1
|
Cuypers MG, Robertson RM, Knipling L, Waddell MB, Moon K, Hinton DM, White SW. The phage T4 MotA transcription factor contains a novel DNA binding motif that specifically recognizes modified DNA. Nucleic Acids Res 2019; 46:5308-5318. [PMID: 29718457 PMCID: PMC6007404 DOI: 10.1093/nar/gky292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/12/2018] [Indexed: 11/12/2022] Open
Abstract
During infection, bacteriophage T4 produces the MotA transcription factor that redirects the host RNA polymerase to the expression of T4 middle genes. The C-terminal 'double-wing' domain of MotA binds specifically to the MotA box motif of middle T4 promoters. We report the crystal structure of this complex, which reveals a new mode of protein-DNA interaction. The domain binds DNA mostly via interactions with the DNA backbone, but the binding is enhanced in the specific cognate structure by additional interactions with the MotA box motif in both the major and minor grooves. The linker connecting the two MotA domains plays a key role in stabilizing the complex via minor groove interactions. The structure is consistent with our previous model derived from chemical cleavage experiments using the entire transcription complex. α- and β-d-glucosyl-5-hydroxymethyl-deoxycytosine replace cytosine in T4 DNA, and docking simulations indicate that a cavity in the cognate structure can accommodate the modified cytosine. Binding studies confirm that the modification significantly enhances the binding affinity of MotA for the DNA. Consequently, our work reveals how a DNA modification can extend the uniqueness of small DNA motifs to facilitate the specificity of protein-DNA interactions.
Collapse
Affiliation(s)
- Maxime G Cuypers
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rosanna M Robertson
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Brett Waddell
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kyung Moon
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
2
|
Morimoto D, Kimura S, Sako Y, Yoshida T. Transcriptome Analysis of a Bloom-Forming Cyanobacterium Microcystis aeruginosa during Ma-LMM01 Phage Infection. Front Microbiol 2018; 9:2. [PMID: 29403457 PMCID: PMC5780444 DOI: 10.3389/fmicb.2018.00002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/03/2018] [Indexed: 01/21/2023] Open
Abstract
Microcystis aeruginosa forms massive blooms in eutrophic freshwaters, where it is constantly exposed to lytic cyanophages. Unlike other marine cyanobacteria, M. aeruginosa possess remarkably abundant and diverse potential antiviral defense genes. Interestingly, T4-like cyanophage Ma-LMM01, which is the sole cultured lytic cyanophage infecting M. aeruginosa, lacks the host-derived genes involved in maintaining host photosynthesis and directing host metabolism that are abundant in other marine cyanophages. Based on genomic comparisons with closely related cyanobacteria and their phages, Ma-LMM01 is predicted to employ a novel infection program that differs from that of other marine cyanophages. Here, we used RNA-seq technology and in silico analysis to examine transcriptional dynamics during Ma-LMM01 infection to reveal host transcriptional responses to phage infection, and to elucidate the infection program used by Ma-LMM01 to avoid the highly abundant host defense systems. Phage-derived reads increased only slightly at 1 h post-infection, but significantly increased from 16% of total cellular reads at 3 h post-infection to 33% of all reads by 6 h post-infection. Strikingly, almost none of the host genes (0.17%) showed a significant change in expression during infection. However, like other lytic dsDNA phages, including marine cyanophages, phage gene dynamics revealed three expression classes: early (host-takeover), middle (replication), and late (virion morphogenesis). The early genes were concentrated in a single ∼5.8-kb window spanning 10 open reading frames (gp054-gp063) on the phage genome. None of the early genes showed homology to the early genes of other T4-like phages, including known marine cyanophages. Bacterial RNA polymerase (σ70) recognition sequences were also found in the upstream region of middle and late genes, whereas phage-specific motifs were not found. Our findings suggest that unlike other known T4-like phages, Ma-LMM01 achieves three sequential gene expression patterns with no change in host promoter activity. This type of infection that does not cause significant change in host transcriptional levels may be advantageous in allowing Ma-LMM01 to escape host defense systems while maintaining host photosynthesis.
Collapse
Affiliation(s)
- Daichi Morimoto
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigeko Kimura
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- School of Environmental Science, University of Shiga Prefecture, Hikone, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Abstract
Despite recent advances in structural analysis, it is still challenging to obtain a high-resolution structure for a complex of RNA polymerase, transcriptional factors, and DNA. However, using biochemical constraints, 3D printed models of available structures, and computer modeling, one can build biologically relevant models of such supramolecular complexes.
Collapse
Affiliation(s)
- Deborah M Hinton
- a Gene Expression and Regulation Section , Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
4
|
James TD, Cardozo T, Abell LE, Hsieh ML, Jenkins LMM, Jha SS, Hinton DM. Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase. Nucleic Acids Res 2016; 44:7974-88. [PMID: 27458207 PMCID: PMC5027511 DOI: 10.1093/nar/gkw656] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/05/2016] [Indexed: 11/13/2022] Open
Abstract
The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called σ appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the σ70 subunit of RNAP. We have developed a holistic, structure-based model for σ appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /σ70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects σ, and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs σ appropriation.
Collapse
Affiliation(s)
- Tamara D James
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University School of Medicine, 180 Varick Street, Room 637, New York, NY 10014, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Medical Center, New York University School of Medicine, 180 Varick Street, Room 637, New York, NY 10014, USA
| | - Lauren E Abell
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa M Miller Jenkins
- Collaborative Protein Technology Resource, Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saheli S Jha
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Hsieh ML, James TD, Knipling L, Waddell MB, White S, Hinton DM. Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation. J Biol Chem 2013; 288:27607-27618. [PMID: 23902794 DOI: 10.1074/jbc.m113.475434] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Gene expression can be regulated through factors that direct RNA polymerase to the correct promoter sequence at the correct time. Bacteriophage T4 controls its development in this way using phage proteins that interact with host RNA polymerase. Using a process called σ appropriation, the T4 co-activator AsiA structurally remodels the σ(70) subunit of host RNA polymerase, while a T4 activator, MotA, engages the C terminus of σ(70) and binds to a DNA promoter element, the MotA box. Structures for the N-terminal (NTD) and C-terminal (CTD) domains of MotA are available, but no structure exists for MotA with or without DNA. We report the first molecular map of the MotA/DNA interaction within the σ-appropriated complex, which we obtained by using the cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). We conjugated surface-exposed, single cysteines in MotA with FeBABE and performed cleavage reactions in the context of stable transcription complexes. The DNA cleavage sites were analyzed using ICM Molsoft software and three-dimensional physical models of MotA(NTD), MotA(CTD), and the DNA to investigate shape complementarity between the protein and the DNA and to position MotA on the DNA. We found that the unusual "double wing" motif present within MotA(CTD) resides in the major groove of the MotA box. In addition, we have used surface plasmon resonance to show that MotA alone is in a very dynamic equilibrium with the MotA element. Our results demonstrate the utility of fine resolution FeBABE mapping to determine the architecture of protein-DNA complexes that have been recalcitrant to traditional structure analyses.
Collapse
Affiliation(s)
- Meng-Lun Hsieh
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Tamara D James
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892; Structural Biology Program, Sackler Institute, New York University Langone Medical Center, New York, New York 10016
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Stephen White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
6
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
7
|
Bonocora RP, Caignan G, Woodrell C, Werner MH, Hinton DM. A basic/hydrophobic cleft of the T4 activator MotA interacts with the C-terminus of E.coli sigma70 to activate middle gene transcription. Mol Microbiol 2008; 69:331-43. [PMID: 18485078 DOI: 10.1111/j.1365-2958.2008.06276.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transcriptional activation often employs a direct interaction between an activator and RNA polymerase. For activation of its middle genes, bacteriophage T4 appropriates Escherichia coli RNA polymerase through the action of two phage-encoded proteins, MotA and AsiA. Alone, AsiA inhibits transcription from a large class of host promoters by structurally remodelling region 4 of sigma(70), the primary specificity subunit of E. coli RNA polymerase. MotA interacts both with sigma(70) region 4 and with a DNA element present in T4 middle promoters. AsiA-induced remodelling is proposed to make the far C-terminus of sigma(70) region 4 accessible for MotA binding. Here, NMR chemical shift analysis indicates that MotA uses a 'basic/hydrophobic' cleft to interact with the C-terminus of AsiA-remodelled sigma(70), but MotA does not interact with AsiA itself. Mutations within this cleft, at residues K3, K28 and Q76, both impair the interaction of MotA with sigma(70) region 4 and MotA-dependent activation. Furthermore, mutations at these residues greatly decrease phage viability. Most previously described activators that target sigma(70) directly use acidic residues to engage a basic surface of region 4. Our work supports accumulated evidence indicating that 'sigma appropriation' by MotA and AsiA uses a fundamentally different mechanism to activate transcription.
Collapse
Affiliation(s)
- Richard P Bonocora
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
8
|
Uguru GC, Stephens KE, Stead JA, Towle JE, Baumberg S, McDowall KJ. Transcriptional activation of the pathway-specific regulator of the actinorhodin biosynthetic genes in Streptomyces coelicolor. Mol Microbiol 2006; 58:131-50. [PMID: 16164554 DOI: 10.1111/j.1365-2958.2005.04817.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Streptomyces produce a plethora of secondary metabolites including antibiotics and undergo a complex developmental cycle. As a means of establishing the pathways that regulate secondary metabolite production by this important bacterial genus, the model species Streptomyces coelicolor and its relatives have been the subject of several genetic screens. However, despite the identification and characterization of numerous genes that affect antibiotic production, there is still no overall understanding of the network that integrates the various environmental and growth signals to bring about changes in the expression of biosynthetic genes. To establish new links, we are taking a biochemical approach to identify transcription factors that regulate antibiotic production in S. coelicolor. Here we describe the identification and characterization of a transcription factor, designated AtrA, that regulates transcription of actII-ORF4, the pathway-specific activator of the actinorhodin biosynthetic gene cluster in S. coelicolor. Disruption of the corresponding atrA gene, which is not associated with any antibiotic gene cluster, reduced the production of actinorhodin, but had no detectable effect on the production of undecylprodigiosin or the calcium-dependent antibiotic. These results indicate that atrA has specificity with regard to the biosynthetic genes it influences. An orthologue of atrA is present in the genome of Streptomyces avermitilis, the only other streptomycete for which there is a publicly available complete sequence. We also show that S. coelicolor AtrA can bind in vitro to the promoter of strR, a transcriptional activator unrelated to actII-ORF4 that is the final regulator of streptomycin production in Streptomyces griseus. These findings provide further evidence that the path leading to the expression of pathway-specific activators of antibiotic biosynthesis genes in disparate Streptomyces may share evolutionarily conserved components in at least some cases, even though the final activators are not related, and suggests that the regulation of streptomycin production, which serves an important paradigm, may be more complex than represented by current models.
Collapse
Affiliation(s)
- Gabriel C Uguru
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
9
|
Gregory BD, Deighan P, Hochschild A. An artificial activator that contacts a normally occluded surface of the RNA polymerase holoenzyme. J Mol Biol 2005; 353:497-506. [PMID: 16185714 DOI: 10.1016/j.jmb.2005.08.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 08/16/2005] [Accepted: 08/18/2005] [Indexed: 11/26/2022]
Abstract
Many activators of transcription are sequence-specific DNA-binding proteins that stimulate transcription initiation through interaction with RNA polymerase (RNAP). Such activators can be constructed artificially by fusing a DNA-binding protein to a protein domain that can interact with an accessible surface of RNAP. In these cases, the artificial activator is directed to a target promoter bearing a recognition site for the DNA-binding protein. Here we describe an artificial activator that functions by contacting a normally occluded surface of promoter-bound RNAP holoenzyme. This artificial activator consists of a DNA-binding protein fused to the bacteriophage T4-encoded transcription regulator AsiA. On its own, AsiA inhibits transcription by Escherichia coli RNAP because it remodels the holoenzyme, disrupting an intersubunit interaction that is required for recognition of the major class of bacterial promoters. However, when tethered to the DNA via a DNA-binding protein, AsiA can exert a strong stimulatory effect on transcription by disrupting the same intersubunit interaction, contacting an otherwise occluded surface of the holoenzyme. We show that mutations that affect the intersubunit interaction targeted by AsiA modulate the stimulatory effect of this artificial activator. Our results thus demonstrate that changes in the accessibility of a normally occluded surface of the RNAP holoenzyme can modulate the activity of a gene-specific regulator of transcription.
Collapse
Affiliation(s)
- Brian D Gregory
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., Boston, MA 02115, USA
| | | | | |
Collapse
|
10
|
Hinton DM, Pande S, Wais N, Johnson XB, Vuthoori M, Makela A, Hook-Barnard I. Transcriptional takeover by σ appropriation: remodelling of the σ 70 subunit of Escherichia coli RNA polymerase by the bacteriophage T4 activator MotA and co-activator AsiA. Microbiology (Reading) 2005; 151:1729-1740. [PMID: 15941982 DOI: 10.1099/mic.0.27972-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of bacteriophage T4 middle promoters, which occurs about 1 min after infection, uses two phage-encoded factors that change the promoter specificity of the host RNA polymerase. These phage factors, the MotA activator and the AsiA co-activator, interact with theσ70specificity subunit ofEscherichia coliRNA polymerase, which normally contacts the −10 and −35 regions of host promoter DNA. Like host promoters, T4 middle promoters have a good match to the canonicalσ70DNA element located in the −10 region. However, instead of theσ70DNA recognition element in the promoter's −35 region, they have a 9 bp sequence (a MotA box) centred at −30, which is bound by MotA. Recent work has begun to provide information about the MotA/AsiA system at a detailed molecular level. Accumulated evidence suggests that the presence of MotA and AsiA reconfigures protein–DNA contacts in the upstream promoter sequences, without significantly affecting the contacts ofσ70with the −10 region. This type of activation, which is called ‘σappropriation’, is fundamentally different from other well-characterized models of prokaryotic activation in which an activator frequently serves to forceσ70to contact a less than ideal −35 DNA element. This review summarizes the interactions of AsiA and MotA withσ70, and discusses how these interactions accomplish the switch to T4 middle promoters by inhibiting the typical contacts of the C-terminal region ofσ70, region 4, with the host −35 DNA element and with other subunits of polymerase.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neelowfar Wais
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xanthia B Johnson
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Madhavi Vuthoori
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Makela
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - India Hook-Barnard
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Lambert LJ, Wei Y, Schirf V, Demeler B, Werner MH. T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. EMBO J 2004; 23:2952-62. [PMID: 15257291 PMCID: PMC514929 DOI: 10.1038/sj.emboj.7600312] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 06/16/2004] [Indexed: 11/09/2022] Open
Abstract
Bacteriophage T4 AsiA is a versatile transcription factor capable of inhibiting host gene expression as an 'anti-sigma' factor while simultaneously promoting gene-specific expression of T4 middle genes in conjunction with T4 MotA. To accomplish this task, AsiA engages conserved region 4 of Eschericia coli sigma70, blocking recognition of most host promoters by sequestering the DNA-binding surface at the AsiA/sigma70 interface. The three-dimensional structure of an AsiA/region 4 complex reveals that the C-terminal alpha helix of region 4 is unstructured, while four other helices adopt a completely different conformation relative to the canonical structure of unbound region 4. That AsiA induces, rather than merely stabilizes, this rearrangement can be realized by comparison to the homologous structures of region 4 solved in a variety of contexts, including the structure of Thermotoga maritima sigmaA region 4 described herein. AsiA simultaneously occupies the surface of region 4 that ordinarily contacts core RNA polymerase (RNAP), suggesting that an AsiA-bound sigma70 may also undergo conformational changes in the context of the RNAP holoenzyme.
Collapse
Affiliation(s)
- Lester J Lambert
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Yufeng Wei
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
| | - Virgil Schirf
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Borries Demeler
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, USA
| | - Milton H Werner
- Laboratory of Molecular Biophysics, Rockefeller University, New York, NY, USA
- Laboratory of Molecular Biophysics, The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021, USA. Tel.: +1 212 327 7221; Fax: +1 212 327 7222; E-mail:
| |
Collapse
|
12
|
Miller ES, Heidelberg JF, Eisen JA, Nelson WC, Durkin AS, Ciecko A, Feldblyum TV, White O, Paulsen IT, Nierman WC, Lee J, Szczypinski B, Fraser CM. Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 2003; 185:5220-33. [PMID: 12923095 PMCID: PMC180978 DOI: 10.1128/jb.185.17.5220-5233.2003] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 04/30/2003] [Indexed: 11/20/2022] Open
Abstract
The complete genome sequence of the T4-like, broad-host-range vibriophage KVP40 has been determined. The genome sequence is 244,835 bp, with an overall G+C content of 42.6%. It encodes 386 putative protein-encoding open reading frames (CDSs), 30 tRNAs, 33 T4-like late promoters, and 57 potential rho-independent terminators. Overall, 92.1% of the KVP40 genome is coding, with an average CDS size of 587 bp. While 65% of the CDSs were unique to KVP40 and had no known function, the genome sequence and organization show specific regions of extensive conservation with phage T4. At least 99 KVP40 CDSs have homologs in the T4 genome (Blast alignments of 45 to 68% amino acid similarity). The shared CDSs represent 36% of all T4 CDSs but only 26% of those from KVP40. There is extensive representation of the DNA replication, recombination, and repair enzymes as well as the viral capsid and tail structural genes. KVP40 lacks several T4 enzymes involved in host DNA degradation, appears not to synthesize the modified cytosine (hydroxymethyl glucose) present in T-even phages, and lacks group I introns. KVP40 likely utilizes the T4-type sigma-55 late transcription apparatus, but features of early- or middle-mode transcription were not identified. There are 26 CDSs that have no viral homolog, and many did not necessarily originate from Vibrio spp., suggesting an even broader host range for KVP40. From these latter CDSs, an NAD salvage pathway was inferred that appears to be unique among bacteriophages. Features of the KVP40 genome that distinguish it from T4 are presented, as well as those, such as the replication and virion gene clusters, that are substantially conserved.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
McLaughlin WA, Berman HM. Statistical models for discerning protein structures containing the DNA-binding helix-turn-helix motif. J Mol Biol 2003; 330:43-55. [PMID: 12818201 DOI: 10.1016/s0022-2836(03)00532-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for discerning protein structures containing the DNA-binding helix-turn-helix (HTH) motif has been developed. The method uses statistical models based on geometrical measurements of the motif. With a decision tree model, key structural features required for DNA binding were identified. These include a high average solvent-accessibility of residues within the recognition helix and a conserved hydrophobic interaction between the recognition helix and the second alpha helix preceding it. The Protein Data Bank was searched using a more accurate model of the motif created using the Adaboost algorithm to identify structures that have a high probability of containing the motif, including those that had not been reported previously.
Collapse
Affiliation(s)
- William A McLaughlin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway 08854-8087, USA
| | | |
Collapse
|
14
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Pal D, Vuthoori M, Pande S, Wheeler D, Hinton DM. Analysis of regions within the bacteriophage T4 AsiA protein involved in its binding to the sigma70 subunit of E. coli RNA polymerase and its role as a transcriptional inhibitor and co-activator. J Mol Biol 2003; 325:827-41. [PMID: 12527294 DOI: 10.1016/s0022-2836(02)01307-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage T4 AsiA, a protein of 90 amino acid residues, binds to the sigma(70) subunit of Escherichia coli RNA polymerase and inhibits host or T4 early transcription or, together with the T4 MotA protein, activates T4 middle transcription. To investigate which regions within AsiA are involved in forming a complex with sigma(70) and in providing transcriptional functions we generated random mutations throughout AsiA and targeted mutations within the C-terminal region. We tested mutant proteins for their ability to complement the growth of T4 asiA am phage under non-suppressing conditions, to inhibit E. coli growth, to interact with sigma(70) region 4 in a two-hybrid assay, to bind to sigma(70) in a native protein gel, and to inhibit or activate transcription in vitro using a T4 middle promoter that is active with RNA polymerase alone, is inhibited by AsiA, and is activated by MotA/AsiA. We find that substitutions within the N-terminal half of AsiA, at amino acid residues V14, L18, and I40, rendered the protein defective for binding to sigma(70). These residues reside at the monomer-monomer interface in recent NMR structures of the AsiA dimer. In contrast, AsiA missing the C-terminal 44 amino acid residues interacted well with sigma(70) region 4 in the two-hybrid assay, and AsiA missing the C-terminal 17 amino acid residues (Delta74-90) bound to sigma(70) and was fully competent in standard in vitro transcription assays. However, the presence of the C-terminal region delayed formation of transcriptionally competent species when the AsiA/polymerase complex was pre-incubated with the promoter in the absence of MotA. Our results suggest that amino acid residues within the N-terminal half of AsiA are involved in forming or maintaining the AsiA/sigma(70) complex. The C-terminal region of AsiA, while not absolutely required for inhibition or co-activation, aids inhibition by slowing the formation of transcription complexes between a promoter and the AsiA/polymerase complex.
Collapse
Affiliation(s)
- Debashis Pal
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
16
|
Pande S, Makela A, Dove SL, Nickels BE, Hochschild A, Hinton DM. The bacteriophage T4 transcription activator MotA interacts with the far-C-terminal region of the sigma70 subunit of Escherichia coli RNA polymerase. J Bacteriol 2002; 184:3957-64. [PMID: 12081968 PMCID: PMC135182 DOI: 10.1128/jb.184.14.3957-3964.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2001] [Accepted: 04/24/2002] [Indexed: 11/20/2022] Open
Abstract
Transcription from bacteriophage T4 middle promoters uses Escherichia coli RNA polymerase together with the T4 transcriptional activator MotA and the T4 coactivator AsiA. AsiA binds tightly within the C-terminal portion of the sigma70 subunit of RNA polymerase, while MotA binds to the 9-bp MotA box motif, which is centered at -30, and also interacts with sigma70. We show here that the N-terminal half of MotA (MotA(NTD)), which is thought to include the activation domain, interacts with the C-terminal region of sigma70 in an E. coli two-hybrid assay. Replacement of the C-terminal 17 residues of sigma70 with comparable sigma38 residues abolishes the interaction with MotA(NTD) in this assay, as does the introduction of the amino acid substitution R608C. Furthermore, in vitro transcription experiments indicate that a polymerase reconstituted with a sigma70 that lacks C-terminal amino acids 604 to 613 or 608 to 613 is defective for MotA-dependent activation. We also show that a proteolyzed fragment of MotA that contains the C-terminal half (MotA(CTD)) binds DNA with a K(D(app)) that is similar to that of full-length MotA. Our results support a model for MotA-dependent activation in which protein-protein contact between DNA-bound MotA and the far-C-terminal region of sigma70 helps to substitute functionally for an interaction between sigma70 and a promoter -35 element.
Collapse
Affiliation(s)
- Suchira Pande
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | | | | | | | |
Collapse
|
17
|
Truncaite L, Zajanckauskaite A, Nivinskas R. Identification of two middle promoters upstream DNA ligase gene 30 of bacteriophage T4. J Mol Biol 2002; 317:179-90. [PMID: 11902835 DOI: 10.1006/jmbi.2002.5407] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage T4 DNA ligase gene 30 lies in the cluster of prereplicative genes located counterclockwise from map units 149 to 121. Based on the early transcription studies this gene has been considered as a typical early gene of bacteriophage T4. In agreement with this assignment, two strong T4 early promoters, P(E )30.8 (128.6) and P(E )30.7 (128.2), located about 3.1 and 2.7 kb upstream from gene 30 have been revealed by promoter mapping and sequence analysis. In addition, the existence of a putative early promoter just upstream of gene 30 was proposed from the sequence data. However, here we show that the putative early promoter just upstream of gene 30 is, in fact, a T4 middle promoter. Furthermore, we detected one more middle promoter located in the genomic region between early promoter P(E )30.7 (128.2) and DNA ligase gene 30 in the coding region of gene 30.3. Both new middle promoters have differences from the consensus MotA box, while their -10 regions match the sigma(70) consensus sequence very well. The 5' ends of MotA-dependent transcripts directed from these promoters, as well as the kinetics of 5' end accumulation in the cells, have been determined by primer extension analysis. The results of these analyses indicate that both MotA-dependent and MotA-independent promoters control the transcription of T4 DNA ligase gene 30 in vivo. Moreover, we show that the first transcripts for gene 30 are directed from its own middle promoter, P(M)30.
Collapse
Affiliation(s)
- Lidija Truncaite
- Laboratory of Gene Engineering, Institute of Biochemistry, Vilnius, Lithuania
| | | | | |
Collapse
|
18
|
Li N, Sickmier EA, Zhang R, Joachimiak A, White SW. The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain: the 'double wing' motif. Mol Microbiol 2002; 43:1079-88. [PMID: 11918797 DOI: 10.1046/j.1365-2958.2002.02809.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MotA is a transcription factor from bacteriophage T4 that helps adapt the host Escherichia coli transcription apparatus to T4 middle promoters. We have determined the crystal structure of the C-terminal DNA-binding domain of MotA (MotCF) to 1.6 A resolution using multiwavelength, anomalous diffraction methods. The structure reveals a novel DNA-binding alpha/beta motif that contains an exposed beta-sheet surface that mediates interactions with the DNA. Independent biochemical experiments have shown that MotCF binds to one surface of a single turn of DNA through interactions in adjacent major and minor grooves. We present a model of the interaction in which beta-ribbons at opposite corners of the six-stranded beta-sheet penetrate the DNA grooves, and call the motif a 'double wing' to emphasize similarities to the 'winged-helix' motif. The model is consistent with data on how MotA functions at middle promoters, and provides an explanation for why MotA can form non-specific multimers on DNA.
Collapse
Affiliation(s)
- Ning Li
- Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
19
|
Lambert LJ, Schirf V, Demeler B, Cadene M, Werner MH. Flipping a genetic switch by subunit exchange. EMBO J 2001; 20:7149-59. [PMID: 11742991 PMCID: PMC125793 DOI: 10.1093/emboj/20.24.7149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Revised: 10/31/2001] [Accepted: 10/31/2001] [Indexed: 11/14/2022] Open
Abstract
The bacteriophage T4 AsiA protein is a multifunctional protein that simultaneously acts as both a repressor and activator of gene expression during the phage life cycle. These dual roles with opposing transcriptional consequences are achieved by modification of the host RNA polymerase in which AsiA binds to conserved region 4 (SR4) of sigma(70), altering the pathway of promoter selection by the holoenzyme. The mechanism by which AsiA flips this genetic switch has now been revealed, in part, from the three-dimensional structure of AsiA and the elucidation of its interaction with SR4. The structure of AsiA is that of a novel homodimer in which each monomer is constructed as a seven-helix bundle arranged in four overlapping helix-loop-helix elements. Identification of the protein interfaces for both the AsiA homodimer and the AsiA-sigma(70) complex reveals that these interfaces are coincident. Thus, the AsiA interaction with sigma(70) necessitates that the AsiA homodimer dissociate to form an AsiA-SR4 heterodimer, exchanging one protein subunit for another to alter promoter choice by RNA polymerase.
Collapse
Affiliation(s)
| | - Virgil Schirf
- Laboratory of Molecular Biophysics and
Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021 and Center for Analytical Ultracentrifugation of Macromolecular Assemblies, University of Texas Health Science Center, San Antonio, TX, USA Corresponding author e-mail:
| | - Borries Demeler
- Laboratory of Molecular Biophysics and
Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021 and Center for Analytical Ultracentrifugation of Macromolecular Assemblies, University of Texas Health Science Center, San Antonio, TX, USA Corresponding author e-mail:
| | - Martine Cadene
- Laboratory of Molecular Biophysics and
Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021 and Center for Analytical Ultracentrifugation of Macromolecular Assemblies, University of Texas Health Science Center, San Antonio, TX, USA Corresponding author e-mail:
| | - Milton H. Werner
- Laboratory of Molecular Biophysics and
Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021 and Center for Analytical Ultracentrifugation of Macromolecular Assemblies, University of Texas Health Science Center, San Antonio, TX, USA Corresponding author e-mail:
| |
Collapse
|
20
|
Lehnherr H, Jensen CD, Stenholm AR, Dueholm A. Dual regulatory control of a particle maturation function of bacteriophage P1. J Bacteriol 2001; 183:4105-9. [PMID: 11418548 PMCID: PMC95297 DOI: 10.1128/jb.183.14.4105-4109.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2001] [Accepted: 04/19/2001] [Indexed: 11/20/2022] Open
Abstract
A unique arrangement of promoter elements was found upstream of the bacteriophage P1 particle maturation gene (mat). A P1-specific late-promoter sequence with conserved elements located at positions -22 and -10 was expected from the function of the gene in phage morphogenesis. In addition to a late-promoter sequence, a -35 element and an operator sequence for the major repressor protein, C1, were found. The -35 and -10 elements constituted an active Escherichia coli sigma(70) consensus promoter, which was converted into a P1-regulated early promoter by the superimposition of a C1 operator. This combination of early- and late-promoter elements regulates and fine-tunes the expression of the particle maturation gene. During lysogenic growth the gene is turned off by P1 immunity functions. Upon induction of lytic growth, the expression of mat starts simultaneously with the expression of other C1-regulated P1 early functions. However, while most of the latter functions are downregulated during late stages of lytic growth the expression of mat continues throughout the entire lytic growth cycle of bacteriophage P1. Thus, the maturation function has a head start on the structural components of the phage particle.
Collapse
Affiliation(s)
- H Lehnherr
- Department of Genetics and Biochemistry, Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany.
| | | | | | | |
Collapse
|
21
|
Orsini G, Kolb A, Buc H. The Escherichia coli RNA polymerase.anti-sigma 70 AsiA complex utilizes alpha-carboxyl-terminal domain upstream promoter contacts to transcribe from a -10/-35 promoter. J Biol Chem 2001; 276:19812-9. [PMID: 11278617 DOI: 10.1074/jbc.m010105200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During infection of Escherichia coli, the phage T4 early protein AsiA inhibits open complex formation by the RNA polymerase holoenzyme Efinal sigma(70) at -10/-35 bacterial promoters through binding to region 4.2 of the final sigma(70) subunit. We used the -10/-35 lacUV5 promoter to study the properties of the Efinal sigma(70). AsiA complex in the presence of the glutamate anion. Under these experimental conditions, inhibition by AsiA was significantly decreased. KMnO(4) probing showed that the observed residual transcriptional activity was due to the slow transformation of the ternary complex Efinal sigma(70). AsiA.lacUV5 into an open complex. In agreement with this observation, affinity of the enzyme for the promoter was 10-fold lower in the ternary complex than in the binary complex Efinal sigma(70).lacUV5. A tau plot analysis of abortive transcription reactions showed that AsiA binding to Efinal sigma(70) resulted in a 120-fold decrease in the second-order on-rate constant of the reaction of Efinal sigma(70) with lacUV5 and a 55-fold decrease in the rate constant of the isomerization step leading to the open complex. This ternary complex still responded to activation by the cAMP.catabolite activator protein complex. We show that compensatory Efinal sigma(70)/promoter upstream contacts involving the C-terminal domains of alpha subunits in Efinal sigma(70) become essential for the binding of Efinal sigma(70). AsiA to the lacUV5 promoter.
Collapse
Affiliation(s)
- G Orsini
- Unité de Physico-Chimie des Macromolécules Biologiques, CNRS URA 1773, Département de Biologie Moléculaire, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
22
|
Li N, Zhang W, White SW, Kriwacki RW. Solution structure of the transcriptional activation domain of the bacteriophage T4 protein, MotA. Biochemistry 2001; 40:4293-302. [PMID: 11284685 DOI: 10.1021/bi0028284] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacteriophage T4 encodes a transcription factor, MotA, that binds to the -30 region of middle-mode promoters and activates transcription by host RNA polymerase. The crystal structure of the N-terminal domain of MotA (MotNF) revealed a six-helix domain in which the two C-terminal alpha-helices mediate the formation of a dimer via a coiled-coil motif and hydrophobic interactions. This structure suggested that full-length MotA binds DNA as a dimer, but subsequent biochemical results have shown that a monomeric form of MotA binds DNA. In this study, gel filtration chromatography, dynamic light scattering, and NMR-based diffusion measurements show conclusively that MotNF is a monomer, and not a dimer, in solution. In addition, we have determined the monomeric solution structure of MotNF using NMR spectroscopy, and have compared this with the dimer structure observed in crystals. The core of the protein assumes the same helical conformation in solution and in crystals, but important differences are observed at the extreme C-terminus. In solution, helix alpha5 is followed by five disordered residues that probably link the N-terminal and C-terminal domains of MotA. In crystals, helix alpha5 forms the dimer interface and is followed by a short sixth helix that further stabilizes the dimer configuration. The solution structure of MotNF supports the conclusion that MotA functions as a monomer, and suggests that the existence of the sixth helix in crystals is a consequence of crystal packing. Our work highlights the importance of investigating protein structures in both crystals and solution to fully understand biomolecular structure and to accurately deduce relationships between structure and function.
Collapse
Affiliation(s)
- N Li
- Department of Structural Biology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
23
|
Pène C, Uzan M. The bacteriophage T4 anti-sigma factor AsiA is not necessary for the inhibition of early promoters in vivo. Mol Microbiol 2000; 35:1180-91. [PMID: 10712698 DOI: 10.1046/j.1365-2958.2000.01787.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteriophage T4 early promoters are utilized immediately after infection and are abruptly turned off 2-3 min later (at 30 degrees C) when the middle promoters are activated. The viral early protein AsiA has been suspected to bring about this transcriptional switch: not only does it activate transcription at middle promoters in vivo and in vitro but it also shows potent anti-sigma70 activity in vitro, suggesting that it is responsible for the shut-off of early transcription. We show here that after infection with a phage deleted for the asiA gene the inhibition of early transcription occurs to the same extent and with the same kinetics as in a wild-type infection. Thus, another AsiA-independent circuit efficiently turns off early transcription. The association of a mutation in asiA with a mutation in mod, rpbA, motA or motB has no effect on the inhibition of early promoters, showing that none of these phage-encoded transcriptional regulators is necessary for AsiA-independent shut-off. It is not known whether AsiA is able to inhibit early promoters in vivo, but host transcription is strongly inhibited in vivo upon induction of AsiA from a multicopy plasmid.
Collapse
Affiliation(s)
- C Pène
- Institut Jacques Monod, UMR7592 of CNRS-Universités Paris 6 and Paris 7, 2 Place Jussieu, 75251 Paris cedex 05, France
| | | |
Collapse
|