polymerase (RNAP) and promoter complex thereof establish that RNAP functions as a complex molecular machine that contains distinct structural modules that undergo major conformational changes during transcription. However, the contribution of the RNAP structural modules to transcription remains poorly understood. The bacterial core RNAP (alpha(2)beta beta'omega; E) associates with a sigma (sigma) subunit to form the holoenzyme (E sigma). A mutation removing the beta subunit flap domain renders the Escherichia coli sigma(70) RNAP holoenzyme unable to recognize promoters. sigma(54) is the major variant sigma subunit that utilizes enhancer-dependent promoters. Here, we determined the effects of beta flap removal on sigma(54)-dependent transcription. Our analysis shows that the role of the beta flap in sigma(54)-dependent and sigma(70)-dependent transcription is different. Removal of the beta flap does not prevent the recognition of sigma(54)-dependent promoters, but causes multiple defects in sigma(54)-dependent transcription. Most importantly, the beta flap appears to orchestrate the proper formation of the E sigma(54) regulatory center at the start site proximal promoter element where activator binds and DNA melting originates.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
20
|
Laurie AD, Bernardo LMD, Sze CC, Skarfstad E, Szalewska-Palasz A, Nyström T, Shingler V. The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J Biol Chem 2003; 278:1494-503. [PMID: 12421818 DOI: 10.1074/jbc.m209268200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some promoters, including the DmpR-controlled sigma(N)-dependent Po promoter, are effectively rendered silent in cells lacking the nutritional alarmone (p)ppGpp. Here we demonstrate that four mutations within the housekeeping sigma(D)-factor can restore sigma(N)-dependent Po transcription in the absence of (p)ppGpp. Using both in vitro and in vivo transcription competition assays, we show that all the four sigma(D) mutant proteins are defective in their ability to compete with sigma(N) for available core RNA polymerase and that the magnitude of the defect reflects the hierarchy of restoration of transcription from Po in (p)ppGpp-deficient cells. Consistently, underproduction of sigma(D) or overproduction of the anti-sigma(D) protein Rsd were also found to allow (p)ppGpp-independent transcription from the sigma(N)-Po promoter. Together with data from the direct effects of (p)ppGpp on sigma(N)-dependent Po transcription and sigma-factor competition, the results support a model in which (p)ppGpp serves as a master global regulator of transcription by differentially modulating alternative sigma-factor competition to adapt to changing cellular nutritional demands.
Collapse
Affiliation(s)
- Andrew D Laurie
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
21
|
Wigneshweraraj SR, Nechaev S, Severinov K, Buck M. Beta subunit residues 186-433 and 436-445 are commonly used by Esigma54 and Esigma70 RNA polymerase for open promoter complex formation. J Mol Biol 2002; 319:1067-83. [PMID: 12079348 DOI: 10.1016/s0022-2836(02)00330-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During transcription initiation by DNA-dependent RNA polymerase (RNAP) promoter DNA has to be melted locally to allow the synthesis of RNA transcript. Localized melting of promoter DNA is a target for genetic regulation and is poorly understood at the molecular level. The Escherichia coli RNAP holoenzyme is a six-subunit (alpha(2)betabeta'omegasigma; Esigma) protein complex. The sigma subunit is directly responsible for promoter recognition and contributes to localized DNA melting. Mutations in the beta subunit have profound effects on promoter melting by Esigma70. The sigma54 subunit is a representative of an unrelated class of the sigma subunits. Here, we determined whether mutations in the beta subunit that affect late stages of promoter complex formation by Esigma70 also influence promoter complex formation by the enhancer-dependent Esigma54. Analyses of in vitro defects in promoter complex formation and transcription initiation exhibited by mutant Esigma54 suggest that during promoter complex formation by Esigma54 and Esigma70 a common set of beta subunit sequences is used. Late stages of promoter complex formation and localized melting of promoter DNA by Esigma70 and Esigma54 thus proceed through a common pathway.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Biomedical Sciences Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
22
|
Cannon W, Wigneshweraraj SR, Buck M. Interactions of regulated and deregulated forms of the sigma54 holoenzyme with heteroduplex promoter DNA. Nucleic Acids Res 2002; 30:886-93. [PMID: 11842099 PMCID: PMC100350 DOI: 10.1093/nar/30.4.886] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bacterial sigma54 RNA polymerase holoenzyme binds to promoters as a stable closed complex that is silent for transcription unless acted upon by an enhancer-bound activator protein. Using DNA binding and transcription assays the ability of the enhancer-dependent sigma54 holoenzyme to interact with promoter DNA containing various regions of heteroduplex from -12 to -1 was assessed. Different DNA regions important for stabilising sigma54 holoenzyme-promoter interactions, destabilizing binding, limiting template utilisation in activator-dependent transcription and for stable binding of a deregulated form of the holoenzyme lacking sigma54 Region I were identified. It appears that homoduplex structures are required for early events in sigma54 holoenzyme promoter binding and that disruption of a repressive fork junction structure only modestly deregulates transcription. DNA opening from -5 to -1 appears important for stable engagement of the holoenzyme following activation. The regulatory Region I of sigma54 was shown to be involved in interactions with the sequences in the -5 to -1 area.
Collapse
Affiliation(s)
- Wendy Cannon
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
23
|
Wigneshweraraj SR, Casaz P, Buck M. Correlating protein footprinting with mutational analysis in the bacterial transcription factor sigma54 (sigmaN). Nucleic Acids Res 2002; 30:1016-28. [PMID: 11842114 PMCID: PMC100328 DOI: 10.1093/nar/30.4.1016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein footprints of the enhancer-dependent sigma54 protein, upon binding the Escherichia coli RNA polymerase core enzyme or upon forming closed promoter complexes, identified surface-exposed residues in sigma54 of potential functional importance at the interface between sigma54 and core RNA polymerases (RNAP) or DNA. We have now characterised alanine and glycine substitution mutants at several of these positions. Properties of the mutant sigma54s correlate protein footprints to activity. Some mutants show elevated DNA binding suggesting that promoter binding by holoenzyme may be limited to enable normal functioning. One such mutant (F318A) within the DNA binding domain of sigma54 shows a changed interaction with the promoter regulatory region implicated in transcription silencing and fails to silence transcription in vitro. It appears specifically defective in preferentially binding to a repressive DNA structure believed to restrict RNA polymerase isomerisation and is largely intact for activator responsiveness. Two mutants, one in the regulatory region I and the other within core interacting sequences of sigma54, failed to stably bind the activator in the presence of ADP-aluminium fluoride, an analogue of ATP in the transition state for hydrolysis. Overall, the data presented describe a collection sigma54 mutants that have escaped previous analysis and display an array of properties which allows the role of surface-exposed residues in the regulation of open complex formation and promoter DNA binding to be better understood. Their properties support the view that the interface between sigma54 and core RNAP is functionally specialised.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
24
|
Chaney M, Grande R, Wigneshweraraj SR, Cannon W, Casaz P, Gallegos MT, Schumacher J, Jones S, Elderkin S, Dago AE, Morett E, Buck M. Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. Genes Dev 2001; 15:2282-94. [PMID: 11544185 PMCID: PMC312774 DOI: 10.1101/gad.205501] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Conformational changes in sigma 54 (sigma(54)) and sigma(54)-holoenzyme depend on nucleotide hydrolysis by an activator. We now show that sigma(54) and its holoenzyme bind to the central ATP-hydrolyzing domains of the transcriptional activators PspF and NifA in the presence of ADP-aluminum fluoride, an analog of ATP in the transition state for hydrolysis. Direct binding of sigma(54) Region I to activator in the presence of ADP-aluminum fluoride was shown and inferred from in vivo suppression genetics. Energy transduction appears to occur through activator contacts to sigma(54) Region I. ADP-aluminum fluoride-dependent interactions and consideration of other AAA+ proteins provide insight into activator mechanochemical action.
Collapse
Affiliation(s)
- M Chaney
- Department of Biology and Biochemistry, Faculty of Life Sciences, Sir Alexander Fleming Building, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen BS, Sun ZW, Hampsey M. A Gal4-sigma 54 hybrid protein that functions as a potent activator of RNA polymerase II transcription in yeast. J Biol Chem 2001; 276:23881-7. [PMID: 11313364 DOI: 10.1074/jbc.m102893200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial final sigma(54) protein associates with core RNA polymerase to form a holoenzyme complex that renders cognate promoters enhancer-dependent. Although unusual in bacteria, enhancer-dependent transcription is the paradigm in eukaryotes. Here we report that a fragment of Escherichia coli final sigma(54) encompassing amino acid residues 29-177 functions as a potent transcriptional activator in yeast when fused to a Gal4 DNA binding domain. Activation by Gal4-final sigma(54) is TATA-dependent and requires the SAGA coactivator complex, suggesting that Gal4-final sigma(54) functions by a normal mechanism of transcriptional activation. Surprisingly, deletion of the AHC1 gene, which encodes a polypeptide unique to the ADA coactivator complex, stimulates Gal4-final sigma(54)-mediated activation and enhances the toxicity of Gal4-final sigma(54). Accordingly, the SAGA and ADA complexes, both of which include Gcn5 as their histone acetyltransferase subunit, exert opposite effects on transcriptional activation by Gal4-final sigma(54). Gal4-final sigma(54) activation and toxicity are also dependent upon specific final sigma(54) residues that are required for activator-responsive promoter melting by final sigma(54) in bacteria, implying that activation is a consequence of final sigma(54)-specific features rather than a structurally fortuitous polypeptide fragment. As such, Gal4-final sigma(54) represents a novel tool with the potential to provide insight into the mechanism by which natural activators function in eukaryotic cells.
Collapse
Affiliation(s)
- B S Chen
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854-5635, USA
| | | | | |
Collapse
|
26
|
Abstract
It is clear that multiple sites of interaction exist between sigmas and core subunits, likely reflecting the changing pattern of interactions that occur sequentially during the complex process of holoenzyme formation, open promoter formation, and initiation of transcription. Recent studies have revealed that a major site of interaction of Escherichia coli sigma factors is the amino acid 260-309 coiled-coil region of the beta' subunit of core RNA polymerase. This region of beta' interacts with region 2.1-2.2 of sigma(70). Binding of this region of beta' to sigma(70) triggers a conformational change in sigma that allows it to bind to a -10 nontemplate promoter DNA strand oligonucleotide.
Collapse
Affiliation(s)
- R R Burgess
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, 1400 University Avenue, Madison, WI 53706, USA.
| | | |
Collapse
|
27
|
Wigneshweraraj SR, Chaney MK, Ishihama A, Buck M. Regulatory sequences in sigma 54 localise near the start of DNA melting. J Mol Biol 2001; 306:681-701. [PMID: 11243780 DOI: 10.1006/jmbi.2000.4393] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription initiation by the enhancer-dependent sigma(54) RNA polymerase holoenzyme is positively regulated after promoter binding. The promoter DNA melting process is subject to activation by an enhancer-bound activator protein with nucleoside triphosphate hydrolysis activity. Tethered iron chelate probes attached to amino and carboxyl-terminal domains of sigma(54) were used to map sigma(54)-DNA interaction sites. The two domains localise to form a centre over the -12 promoter region. The use of deletion mutants of sigma(54) suggests that amino-terminal and carboxyl-terminal sequences are both needed for the centre to function. Upon activation, the relationship between the centre and promoter DNA changes. We suggest that the activator re-organises the centre to favour stable open complex formation through adjustments in sigma(54)-DNA contact and sigma(54) conformation. The centre is close to the active site of the RNA polymerase and includes sigma(54) regulatory sequences needed for DNA melting upon activation. This contrasts systems where activators recruit RNA polymerase to promoter DNA, and the protein and DNA determinants required for activation localise away from promoter sequences closely associated with the start of DNA melting.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science Technology and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | | | | | |
Collapse
|
28
|
Wigneshweraraj SR, Ishihama A, Buck M. In vitro roles of invariant helix-turn-helix motif residue R383 in sigma(54) (sigma(N)). Nucleic Acids Res 2001; 29:1163-74. [PMID: 11222766 PMCID: PMC29711 DOI: 10.1093/nar/29.5.1163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro DNA-binding and transcription properties of sigma(54) proteins with the invariant Arg383 in the putative helix-turn-helix motif of the DNA-binding domain substituted by lysine or alanine are described. We show that R383 contributes to maintaining stable holoenzyme-promoter complexes in which limited DNA opening downstream of the -12 GC element has occurred. Unlike wild-type sigma(54), holoenzymes assembled with the R383A or R383K mutants could not form activator-independent, heparin-stable complexes on heteroduplex Sinorhizobium meliloti nifH DNA mismatched next to the GC. Using longer sequences of heteroduplex DNA, heparin-stable complexes formed with the R383K and, to a lesser extent, R383A mutant holoenzymes, but only when the activator and a hydrolysable nucleotide was added and the DNA was opened to include the -1 site. Although R383 appears inessential for polymerase isomerisation, it makes a significant contribution to maintaining the holoenzyme in a stable complex when melting is initiating next to the GC element. Strikingly, Cys383-tethered FeBABE footprinting of promoter DNA strongly suggests that R383 is not proximal to promoter DNA in the closed complex. This indicates that R383 is not part of the regulatory centre in the sigma(54) holoenzyme, which includes the -12 promoter region elements. R383 contributes to several properties, including core RNA polymerase binding and to the in vivo stability of sigma(54).
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
29
|
Cannon W, Gallegos MT, Buck M. DNA melting within a binary sigma(54)-promoter DNA complex. J Biol Chem 2001; 276:386-94. [PMID: 11036081 DOI: 10.1074/jbc.m007779200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The final sigma(54) subunit of the bacterial RNA polymerase requires the action of specialized enhancer-binding activators to initiate transcription. Here we show that final sigma(54) is able to melt promoter DNA when it is bound to a DNA structure representing the initial nucleation of DNA opening found in closed complexes. Melting occurs in response to activator in a nucleotide-hydrolyzing reaction and appears to spread downstream from the nucleation point toward the transcription start site. We show that final sigma(54) contains some weak determinants for DNA melting that are masked by the Region I sequences and some strong ones that require Region I. It seems that final sigma(54) binds to DNA in a self-inhibited state, and one function of the activator is therefore to promote a conformational change in final sigma(54) to reveal its DNA-melting activity. Results with the holoenzyme bound to early melted DNA suggest an ordered series of events in which changes in core to final sigma(54) interactions and final sigma(54)-DNA interactions occur in response to activator to allow final sigma(54) isomerization and the holoenzyme to progress from the closed complex to the open complex.
Collapse
Affiliation(s)
- W Cannon
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
30
|
Finn RD, Orlova EV, Gowen B, Buck M, van Heel M. Escherichia coli RNA polymerase core and holoenzyme structures. EMBO J 2000; 19:6833-44. [PMID: 11118218 PMCID: PMC305883 DOI: 10.1093/emboj/19.24.6833] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multisubunit RNA polymerase is an essential enzyme for regulated gene expression. Here we report two Escherichia coli RNA polymerase structures: an 11.0 A structure of the core RNA polymerase and a 9.5 A structure of the sigma(70) holoenzyme. Both structures were obtained by cryo-electron microscopy and angular reconstitution. Core RNA polymerase exists in an open conformation. Extensive conformational changes occur between the core and the holoenzyme forms of the RNA polymerase, which are largely associated with movements in ss'. All common RNA polymerase subunits (alpha(2), ss, ss') could be localized in both structures, thus suggesting the position of sigma(70) in the holoenzyme.
Collapse
Affiliation(s)
- R D Finn
- Departments of Biochemistry and Biology, Imperial College of Science, Technology and Medicine, London SW7 2AY, UK
| | | | | | | | | |
Collapse
|
31
|
Pitt M, Gallegos MT, Buck M. Single amino acid substitution mutants of Klebsiella pneumoniae sigma(54) defective in transcription. Nucleic Acids Res 2000; 28:4419-27. [PMID: 11071928 PMCID: PMC113868 DOI: 10.1093/nar/28.22.4419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription initiation by the sigma(54) RNA polymerase requires specialised activators and their associated nucleoside triphosphate hydrolysis. To explore the roles of sigma(54) in initiation we used random mutagenesis of rpoN and an in vivo activity screen to isolate functionally altered sigma(54) proteins. Five defective mutants, each with a different single amino acid substitution, were obtained. Three failed in transcription after forming a closed complex. One such mutant mapped to regulatory Region I of sigma(54), the other two to Region III. The Region I mutant allowed transcription independently of activator and showed reduced activator-dependent sigma(54) isomerisation. The two Region III mutants displayed altered behaviour in a sigma(54) isomerisation assay and one failed to stably bind early melted DNA as the holoenzyme; they may contribute to a communication pathway linking changes in sigma to open complex formation. Two further Region III mutants showed gross defects in overall DNA binding. For one, sufficient residual DNA binding activity remained to allow us to demonstrate that other activities were largely unaffected. Changes in DNA binding preferences and core polymerase-dependent properties were evident amongst the mutants.
Collapse
Affiliation(s)
- M Pitt
- Department of Biology, Sir Alexander Fleming Building, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
32
|
Kelly MT, Ferguson JA, Hoover TR. Transcription initiation-defective forms of sigma(54) that differ in ability To function with a heteroduplex DNA template. J Bacteriol 2000; 182:6503-8. [PMID: 11053397 PMCID: PMC94799 DOI: 10.1128/jb.182.22.6503-6508.2000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription by sigma(54)-RNA polymerase holoenzyme requires an activator that catalyzes isomerization of the closed promoter complex to an open complex. We examined mutant forms of Salmonella enterica serovar Typhimurium sigma(54) that were defective in transcription initiation but retained core RNA polymerase- and promoter-binding activities. Four of the mutant proteins allowed activator-independent transcription from a heteroduplex DNA template. One of these mutant proteins, L124P V148A, had substitutions in a sequence that had not been shown previously to participate in the prevention of activator-independent transcription. The remaining mutants did not allow efficient activator-independent transcription from the heteroduplex DNA template and had substitutions within a conserved 20-amino-acid segment (Leu-179 to Leu-199), suggesting a role for this sequence in transcription initiation.
Collapse
Affiliation(s)
- M T Kelly
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
33
|
Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J Bacteriol 2000; 182:4129-36. [PMID: 10894718 PMCID: PMC101881 DOI: 10.1128/jb.182.15.4129-4136.2000] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- M Buck
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom.
| | | | | | | | | |
Collapse
|
34
|
Chaney M, Pitt M, Buck M. Sequences within the DNA cross-linking patch of sigma 54 involved in promoter recognition, sigma isomerization, and open complex formation. J Biol Chem 2000; 275:22104-13. [PMID: 10807913 DOI: 10.1074/jbc.m002253200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial RNA polymerase holoenzyme containing the final sigma(54) subunit functions in enhancer-dependent transcription. Mutagenesis has been used to probe the function of a sequence in the final sigma(54) DNA binding domain that includes residues that cross-link to promoter DNA. Several activities of the final sigma and holoenzyme are shown to depend on the cross-linking patch. The patch contributes to promoter binding by final sigma(54), and holoenzyme and is involved in activator-dependent final sigma isomerization. As part of the final sigma(54)-holoenzyme, some residues in the patch limit basal transcription. Other cross-linking patch sequences appear to limit activator-dependent open complex formation. Deletion of 19 residues adjacent to the cross-linking patch resulted in a holoenzyme unable to respond to activator but capable of activator-independent (bypass) transcription in vitro. Overall results are consistent with the cross-linking patch directing interactions to the -12 promoter region to set basal and activated levels of transcription.
Collapse
Affiliation(s)
- M Chaney
- Department of Biology, Imperial College of Science, Technology, and Medicine, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
35
|
Southern E, Merrick M. The role of region II in the RNA polymerase sigma factor sigma(N) (sigma(54)). Nucleic Acids Res 2000; 28:2563-70. [PMID: 10871407 PMCID: PMC102712 DOI: 10.1093/nar/28.13.2563] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bacterial RNA polymerase holoenzymes containing the sigma subunit sigma(N) (sigma(54)) can form a stable closed complex with promoter DNA but only undergo transition to an open complex and transcription initiation when acted on by an activator protein. Proteins of the sigma(N) family have a conserved N-terminal region of 50 amino acids (Region I) that is separated from a conserved C-terminal region of around 360 amino acids (Region III) by a much more variable sequence of between 30 and 110 residues (Region II). We have investigated the role of Region II in Klebsiella pneumoniae sigma(N) by studying the properties of deletions of all or part of the region both in vivo and in vitro. We found that whilst Region II is not essential, deletion of all or part of it can significantly impair sigma(N) activity. Deletions have effects on DNA binding by the isolated sigma factor and on holoenzyme formation, but the most marked effects are on transition of the holoenzyme from the closed to the open complex in the presence of the activator protein.
Collapse
Affiliation(s)
- E Southern
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
36
|
Wigneshweraraj SR, Fujita N, Ishihama A, Buck M. Conservation of sigma-core RNA polymerase proximity relationships between the enhancer-independent and enhancer-dependent sigma classes. EMBO J 2000; 19:3038-48. [PMID: 10856247 PMCID: PMC203346 DOI: 10.1093/emboj/19.12.3038] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two distinct classes of RNA polymerase sigma factors (sigma) exist in bacteria and are largely unrelated in primary amino acid sequence and their modes of transcription activation. Using tethered iron chelate (Fe-BABE) derivatives of the enhancer-dependent sigma(54), we mapped several sites of proximity to the beta and beta' subunits of the core RNA polymerase. Remarkably, most sites localized to those previously identified as close to the enhancer-independent sigma(70) and sigma(38). This indicates a common use of sets of sequences in core for interacting with the two sigma classes. Some sites chosen in sigma(54) for modification with Fe-BABE were positions, which when mutated, deregulate the sigma(54)-holoenzyme and allow activator-independent initiation and holoenzyme isomerization. We infer that these sites in sigma(54) may be involved in interactions with the core that contribute to maintenance of alternative states of the holoenzyme needed for either the stable closed promoter complex conformation or the isomerized holoenzyme conformation associated with the open promoter complex. One site of sigma(54) proximity to the core is apparently not evident with sigma(70), and may represent a specialized interaction.
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Imperial College of Science, Technology and Medicine, Department of Biology, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
37
|
Gallegos MT, Buck M. Sequences in sigma(54) region I required for binding to early melted DNA and their involvement in sigma-DNA isomerisation. J Mol Biol 2000; 297:849-59. [PMID: 10736222 DOI: 10.1006/jmbi.2000.3608] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial sigma(54) RNA polymerase functions in a transcription activation mechanism that fully relies upon nucleotide hydrolysis by an enhancer binding activator protein to stimulate open complex formation. Here, we describe results of DNA-binding assays used to probe the role of the sigma(54) amino terminal region I in activation. Of the 15 region I alanine substitution mutants assayed, several specifically failed to bind to a DNA structure representing an early conformation in DNA melting. The same mutants are defective in activated transcription and in forming an isomerised sigma-DNA complex on the early opened DNA. The mechanism of activation may therefore require tight binding of sigma(54) to particular early melted DNA structures. Where mutant sigma(54) binding to early melted DNA was detected, activator-dependent isomerisation generally occurred as efficiently as with the wild-type protein, suggesting that certain region I sequences are largely uninvolved in sigma isomerisation. DNA-binding, sigma isomerisation and transcription activation assays allow formulation of a functional map of region I.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biology, Imperial College of Science Technology, and Medicine, Imperial College Road, London, SW7 2AZ, UK.
| | | |
Collapse
|
38
|
Studholme DJ, Wigneshwereraraj SR, Gallegos MT, Buck M. Functionality of purified sigma(N) (sigma(54)) and a NifA-like protein from the hyperthermophile Aquifex aeolicus. J Bacteriol 2000; 182:1616-23. [PMID: 10692367 PMCID: PMC94459 DOI: 10.1128/jb.182.6.1616-1623.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the extremely thermophilic bacterium Aquifex aeolicus encodes alternative sigma factor sigma(N) (sigma(54), RpoN) and five potential sigma(N)-dependent transcriptional activators. Although A. aeolicus possesses no recognizable nitrogenase genes, two of the activators have a high degree of sequence similarity to NifA proteins from nitrogen-fixing proteobacteria. We identified five putative sigma(N)-dependent promoters upstream of operons implicated in functions including sulfur respiration, nitrogen assimilation, nitrate reductase, and nitrite reductase activity. We cloned, overexpressed (in Escherichia coli), and purified A. aeolicus sigma(N) and the NifA homologue, AQ_218. Purified A. aeolicus sigma(N) bound to E. coli core RNA polymerase and bound specifically to a DNA fragment containing E. coli promoter glnHp2 and to several A. aeolicus DNA fragments containing putative sigma(N)-dependent promoters. When combined with E. coli core RNA polymerase, A. aeolicus sigma(N) supported A. aeolicus NifA-dependent transcription from the glnHp2 promoter. The E. coli activator PspFDeltaHTH did not stimulate transcription. The NifA homologue, AQ_218, bound specifically to a DNA sequence centered about 100 bp upstream of the A. aeolicus glnBA operon and so is likely to be involved in the regulation of nitrogen assimilation in this organism. These results argue that the sigma(N) enhancer-dependent transcription system operates in at least one extreme environment, and that the activator and sigma(N) have coevolved.
Collapse
Affiliation(s)
- D J Studholme
- Department of Biology, Imperial College of Science, Technology and Medicine, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
39
|
Kelly MT, Hoover TR. The amino terminus of Salmonella enterica serovar Typhimurium sigma(54) is required for interactions with an enhancer-binding protein and binding to fork junction DNA. J Bacteriol 2000; 182:513-7. [PMID: 10629201 PMCID: PMC94304 DOI: 10.1128/jb.182.2.513-517.2000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription initiation by the sigma(54)-RNA polymerase holoenzyme requires an enhancer-binding protein that is thought to contact sigma(54) to activate transcription. To identify potential enhancer-binding protein contact sites in sigma(54), we compared the abilities of wild-type and truncated forms of Salmonella enterica serovar Typhimurium sigma(54) to interact with the enhancer-binding protein DctD in a chemical cross-linking assay. Removal of two regions in the amino-terminal portion of sigma(54), residues 57 to 105 and residues 144 to 179, prevented cross-linking, but removal of either region alone did not. In addition, deletion of 56 amino-terminal residues of sigma(54) (region I) reduced the affinity of the protein for a fork junction DNA probe.
Collapse
Affiliation(s)
- M T Kelly
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
40
|
Studholme DJ, Finn RD, Chaney MK, Buck M. The C-terminal 12 amino acids of sigma(N) are required for structure and function. Arch Biochem Biophys 1999; 371:234-40. [PMID: 10545210 DOI: 10.1006/abbi.1999.1426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sigma(N) protein is an alternative sigma subunit of bacterial RNA polymerase. We investigated the role of a 12-amino-acid "tail" at the C-terminus of Klebsiella pneumoniae sigma(N), which was predicted to be largely surface-exposed and to be mostly loop (that is not alpha-helical or beta-strand). Deletion of this tail from N-terminal hexahistidine-tagged sigma(N) led to loss of sigma(N)-dependent transcription activity in vivo. We overexpressed and purified this deletion-mutant protein for in vitro characterization. The purified deleted protein showed decreased RNA polymerase core- and DNA-binding activities compared to the full-length protein and transcription activity was greatly impaired. Furthermore, evidence from circular dichroism and protease digestion experiments together suggested that deletion of the C-terminus tail resulted in a loss of conformational constraint in the protein. We discuss a possible structural role for the 12 amino acids at the C-terminus of sigma(N).
Collapse
Affiliation(s)
- D J Studholme
- Department of Biology, Imperial College of Science Technology and Medicine, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
41
|
Casaz P, Gallegos MT, Buck M. Systematic analysis of sigma54 N-terminal sequences identifies regions involved in positive and negative regulation of transcription. J Mol Biol 1999; 292:229-39. [PMID: 10493871 DOI: 10.1006/jmbi.1999.3076] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The conserved amino-terminal region of sigma 54 (Region I) contains sequences that allow response to activator proteins, and inhibit initiation in the absence of activator. Alanine-scanning mutagenesis has been used to systematically define Region I elements that contribute to each of these functions. Amino acid residues from 6 to 50 were substituted with alanine in groups of three consecutive residues, making a total of 15 mutants. Mutants were tested for their ability to mediate activation in vivo, and in vitro, and to support transcription in the absence of activator in vitro. Most mutations located between residues 15 and 47 altered sigma function, while mutations between residues 6 and 14, and 48-50 had little effect. The defective mutants ala 15-17, 42-44, and 45-47 define new amino acids required for normal sigma function. In general, there is an inverse correlation between the levels of activated and activator-independent transcription, suggesting that the two functions are linked. When activated, the defective sigma mutants, except for ala 24-26, formed heparin-resistant open complexes similar to wild-type sigma. Mutant ala 24-26 formed heparin-unstable open complexes, suggesting that this mutation interferes with a different step in the initiation pathway.
Collapse
Affiliation(s)
- P Casaz
- Department of Biology, Imperial College of Science Technology, and Medicine, Imperial College Road, London, SW7 2AZ, UK
| | | | | |
Collapse
|
42
|
Gallegos MT, Cannon WV, Buck M. Functions of the sigma(54) region I in trans and implications for transcription activation. J Biol Chem 1999; 274:25285-90. [PMID: 10464252 DOI: 10.1074/jbc.274.36.25285] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of transcription frequently involves the direct interaction of activators with RNA polymerase. In bacteria, the formation of stable open promoter complexes by the sigma(54) RNA polymerase is critically dependent on sigma(54) amino Region I sequences. Their presence correlates with activator dependence, and removal allows the holoenzyme to engage productively with melted DNA independently of the activator. Using purified Region I sequences and holoenzymes containing full-length or Region I-deleted sigma(54), we have explored the involvement of Region I in transcription activation. Results show that Region I in trans inhibits a reversible conformational change in the holoenzyme believed to be polymerase isomerization. Evidence is presented indicating that the holoenzyme (and not the promoter DNA per se) is one interacting target used by Region I in preventing polymerase isomerization. Activator overcomes this inhibition in a reaction requiring nucleotide hydrolysis. Region I in trans is able to inhibit activated transcription by the holoenzyme containing full-length sigma(54). Inhibition appeared to be noncompetitive with respect to the activator, suggesting that a direct activator interaction occurs with parts of the holoenzyme outside Region I. Stabilization of isomerized holoenzyme bound to melted DNA by Region I in trans occurs largely independently of the initiating nucleotide, suggesting a role for Region I in maintaining the open complex.
Collapse
Affiliation(s)
- M T Gallegos
- Department of Biology, Imperial College of Science Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
43
|
Abstract
The bacterial sigma54 protein associates with core RNA polymerase to form a holoenzyme that functions in enhancer-dependent transcription. Isomerization of the sigma54 polymerase and its engagement with melted DNA in open promoter complexes requires nucleotide hydrolysis by an enhancer-binding activator. We show that a single amino acid substitution, RA336, in the Klebsiella pneumoniae sigma54 C-terminal DNA-binding domain allows the holoenzyme to isomerize, engage with stably melted DNA and to transcribe from transiently melting DNA without an activator. Activator responsiveness for the formation of stable open complexes remained intact. The activator-independent transcription phenotype of RA336 is shared with mutants in amino-terminal Region I sequences. Thus, in sigma54, two distinct domains function for enhancer responsiveness. A sigma54-DNA contact mediated by R336 appears to be part of a network of interactions necessary for maintaining the transcriptionally inactive state of the holoenzyme. We suggest activator functions to change these interactions and facilitate open complex formation through promoting polymerase isomerization.
Collapse
Affiliation(s)
- M Chaney
- Department of Biology, Biomedical Sciences Building, Imperial College of Science, Technology and Medicine, Imperial College Road, London SW7 2AZ, UK
| | | |
Collapse
|
44
|
Oguiza JA, Gallegos MT, Chaney MK, Cannon WV, Buck M. Involvement of the sigmaN DNA-binding domain in open complex formation. Mol Microbiol 1999; 33:873-85. [PMID: 10447895 DOI: 10.1046/j.1365-2958.1999.01542.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
sigmaN (sigma54) RNA polymerase holoenzyme closed complexes isomerize to open complexes in a reaction requiring nucleoside triphosphate hydrolysis by enhancer binding activator proteins. Here, we characterize Klebsiella pneumoniae sigmaN mutants, altered in the carboxy DNA-binding domain (F354A/F355A, F402A, F403A and F402A/F403A), that fail in activator-dependent transcription. The mutant holoenzymes have altered activator-dependent interactions with promoter sequences that normally become melted. Activator-dependent stable complexes accumulated slowly in vitro (F402A) and to a reduced final level (F403A, F402A/F403A, F354A/F355A). Similar results were obtained in an assay of activator-independent stable complex formation. Premelted templates did not rescue the mutants for stable preinitiation complex formation but did for deleted region I sigmaN, suggesting different defects. The DNA-binding domain substitutions are within sigmaN sequences previously shown to be buried upon formation of the wild-type holoenzyme or closed complex, suggesting that, in the mutants, alteration of the sigmaN-core and sigmaN-DNA interfaces has occurred to change holoenzyme activity. Core-binding assays with the mutant sigmas support this view. Interestingly, an internal deletion form of sigmaN lacking the major core binding determinant was able to assemble into holoenzyme and, although unable to support activator-dependent transcription, formed a stable activator-independent holoenzyme promoter complex on premelted DNA templates.
Collapse
Affiliation(s)
- J A Oguiza
- Department of Biology, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|