1
|
Nguyen B, Hsieh J, Fischer CJ, Lohman TM. Subunit Communication within Dimeric SF1 DNA Helicases. J Mol Biol 2024; 436:168578. [PMID: 38648969 PMCID: PMC11128345 DOI: 10.1016/j.jmb.2024.168578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Monomers of the Superfamily (SF) 1 helicases, E. coli Rep and UvrD, can translocate directionally along single stranded (ss) DNA, but must be activated to function as helicases. In the absence of accessory factors, helicase activity requires Rep and UvrD homo-dimerization. The ssDNA binding sites of SF1 helicases contain a conserved aromatic amino acid (Trp250 in Rep and Trp256 in UvrD) that stacks with the DNA bases. Here we show that mutation of this Trp to Ala eliminates helicase activity in both Rep and UvrD. Rep(W250A) and UvrD(W256A) can still dimerize, bind DNA, and monomers still retain ATP-dependent ssDNA translocase activity, although with ∼10-fold lower rates and lower processivities than wild type monomers. Although neither wtRep monomers nor Rep(W250A) monomers possess helicase activity by themselves, using both ensemble and single molecule methods, we show that helicase activity is achieved upon formation of a Rep(W250A)/wtRep hetero-dimer. An ATPase deficient Rep monomer is unable to activate a wtRep monomer indicating that ATPase activity is needed in both subunits of the Rep hetero-dimer. We find the same results with E. coli UvrD and its equivalent mutant (UvrD(W256A)). Importantly, Rep(W250A) is unable to activate a wtUvrD monomer and UvrD(W256A) is unable to activate a wtRep monomer indicating that specific dimer interactions are required for helicase activity. We also demonstrate subunit communication within the dimer by virtue of Trp fluorescence signals that only are present within the Rep dimer, but not the monomers. These results bear on proposed subunit switching mechanisms for dimeric helicase activity.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO 63110, USA
| | - John Hsieh
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO 63110, USA; Biochemistry & Biophysics, Blueprint Medicines, Cambridge, MA 02139, USA
| | | | - Timothy M Lohman
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO 63110, USA.
| |
Collapse
|
2
|
Storozhuk O, Bruekner SR, Paul A, Lebbink JHG, Sixma TK, Friedhoff P. MutL Activates UvrD by Interaction Between the MutL C-terminal Domain and the UvrD 2B Domain. J Mol Biol 2024; 436:168589. [PMID: 38677494 DOI: 10.1016/j.jmb.2024.168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
UvrD is a helicase vital for DNA replication and quality control processes. In its monomeric state, UvrD exhibits limited helicase activity, necessitating either dimerization or assistance from an accessory protein to efficiently unwind DNA. Within the DNA mismatch repair pathway, MutL plays a pivotal role in relaying the repair signal, enabling UvrD to unwind DNA from the strand incision site up to and beyond the mismatch. Although this interdependence is well-established, the precise mechanism of activation and the specific MutL-UvrD interactions that trigger helicase activity remain elusive. To address these questions, we employed site-specific crosslinking techniques using single-cysteine variants of MutL and UvrD followed by functional assays. Our investigation unveils that the C-terminal domain of MutL not only engages with UvrD but also acts as a self-sufficient activator of UvrD helicase activity on DNA substrates with 3'-single-stranded tails. Especially when MutL is covalently attached to the 2B or 1B domain the tail length can be reduced to a minimal substrate of 5 nucleotides without affecting unwinding efficiency.
Collapse
Affiliation(s)
- Olha Storozhuk
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Susanne R Bruekner
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, Amsterdam, the Netherlands
| | - Ankon Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joyce H G Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry, Netherlands Cancer Institute and Oncode Institute, Amsterdam, the Netherlands
| | - Peter Friedhoff
- Institute for Biochemistry, FB 08, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany.
| |
Collapse
|
3
|
Gaydar V, Zananiri R, Saied L, Dvir O, Kaplan A, Henn A. Communication between DNA and nucleotide binding sites facilitates stepping by the RecBCD helicase. Nucleic Acids Res 2024; 52:3911-3923. [PMID: 38364872 DOI: 10.1093/nar/gkae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Double-strand DNA breaks are the severest type of genomic damage, requiring rapid response to ensure survival. RecBCD helicase in prokaryotes initiates processive and rapid DNA unzipping, essential for break repair. The energetics of RecBCD during translocation along the DNA track are quantitatively not defined. Specifically, it's essential to understand the mechanism by which RecBCD switches between its binding states to enable its translocation. Here, we determine, by systematic affinity measurements, the degree of coupling between DNA and nucleotide binding to RecBCD. In the presence of ADP, RecBCD binds weakly to DNA that harbors a double overhang mimicking an unwinding intermediate. Consistently, RecBCD binds weakly to ADP in the presence of the same DNA. We did not observe coupling between DNA and nucleotide binding for DNA molecules having only a single overhang, suggesting that RecBCD subunits must both bind DNA to 'sense' the nucleotide state. On the contrary, AMPpNp shows weak coupling as RecBCD remains strongly bound to DNA in its presence. Detailed thermodynamic analysis of the RecBCD reaction mechanism suggests an 'energetic compensation' between RecB and RecD, which may be essential for rapid unwinding. Our findings provide the basis for a plausible stepping mechanism' during the processive translocation of RecBCD.
Collapse
Affiliation(s)
- Vera Gaydar
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Rani Zananiri
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Layla Saied
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Or Dvir
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ariel Kaplan
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Arnon Henn
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Wollman AJM, Syeda AH, Howard JAL, Payne-Dwyer A, Leech A, Warecka D, Guy C, McGlynn P, Hawkins M, Leake MC. Tetrameric UvrD Helicase Is Located at the E. Coli Replisome due to Frequent Replication Blocks. J Mol Biol 2024; 436:168369. [PMID: 37977299 DOI: 10.1016/j.jmb.2023.168369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
DNA replication in all organisms must overcome nucleoprotein blocks to complete genome duplication. Accessory replicative helicases in Escherichia coli, Rep and UvrD, help remove these blocks and aid the re-initiation of replication. Mechanistic details of Rep function have emerged from recent live cell studies; however, the division of UvrD functions between its activities in DNA repair and role as an accessory helicase remain unclear in live cells. By integrating super-resolved single-molecule fluorescence microscopy with biochemical analysis, we find that UvrD self-associates into tetrameric assemblies and, unlike Rep, is not recruited to a specific replisome protein despite being found at approximately 80% of replication forks. Instead, its colocation with forks is likely due to the very high frequency of replication blocks composed of DNA-bound proteins, including RNA polymerase and factors involved in repairing DNA damage. Deleting rep and DNA repair factor genes mutS and uvrA, and inhibiting transcription through RNA polymerase mutation and antibiotic inhibition, indicates that the level of UvrD at the fork is dependent on UvrD's function. Our findings show that UvrD is recruited to sites of nucleoprotein blocks via different mechanisms to Rep and plays a multi-faceted role in ensuring successful DNA replication.
Collapse
Affiliation(s)
- Adam J M Wollman
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aisha H Syeda
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Jamieson A L Howard
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Alex Payne-Dwyer
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Andrew Leech
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dominika Warecka
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Colin Guy
- Covance Laboratories Ltd., Otley Road, Harrogate HG3 1PY, United Kingdom
| | - Peter McGlynn
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Michelle Hawkins
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Mark C Leake
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, United Kingdom; Department of Biology, University of York, York YO10 5DD, United Kingdom.
| |
Collapse
|
5
|
Oh H, Koo J, An SY, Hong SH, Suh JY, Bae E. Structural and functional investigation of GajB protein in Gabija anti-phage defense. Nucleic Acids Res 2023; 51:11941-11951. [PMID: 37897358 PMCID: PMC10681800 DOI: 10.1093/nar/gkad951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.
Collapse
Affiliation(s)
- Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - So Young An
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Hyun Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Thompson MD, Malone EG, Byrd AK. Monitoring helicase-catalyzed unwinding of multiple duplexes simultaneously. Methods Enzymol 2022; 672:1-27. [PMID: 35934470 PMCID: PMC9397138 DOI: 10.1016/bs.mie.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Helicases catalyze the unwinding of duplex nucleic acids to aid a variety of cellular processes. Although helicases unwind duplex DNA in the same direction that they translocate on single-stranded DNA, forked duplexes provide opportunities to monitor unwinding by helicase monomers bound to each arm of the fork. The activity of the helicase bound to the displaced strand can be discerned alongside the helicase bound to the translocase strand using a forked substrate with accessible duplexes on both strands labeled with different fluorophores. In order to quantify the effect of protein-protein interactions on the activity of multiple monomers of the Bacteroides fragilis Pif1 helicase bound to separate strands of a forked DNA junction, an ensemble gel-based assay for monitoring simultaneous duplex unwinding was developed (Su et al., 2019). Here, the use of that assay is described for measuring the total product formation and rate constants of product formation of multiple duplexes on a single nucleic acid substrate. Use of this assay may aid characterization of protein-protein interactions between multiple helicase monomers at forked nucleic acid junctions and can assist with the characterization of helicase action on the displaced strand of forked duplexes.
Collapse
Affiliation(s)
- Matthew D Thompson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Emory G Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
7
|
Single-molecule studies of helicases and translocases in prokaryotic genome-maintenance pathways. DNA Repair (Amst) 2021; 108:103229. [PMID: 34601381 DOI: 10.1016/j.dnarep.2021.103229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022]
Abstract
Helicases involved in genomic maintenance are a class of nucleic-acid dependent ATPases that convert the energy of ATP hydrolysis into physical work to execute irreversible steps in DNA replication, repair, and recombination. Prokaryotic helicases provide simple models to understand broadly conserved molecular mechanisms involved in manipulating nucleic acids during genome maintenance. Our understanding of the catalytic properties, mechanisms of regulation, and roles of prokaryotic helicases in DNA metabolism has been assembled through a combination of genetic, biochemical, and structural methods, further refined by single-molecule approaches. Together, these investigations have constructed a framework for understanding the mechanisms that maintain genomic integrity in cells. This review discusses recent single-molecule insights into molecular mechanisms of prokaryotic helicases and translocases.
Collapse
|
8
|
Nguyen B, Shinn MK, Weiland E, Lohman TM. Regulation of E. coli Rep helicase activity by PriC. J Mol Biol 2021; 433:167072. [PMID: 34081984 PMCID: PMC8941637 DOI: 10.1016/j.jmb.2021.167072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
Stalled DNA replication forks can result in incompletely replicated genomes and cell death. DNA replication restart pathways have evolved to deal with repair of stalled forks and E. coli Rep helicase functions in this capacity. Rep and an accessory protein, PriC, assemble at a stalled replication fork to facilitate loading of other replication proteins. A Rep monomer is a rapid and processive single stranded (ss) DNA translocase but needs to be activated to function as a helicase. Activation of Rep in vitro requires self-assembly to form a dimer, removal of its auto-inhibitory 2B sub-domain, or interactions with an accessory protein. Rep helicase activity has been shown to be stimulated by PriC, although the mechanism of activation is not clear. Using stopped flow kinetics, analytical sedimentation and single molecule fluorescence methods, we show that a PriC dimer activates the Rep monomer helicase and can also stimulate the Rep dimer helicase. We show that PriC can self-assemble to form dimers and tetramers and that Rep and PriC interact in the absence of DNA. We further show that PriC serves as a Rep processivity factor, presumably co-translocating with Rep during DNA unwinding. Activation is specific for Rep since PriC does not activate the UvrD helicase. Interaction of PriC with the C-terminal acidic tip of the ssDNA binding protein, SSB, eliminates Rep activation by stabilizing the PriC monomer. This suggests a likely mechanism for Rep activation by PriC at a stalled replication fork.
Collapse
Affiliation(s)
- Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Min Kyung Shinn
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Elizabeth Weiland
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Box 8231, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
9
|
Yokota H. Roles of the C-Terminal Amino Acids of Non-Hexameric Helicases: Insights from Escherichia coli UvrD. Int J Mol Sci 2021; 22:ijms22031018. [PMID: 33498436 PMCID: PMC7864180 DOI: 10.3390/ijms22031018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, The Graduate School for the Creation of New Photonics Industries, 1955-1, Kurematsu-cho, Nishi-ku, Hamamatsu, Shizuoka 431-1202, Japan
| |
Collapse
|
10
|
Yokota H. DNA-Unwinding Dynamics of Escherichia coli UvrD Lacking the C-Terminal 40 Amino Acids. Biophys J 2020; 118:1634-1648. [PMID: 32142643 DOI: 10.1016/j.bpj.2020.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/18/2023] Open
Abstract
The E. coli UvrD protein is a nonhexameric DNA helicase that belongs to superfamily I and plays a crucial role in both nucleotide excision repair and methyl-directed mismatch repair. Previous data suggested that wild-type UvrD has optimal activity in its oligomeric form. However, crystal structures of the UvrD-DNA complex were only resolved for monomeric UvrD, using a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C). However, biochemical findings performed using UvrDΔ40C indicated that this mutant failed to dimerize, although its DNA-unwinding activity was comparable to that of wild-type UvrD. Although the C-terminus plays essential roles in nucleic acid binding for many proteins with helicase and dimerization activities, the exact function of the C-terminus is poorly understood. Thus, to understand the function of the C-terminal amino acids of UvrD, we performed single-molecule direct visualization. Photobleaching of dye-labeled UvrDΔ40C molecules revealed that two or three UvrDΔ40C molecules could bind simultaneously to an 18-bp double-stranded DNA with a 20-nucleotide, 3' single-stranded DNA tail in the absence of ATP. Simultaneous visualization of association/dissociation of the mutant with/from DNA and the DNA-unwinding dynamics of the mutant in the presence of ATP demonstrated that, as with wild-type UvrD, two or three UvrDΔ40C molecules were primarily responsible for DNA unwinding. The determined association/dissociation rate constants for the second bound monomer were ∼2.5-fold larger than that of wild-type UvrD. The involvement of multiple UvrDΔ40C molecules in DNA unwinding was also observed under a physiological salt concentration (200 mM NaCl). These results suggest that multiple UvrDΔ40C molecules, which may form an oligomer, play an active role in DNA unwinding in vivo and that deleting the C-terminal 40 residues altered the interaction of the second UvrD monomer with DNA without affecting the interaction with the first bound UvrD monomer.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Biophotonics Laboratory, Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka, Japan.
| |
Collapse
|
11
|
UvrD helicase activation by MutL involves rotation of its 2B subdomain. Proc Natl Acad Sci U S A 2019; 116:16320-16325. [PMID: 31363055 DOI: 10.1073/pnas.1905513116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli UvrD is a superfamily 1 helicase/translocase that functions in DNA repair, replication, and recombination. Although a UvrD monomer can translocate along single-stranded DNA, self-assembly or interaction with an accessory protein is needed to activate its helicase activity in vitro. Our previous studies have shown that an Escherichia coli MutL dimer can activate the UvrD monomer helicase in vitro, but the mechanism is not known. The UvrD 2B subdomain is regulatory and can exist in extreme rotational conformational states. By using single-molecule FRET approaches, we show that the 2B subdomain of a UvrD monomer bound to DNA exists in equilibrium between open and closed states, but predominantly in an open conformation. However, upon MutL binding to a UvrD monomer-DNA complex, a rotational conformational state is favored that is intermediate between the open and closed states. Parallel kinetic studies of MutL activation of the UvrD helicase and of MutL-dependent changes in the UvrD 2B subdomain show that the transition from an open to an intermediate 2B subdomain state is on the pathway to helicase activation. We further show that MutL is unable to activate the helicase activity of a chimeric UvrD containing the 2B subdomain of the structurally similar Rep helicase. Hence, MutL activation of the monomeric UvrD helicase is regulated specifically by its 2B subdomain.
Collapse
|
12
|
Byrd AK, Bell MR, Raney KD. Pif1 helicase unfolding of G-quadruplex DNA is highly dependent on sequence and reaction conditions. J Biol Chem 2018; 293:17792-17802. [PMID: 30257865 DOI: 10.1074/jbc.ra118.004499] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/18/2018] [Indexed: 11/06/2022] Open
Abstract
In addition to unwinding double-stranded nucleic acids, helicase activity can also unfold noncanonical structures such as G-quadruplexes. We previously characterized Pif1 helicase catalyzed unfolding of parallel G-quadruplex DNA. Here we characterized unfolding of the telomeric G-quadruplex, which can fold into antiparallel and mixed hybrid structures and found significant differences. Telomeric DNA sequences are unfolded more readily than the parallel quadruplex formed by the c-MYC promoter in K+ Furthermore, we found that under conditions in which the telomeric quadruplex is less stable, such as in Na+, Pif1 traps thermally melted quadruplexes in the absence of ATP, leading to the appearance of increased product formation under conditions in which the enzyme is preincubated with the substrate. Stable telomeric G-quadruplex structures were unfolded in a stepwise manner at a rate slower than that of duplex DNA unwinding; however, the slower dissociation from G-quadruplexes compared with duplexes allowed the helicase to traverse more nucleotides than on duplexes. Consistent with this, the rate of ATP hydrolysis on the telomeric quadruplex DNA was reduced relative to that on single-stranded DNA (ssDNA), but less quadruplex DNA was needed to saturate ATPase activity. Under single-cycle conditions, telomeric quadruplex was unfolded by Pif1, but for the c-MYC quadruplex, unfolding required multiple helicase molecules loaded onto the adjacent ssDNA. Our findings illustrate that Pif1-catalyzed unfolding of G-quadruplex DNA is highly dependent on the specific sequence and the conditions of the reaction, including both the monovalent cation and the order of addition.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Matthew R Bell
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
13
|
Ordabayev YA, Nguyen B, Niedziela-Majka A, Lohman TM. Regulation of UvrD Helicase Activity by MutL. J Mol Biol 2018; 430:4260-4274. [PMID: 30171840 DOI: 10.1016/j.jmb.2018.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022]
Abstract
Escherichia coli UvrD is a superfamily 1 helicase/translocase involved in multiple DNA metabolic processes including methyl-directed mismatch DNA repair. Although a UvrD monomer can translocate along single-stranded DNA, a UvrD dimer is needed for processive helicase activity in vitro. E. coli MutL, a regulatory protein involved in methyl-directed mismatch repair, stimulates UvrD helicase activity; however, the mechanism is not well understood. Using single-molecule fluorescence and ensemble approaches, we find that a single MutL dimer can activate latent UvrD monomer helicase activity. However, we also find that MutL stimulates UvrD dimer helicase activity. We further find that MutL enhances the DNA-unwinding processivity of UvrD. Hence, MutL acts as a processivity factor by binding to and presumably moving along with UvrD to facilitate DNA unwinding.
Collapse
Affiliation(s)
- Yerdos A Ordabayev
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110, United States
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110, United States
| | - Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110, United States
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., Box 8231, St. Louis, MO 63110, United States.
| |
Collapse
|
14
|
Lau HY, Botella JR. Advanced DNA-Based Point-of-Care Diagnostic Methods for Plant Diseases Detection. FRONTIERS IN PLANT SCIENCE 2017; 8:2016. [PMID: 29375588 PMCID: PMC5770625 DOI: 10.3389/fpls.2017.02016] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/13/2017] [Indexed: 05/07/2023]
Abstract
Diagnostic technologies for the detection of plant pathogens with point-of-care capability and high multiplexing ability are an essential tool in the fight to reduce the large agricultural production losses caused by plant diseases. The main desirable characteristics for such diagnostic assays are high specificity, sensitivity, reproducibility, quickness, cost efficiency and high-throughput multiplex detection capability. This article describes and discusses various DNA-based point-of care diagnostic methods for applications in plant disease detection. Polymerase chain reaction (PCR) is the most common DNA amplification technology used for detecting various plant and animal pathogens. However, subsequent to PCR based assays, several types of nucleic acid amplification technologies have been developed to achieve higher sensitivity, rapid detection as well as suitable for field applications such as loop-mediated isothermal amplification, helicase-dependent amplification, rolling circle amplification, recombinase polymerase amplification, and molecular inversion probe. The principle behind these technologies has been thoroughly discussed in several review papers; herein we emphasize the application of these technologies to detect plant pathogens by outlining the advantages and disadvantages of each technology in detail.
Collapse
Affiliation(s)
- Han Yih Lau
- Biotechnology and Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, Serdang, Malaysia
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Large domain movements upon UvrD dimerization and helicase activation. Proc Natl Acad Sci U S A 2017; 114:12178-12183. [PMID: 29087333 DOI: 10.1073/pnas.1712882114] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli UvrD DNA helicase functions in several DNA repair processes. As a monomer, UvrD can translocate rapidly and processively along ssDNA; however, the monomer is a poor helicase. To unwind duplex DNA in vitro, UvrD needs to be activated either by self-assembly to form a dimer or by interaction with an accessory protein. However, the mechanism of activation is not understood. UvrD can exist in multiple conformations associated with the rotational conformational state of its 2B subdomain, and its helicase activity has been correlated with a closed 2B conformation. Using single-molecule total internal reflection fluorescence microscopy, we examined the rotational conformational states of the 2B subdomain of fluorescently labeled UvrD and their rates of interconversion. We find that the 2B subdomain of the UvrD monomer can rotate between an open and closed conformation as well as two highly populated intermediate states. The binding of a DNA substrate shifts the 2B conformation of a labeled UvrD monomer to a more open state that shows no helicase activity. The binding of a second unlabeled UvrD shifts the 2B conformation of the labeled UvrD to a more closed state resulting in activation of helicase activity. Binding of a monomer of the structurally similar Escherichia coli Rep helicase does not elicit this effect. This indicates that the helicase activity of a UvrD dimer is promoted via direct interactions between UvrD subunits that affect the rotational conformational state of its 2B subdomain.
Collapse
|
16
|
Kim Y, Myong S. RNA Remodeling Activity of DEAD Box Proteins Tuned by Protein Concentration, RNA Length, and ATP. Mol Cell 2016; 63:865-76. [PMID: 27546789 DOI: 10.1016/j.molcel.2016.07.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/18/2016] [Accepted: 07/15/2016] [Indexed: 01/07/2023]
Abstract
DEAD box RNA helicases play central roles in RNP biogenesis. We reported earlier that LAF-1, a DEAD box RNA helicase in C. elegans, dynamically interacts with RNA and that the interaction likely contributes to the fluidity of RNP droplets. Here we investigate the molecular basis of the interaction of RNA with LAF-1 and its human homolog, DDX3X. We show that both LAF-1 and DDX3X, at low concentrations, are monomers that induce tight compaction of single-stranded RNA. At high concentrations, the proteins are multimeric and dynamically interact with RNA in an RNA length-dependent manner. The dynamic LAF-1-RNA interaction stimulates RNA annealing activity. ATP adversely affects the RNA remodeling ability of LAF-1 by suppressing the affinity, dynamics, and annealing activity of LAF-1, suggesting that ATP may promote disassembly of the RNP complex. Based on our results, we postulate a plausible molecular mechanism underlying the dynamic equilibrium of the LAF-1 RNP complex.
Collapse
Affiliation(s)
- Younghoon Kim
- Bioengineering Department, University of Illinois, 1304 West Springfield Avenue, Urbana, IL 61801, USA
| | - Sua Myong
- Biophysics Department, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA.
| |
Collapse
|
17
|
Xie P. Dynamics of monomeric and hexameric helicases. Biophys Chem 2016; 211:49-58. [DOI: 10.1016/j.bpc.2016.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/19/2023]
|
18
|
Abstract
Plasmids are DNA entities that undergo controlled replication independent of the chromosomal DNA, a crucial step that guarantees the prevalence of the plasmid in its host. DNA replication has to cope with the incapacity of the DNA polymerases to start de novo DNA synthesis, and different replication mechanisms offer diverse solutions to this problem. Rolling-circle replication (RCR) is a mechanism adopted by certain plasmids, among other genetic elements, that represents one of the simplest initiation strategies, that is, the nicking by a replication initiator protein on one parental strand to generate the primer for leading-strand initiation and a single priming site for lagging-strand synthesis. All RCR plasmid genomes consist of a number of basic elements: leading strand initiation and control, lagging strand origin, phenotypic determinants, and mobilization, generally in that order of frequency. RCR has been mainly characterized in Gram-positive bacterial plasmids, although it has also been described in Gram-negative bacterial or archaeal plasmids. Here we aim to provide an overview of the RCR plasmids' lifestyle, with emphasis on their characteristic traits, promiscuity, stability, utility as vectors, etc. While RCR is one of the best-characterized plasmid replication mechanisms, there are still many questions left unanswered, which will be pointed out along the way in this review.
Collapse
|
19
|
Xie P. A unified model of nucleic acid unwinding by the ribosome and the hexameric and monomeric DNA helicases. J Theor Biol 2015; 380:359-66. [PMID: 26092375 DOI: 10.1016/j.jtbi.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
DNA helicases are enzymes that use the chemical energy to separate DNA duplex into their single-stranded forms. The ribosome, which catalyzes the translation of messenger RNAs (mRNAs) into proteins, can also unwind mRNA duplex. According to their structures, the DNA helicases can fall broadly into hexameric and monomeric forms. A puzzling issue for the monomeric helicases is that although they have similar structures, in vitro biochemical data showed convincingly that in the monomeric forms some have very weak DNA unwinding activities, some have relatively high unwinding activities while others have high unwinding activities. However, in the dimeric or oligomeric forms all of them have high unwinding activities. In addition, in the monomeric forms all of them can translocate efficiently along the single-stranded DNA (ssDNA). Here, we propose a model of the translocation along the ssDNA and DNA unwinding by the monomeric helicases, providing a consistent explanation of these in vitro experimental data. Moreover, by comparing the present model for the monomeric helicases with the model for the hexameric helicases and that for the ribosome which were proposed before, a unified model of nucleic acid unwinding by the three enzymes is proposed.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
20
|
Comstock MJ, Whitley KD, Jia H, Sokoloski J, Lohman TM, Ha T, Chemla YR. Protein structure. Direct observation of structure-function relationship in a nucleic acid-processing enzyme. Science 2015; 348:352-4. [PMID: 25883359 DOI: 10.1126/science.aaa0130] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/24/2015] [Indexed: 12/24/2022]
Abstract
The relationship between protein three-dimensional structure and function is essential for mechanism determination. Unfortunately, most techniques do not provide a direct measurement of this relationship. Structural data are typically limited to static pictures, and function must be inferred. Conversely, functional assays usually provide little information on structural conformation. We developed a single-molecule technique combining optical tweezers and fluorescence microscopy that allows for both measurements simultaneously. Here we present measurements of UvrD, a DNA repair helicase, that directly and unambiguously reveal the connection between its structure and function. Our data reveal that UvrD exhibits two distinct types of unwinding activity regulated by its stoichiometry. Furthermore, two UvrD conformational states, termed "closed" and "open," correlate with movement toward or away from the DNA fork.
Collapse
Affiliation(s)
- Matthew J Comstock
- Department of Physics, Center for the Physics of Living Cells, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin D Whitley
- Department of Physics, Center for the Physics of Living Cells, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haifeng Jia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taekjip Ha
- Department of Physics, Center for the Physics of Living Cells, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Howard Hughes Medical Institute, Urbana, IL 61801, USA. Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yann R Chemla
- Department of Physics, Center for the Physics of Living Cells, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
21
|
Byrd AK, Raney KD. A parallel quadruplex DNA is bound tightly but unfolded slowly by pif1 helicase. J Biol Chem 2015; 290:6482-94. [PMID: 25589786 DOI: 10.1074/jbc.m114.630749] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA sequences that can form intramolecular quadruplex structures are found in promoters of proto-oncogenes. Many of these sequences readily fold into parallel quadruplexes. Here we characterize the ability of yeast Pif1 to bind and unfold a parallel quadruplex DNA substrate. We found that Pif1 binds more tightly to the parallel quadruplex DNA than single-stranded DNA or tailed duplexes. However, Pif1 unwinding of duplexes occurs at a much faster rate than unfolding of a parallel intramolecular quadruplex. Pif1 readily unfolds a parallel quadruplex DNA substrate in a multiturnover reaction and also generates some product under single cycle conditions. The rate of ATP hydrolysis by Pif1 is reduced when bound to a parallel quadruplex compared with single-stranded DNA. ATP hydrolysis occurs at a faster rate than quadruplex unfolding, indicating that some ATP hydrolysis events are non-productive during unfolding of intramolecular parallel quadruplex DNA. However, product eventually accumulates at a slow rate.
Collapse
Affiliation(s)
- Alicia K Byrd
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kevin D Raney
- From the Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
22
|
Lehmann KC, Snijder EJ, Posthuma CC, Gorbalenya AE. What we know but do not understand about nidovirus helicases. Virus Res 2014; 202:12-32. [PMID: 25497126 PMCID: PMC7114383 DOI: 10.1016/j.virusres.2014.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/24/2023]
Abstract
The ubiquitous nidovirus helicase is a multi-functional enzyme of superfamily 1. Its unique N-terminal domain is most similar to the Upf1 multinuclear zinc-binding domain. It has been implicated in replication, transcription, virion biogenesis, translation and post-transcriptional viral RNA processing. Four different classes of antiviral compounds targeting the helicase have been identified.
Helicases are versatile NTP-dependent motor proteins of monophyletic origin that are found in all kingdoms of life. Their functions range from nucleic acid duplex unwinding to protein displacement and double-strand translocation. This explains their participation in virtually every metabolic process that involves nucleic acids, including DNA replication, recombination and repair, transcription, translation, as well as RNA processing. Helicases are encoded by all plant and animal viruses with a positive-sense RNA genome that is larger than 7 kb, indicating a link to genome size evolution in this virus class. Viral helicases belong to three out of the six currently recognized superfamilies, SF1, SF2, and SF3. Despite being omnipresent, highly conserved and essential, only a few viral helicases, mostly from SF2, have been studied extensively. In general, their specific roles in the viral replication cycle remain poorly understood at present. The SF1 helicase protein of viruses classified in the order Nidovirales is encoded in replicase open reading frame 1b (ORF1b), which is translated to give rise to a large polyprotein following a ribosomal frameshift from the upstream ORF1a. Proteolytic processing of the replicase polyprotein yields a dozen or so mature proteins, one of which includes a helicase. Its hallmark is the presence of an N-terminal multi-nuclear zinc-binding domain, the nidoviral genetic marker and one of the most conserved domains across members of the order. This review summarizes biochemical, structural, and genetic data, including drug development studies, obtained using helicases originating from several mammalian nidoviruses, along with the results of the genomics characterization of a much larger number of (putative) helicases of vertebrate and invertebrate nidoviruses. In the context of our knowledge of related helicases of cellular and viral origin, it discusses the implications of these results for the protein's emerging critical function(s) in nidovirus evolution, genome replication and expression, virion biogenesis, and possibly also post-transcriptional processing of viral RNAs. Using our accumulated knowledge and highlighting gaps in our data, concepts and approaches, it concludes with a perspective on future research aimed at elucidating the role of helicases in the nidovirus replication cycle.
Collapse
Affiliation(s)
- Kathleen C Lehmann
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander E Gorbalenya
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russia.
| |
Collapse
|
23
|
Accessory Replicative Helicases and the Replication of Protein-Bound DNA. J Mol Biol 2014; 426:3917-3928. [DOI: 10.1016/j.jmb.2014.10.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/29/2022]
|
24
|
Bhattacharyya B, Keck JL. Grip it and rip it: structural mechanisms of DNA helicase substrate binding and unwinding. Protein Sci 2014; 23:1498-507. [PMID: 25131811 DOI: 10.1002/pro.2533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/07/2022]
Abstract
Maintenance and faithful transmission of genomic information depends on the efficient execution of numerous DNA replication, recombination, and repair pathways. Many of the enzymes that catalyze steps within these pathways require access to sequence information that is buried in the interior of the DNA double helix, which makes DNA unwinding an essential cellular reaction. The unwinding process is mediated by specialized molecular motors called DNA helicases that couple the chemical energy derived from nucleoside triphosphate hydrolysis to the otherwise non-spontaneous unwinding reaction. An impressive number of high-resolution helicase structures are now available that, together with equally important mechanistic studies, have begun to define the features that allow this class of enzymes to function as molecular motors. In this review, we explore the structural features within DNA helicases that are used to bind and unwind DNA. We focus in particular on "aromatic-rich loops" that allow some helicases to couple single-stranded DNA binding to ATP hydrolysis and "wedge/pin" elements that provide mechanical tools for DNA strand separation when connected to translocating motor domains.
Collapse
Affiliation(s)
- Basudeb Bhattacharyya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, 53706; Department of Chemistry and Biochemistry, University of Wisconsin-La Crosse, La Crosse, Wisconsin, 53601
| | | |
Collapse
|
25
|
Meiners MJ, Tahmaseb K, Matson SW. The UvrD303 hyper-helicase exhibits increased processivity. J Biol Chem 2014; 289:17100-10. [PMID: 24798324 DOI: 10.1074/jbc.m114.565309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA helicases use energy derived from nucleoside 5'-triphosphate hydrolysis to catalyze the separation of double-stranded DNA into single-stranded intermediates for replication, recombination, and repair. Escherichia coli helicase II (UvrD) functions in methyl-directed mismatch repair, nucleotide excision repair, and homologous recombination. A previously discovered 2-amino acid substitution of residues 403 and 404 (both Asp → Ala) in the 2B subdomain of UvrD (uvrD303) confers an antimutator and UV-sensitive phenotype on cells expressing this allele. The purified protein exhibits a "hyper-helicase" unwinding activity in vitro. Using rapid quench, pre-steady state kinetic experiments we show the increased helicase activity of UvrD303 is due to an increase in the processivity of the unwinding reaction. We suggest that this mutation in the 2B subdomain results in a weakened interaction with the 1B subdomain, allowing the helicase to adopt a more open conformation. This is consistent with the idea that the 2B subdomain may have an autoregulatory role. The UvrD303 mutation may enable the helicase to unwind DNA via a "strand displacement" mechanism, which is similar to the mechanism used to processively translocate along single-stranded DNA, and the increased unwinding processivity may contribute directly to the antimutator phenotype.
Collapse
Affiliation(s)
| | | | - Steven W Matson
- From the Department of Biology, Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
26
|
Lytle AK, Origanti SS, Qiu Y, VonGermeten J, Myong S, Antony E. Context-Dependent Remodeling of Rad51–DNA Complexes by Srs2 Is Mediated by a Specific Protein–Protein Interaction. J Mol Biol 2014; 426:1883-97. [DOI: 10.1016/j.jmb.2014.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 02/10/2014] [Accepted: 02/16/2014] [Indexed: 10/25/2022]
|
27
|
Lee KS, Balci H, Jia H, Lohman TM, Ha T. Direct imaging of single UvrD helicase dynamics on long single-stranded DNA. Nat Commun 2013; 4:1878. [PMID: 23695672 PMCID: PMC3674262 DOI: 10.1038/ncomms2882] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/12/2013] [Indexed: 12/31/2022] Open
Abstract
Fluorescence imaging of single-protein dynamics on DNA has been largely limited to double-stranded DNA or short single-stranded DNA. We have developed a hybrid approach for observing single proteins moving on laterally stretched kilobase-sized ssDNA. Here we probed the single-stranded DNA translocase activity of Escherichia coli UvrD by single fluorophore tracking, while monitoring DNA unwinding activity with optical tweezers to capture the entire sequence of protein binding, single-stranded DNA translocation and multiple pathways of unwinding initiation. The results directly demonstrate that the UvrD monomer is a highly processive single-stranded DNA translocase that is stopped by a double-stranded DNA, whereas two monomers are required to unwind DNA to a detectable degree. The single-stranded DNA translocation rate does not depend on the force applied and displays a remarkable homogeneity, whereas the unwinding rate shows significant heterogeneity. These findings demonstrate that UvrD assembly state regulates its DNA helicase activity with functional implications for its stepping mechanism, and also reveal a previously unappreciated complexity in the active species during unwinding. Tracking single molecules on long stretches of single-stranded DNA poses technical challenges due to its propensity to form hairpin structures. To solve this problem, the authors combine TIRF microscopy with optical tweezers to stretch the DNA and capture the dynamics of DNA unwinding by UvrD DNA helicase.
Collapse
Affiliation(s)
- Kyung Suk Lee
- Department of Physics, Center for Physics in Living Cells and Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801-2902, USA
| | | | | | | | | |
Collapse
|
28
|
Yokota H, Chujo YA, Harada Y. Single-molecule imaging of the oligomer formation of the nonhexameric Escherichia coli UvrD helicase. Biophys J 2013; 104:924-33. [PMID: 23442971 DOI: 10.1016/j.bpj.2013.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/06/2012] [Accepted: 01/08/2013] [Indexed: 11/18/2022] Open
Abstract
Superfamily I helicases are nonhexameric helicases responsible for the unwinding of nucleic acids. However, whether they unwind DNA in the form of monomers or oligomers remains a controversy. In this study, we addressed this question using direct single-molecule fluorescence visualization of Escherichia coli UvrD, a superfamily I DNA helicase. We performed a photobleaching-step analysis of dye-labeled helicases and determined that the helicase is bound to 18-basepair (bp) double-stranded DNA (dsDNA) with a 3' single-stranded DNA (ssDNA) tail (12, 20, or 40 nt) in a dimeric or trimeric form in the absence of ATP. We also discovered through simultaneous visualization of association/dissociation of the helicase with/from DNA and the DNA unwinding dynamics of the helicase in the presence of ATP that these dimeric and trimeric forms are responsible for the unwinding of DNA. We can therefore propose a new kinetic scheme for the helicase-DNA interaction in which not only a dimeric helicase but also a trimeric helicase can unwind DNA. This is, to our knowledge, the first direct single-molecule nonhexameric helicase quantification study, and it strongly supports a model in which an oligomer is the active form of the helicase, which carries important implications for the DNA unwinding mechanism of all superfamily I helicases.
Collapse
Affiliation(s)
- Hiroaki Yokota
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Kyoto, Japan.
| | | | | |
Collapse
|
29
|
Qi Z, Pugh RA, Spies M, Chemla YR. Sequence-dependent base pair stepping dynamics in XPD helicase unwinding. eLife 2013; 2:e00334. [PMID: 23741615 PMCID: PMC3668415 DOI: 10.7554/elife.00334] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 04/26/2013] [Indexed: 11/13/2022] Open
Abstract
Helicases couple the chemical energy of ATP hydrolysis to directional translocation along nucleic acids and transient duplex separation. Understanding helicase mechanism requires that the basic physicochemical process of base pair separation be understood. This necessitates monitoring helicase activity directly, at high spatio-temporal resolution. Using optical tweezers with single base pair (bp) resolution, we analyzed DNA unwinding by XPD helicase, a Superfamily 2 (SF2) DNA helicase involved in DNA repair and transcription initiation. We show that monomeric XPD unwinds duplex DNA in 1-bp steps, yet exhibits frequent backsteps and undergoes conformational transitions manifested in 5-bp backward and forward steps. Quantifying the sequence dependence of XPD stepping dynamics with near base pair resolution, we provide the strongest and most direct evidence thus far that forward, single-base pair stepping of a helicase utilizes the spontaneous opening of the duplex. The proposed unwinding mechanism may be a universal feature of DNA helicases that move along DNA phosphodiester backbones. DOI:http://dx.doi.org/10.7554/eLife.00334.001.
Collapse
Affiliation(s)
- Zhi Qi
- Center for Biophysics and Computational Biology , University of Illinois at Urbana-Champaign , Urbana , United States
| | | | | | | |
Collapse
|
30
|
Abstract
Several nucleic acid amplification techniques (NAATs), particularly PCR and real-time PCR, are currently used in the routine clinical laboratories. Such approaches have allowed rapid diagnosis with a high degree of sensitivity and specificity. However, conventional PCR methods have several intrinsic disadvantages such as the requirement for temperature cycling apparatus, and sophisticated and costly analytical equipments. Therefore, amplification at a constant temperature is an attractive alternative method to avoid these requirements. A new generation of isothermal amplification techniques are gaining a wide popularity as diagnostic tools due to their simple operation, rapid reaction and easy detection. The main isothermal methods reviewed here include loop-mediated isothermal amplification, nucleic acid sequence-based amplification, and helicase-dependent amplification. In this review, design criteria, potential of amplification, and application of these alternative molecular tests will be discussed and compared to conventional NAATs.
Collapse
Affiliation(s)
- Francesca Sidoti
- Virology Unit, Department of Public Health and Microbiology, University Hospital San Giovanni Battista di Torino, University of Turin, Via Santena 9, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Virology Unit, Department of Public Health and Microbiology, University Hospital San Giovanni Battista di Torino, University of Turin, Via Santena 9, 10126 Turin, Italy
| | - Cristina Costa
- Virology Unit, Department of Public Health and Microbiology, University Hospital San Giovanni Battista di Torino, University of Turin, Via Santena 9, 10126 Turin, Italy
| | - Rossana Cavallo
- Virology Unit, Department of Public Health and Microbiology, University Hospital San Giovanni Battista di Torino, University of Turin, Via Santena 9, 10126 Turin, Italy
| |
Collapse
|
31
|
Galletto R, Tomko EJ. Translocation of Saccharomyces cerevisiae Pif1 helicase monomers on single-stranded DNA. Nucleic Acids Res 2013; 41:4613-27. [PMID: 23446274 PMCID: PMC3632115 DOI: 10.1093/nar/gkt117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In Saccharomyces cerevisiae Pif1 participates in a wide variety of DNA metabolic pathways both in the nucleus and in mitochondria. The ability of Pif1 to hydrolyse ATP and catalyse unwinding of duplex nucleic acid is proposed to be at the core of its functions. We recently showed that upon binding to DNA Pif1 dimerizes and we proposed that a dimer of Pif1 might be the species poised to catalysed DNA unwinding. In this work we show that monomers of Pif1 are able to translocate on single-stranded DNA with 5′ to 3′ directionality. We provide evidence that the translocation activity of Pif1 could be used in activities other than unwinding, possibly to displace proteins from ssDNA. Moreover, we show that monomers of Pif1 retain some unwinding activity although a dimer is clearly a better helicase, suggesting that regulation of the oligomeric state of Pif1 could play a role in its functioning as a helicase or a translocase. Finally, although we show that Pif1 can translocate on ssDNA, the translocation profiles suggest the presence on ssDNA of two populations of Pif1, both able to translocate with 5′ to 3′ directionality.
Collapse
Affiliation(s)
- Roberto Galletto
- 252 McDonnell Science Building, Department of Biochemistry and Molecular Biophysics, Washington University, School of Medicine, 660 South Euclid Avenue, MS8231, Saint Louis, MO 63110,
| | | |
Collapse
|
32
|
Structure and Mechanisms of SF1 DNA Helicases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:17-46. [PMID: 23161005 DOI: 10.1007/978-1-4614-5037-5_2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Superfamily I is a large and diverse group of monomeric and dimeric helicases defined by a set of conserved sequence motifs. Members of this class are involved in essential processes in both DNA and RNA metabolism in all organisms. In addition to conserved amino acid sequences, they also share a common structure containing two RecA-like motifs involved in ATP binding and hydrolysis and nucleic acid binding and unwinding. Unwinding is facilitated by a "pin" structure which serves to split the incoming duplex. This activity has been measured using both ensemble and single-molecule conditions. SF1 helicase activity is modulated through interactions with other proteins.
Collapse
|
33
|
Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target. Biochem Pharmacol 2012; 84:1351-8. [PMID: 22935448 PMCID: PMC7092843 DOI: 10.1016/j.bcp.2012.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/21/2022]
Abstract
Severe acute respiratory syndrome (SARS) was the first pandemic in the 21st century to claim more than 700 lives worldwide. However, effective anti-SARS vaccines or medications are currently unavailable despite being desperately needed to adequately prepare for a possible SARS outbreak. SARS is caused by a novel coronavirus, and one of its components, a viral helicase, is emerging as a promising target for the development of chemical SARS inhibitors. In the following review, we describe the characterization, family classification, and kinetic movement mechanisms of the SARS coronavirus (SCV) helicase—nsP13. We also discuss the recent progress in the identification of novel chemical inhibitors of nsP13 in the context of our recent discovery of the strong inhibition of the SARS helicase by natural flavonoids, myricetin and scutellarein. These compounds will serve as important resources for the future development of anti-SARS medications.
Collapse
|
34
|
RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling. Proc Natl Acad Sci U S A 2012; 109:9804-9. [PMID: 22665805 DOI: 10.1073/pnas.1114468109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of genome integrity is the major biological role of RecQ-family helicases via their participation in homologous recombination (HR)-mediated DNA repair processes. RecQ helicases exert their functions by using the free energy of ATP hydrolysis for mechanical movement along DNA tracks (translocation). In addition to the importance of translocation per se in recombination processes, knowledge of its mechanism is necessary for the understanding of more complex translocation-based activities, including nucleoprotein displacement, strand separation (unwinding), and branch migration. Here, we report the key properties of the ssDNA translocation mechanism of Escherichia coli RecQ helicase, the prototype of the RecQ family. We monitored the pre-steady-state kinetics of ATP hydrolysis by RecQ and the dissociation of the enzyme from ssDNA during single-round translocation. We also gained information on the translocation mechanism from the ssDNA length dependence of the steady-state ssDNA-activated ATPase activity. We show that RecQ occludes 18 ± 2 nt on ssDNA during translocation. The hydrolysis of ATP is noncooperative in the presence of ssDNA, indicating that RecQ active sites work independently during translocation. In the applied conditions, the enzyme hydrolyzes 35 ± 4 ATP molecules per second during ssDNA translocation. RecQ translocates at a moderate processivity, with a mean run length of 100-320 nt on ssDNA. The determined tight mechanochemical coupling of 1.1 ± 0.2 ATP consumed per nucleotide traveled indicates an inchworm-type mechanism.
Collapse
|
35
|
Niedziela-Majka A, Maluf NK, Antony E, Lohman TM. Self-assembly of Escherichia coli MutL and its complexes with DNA. Biochemistry 2011; 50:7868-80. [PMID: 21793594 DOI: 10.1021/bi200753b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.
Collapse
Affiliation(s)
- Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8231, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Helicases are a ubiquitous and abundant group of motor proteins that couple NTP binding and hydrolysis to processive unwinding of nucleic acids. By targeting this activity to a wide range of specific substrates, and by coupling it with other catalytic functionality, helicases fulfil diverse roles in virtually all aspects of nucleic acid metabolism. The present review takes a look back at our efforts to elucidate the molecular mechanisms of UvrD-like DNA helicases. Using these well-studied enzymes as examples, we also discuss how helicases are programmed by interactions with partner proteins to participate in specific cellular functions.
Collapse
Affiliation(s)
- Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
37
|
Park J, Myong S, Niedziela-Majka A, Lee KS, Yu J, Lohman TM, Ha T. PcrA helicase dismantles RecA filaments by reeling in DNA in uniform steps. Cell 2010; 142:544-55. [PMID: 20723756 DOI: 10.1016/j.cell.2010.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 02/02/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Translocation of helicase-like proteins on nucleic acids underlies key cellular functions. However, it is still unclear how translocation can drive removal of DNA-bound proteins, and basic properties like the elementary step size remain controversial. Using single-molecule fluorescence analysis on a prototypical superfamily 1 helicase, Bacillus stearothermophilus PcrA, we discovered that PcrA preferentially translocates on the DNA lagging strand instead of unwinding the template duplex. PcrA anchors itself to the template duplex using the 2B subdomain and reels in the lagging strand, extruding a single-stranded loop. Static disorder limited previous ensemble studies of a PcrA stepping mechanism. Here, highly repetitive looping revealed that PcrA translocates in uniform steps of 1 nt. This reeling-in activity requires the open conformation of PcrA and can rapidly dismantle a preformed RecA filament even at low PcrA concentrations, suggesting a mode of action for eliminating potentially deleterious recombination intermediates.
Collapse
Affiliation(s)
- Jeehae Park
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Barranco-Medina S, Galletto R. DNA binding induces dimerization of Saccharomyces cerevisiae Pif1. Biochemistry 2010; 49:8445-54. [PMID: 20795654 DOI: 10.1021/bi100984j] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Saccharomyces cerevisiae, Pif1 is involved in a wide range of DNA transactions. It operates both in mitochondria and in the nucleus, where it has telomeric and non-telomeric functions. All of the activities of Pif1 rely on its ability to bind to DNA. We have determined the mode of Pif1 binding to different DNA substrates. While Pif1 is a monomer in solution, we show that binding of ssDNA to Pif1 induces protein dimerization. DNA-induced dimerization of Pif1 is also observed on tailed- and forked-dsDNA substrates, suggesting that on the latter formation of a Pif1 dimer prevents binding of additional Pif1 molecules. A dimer of Pif1 also forms on ssDNA of random composition and in the presence of saturating concentrations of nonhydrolyzable ATP analogues. The observation that a Pif1 dimer is formed on unwinding substrates in the presence of ATP analogues suggests that a dimeric form of the enzyme might constitute the pre-initiation complex leading to its unwinding activity.
Collapse
Affiliation(s)
- Sergio Barranco-Medina
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | |
Collapse
|
39
|
Abstract
DNA and RNA helicases are organized into six superfamilies of enzymes on the basis of sequence alignments, biochemical data, and available crystal structures. DNA helicases, members of which are found in each of the superfamilies, are an essential group of motor proteins that unwind DNA duplexes into their component single strands in a process that is coupled to the hydrolysis of nucleoside 5'-triphosphates. The purpose of this DNA unwinding is to provide nascent, single-stranded DNA (ssDNA) for the processes of DNA repair, replication, and recombination. Not surprisingly, DNA helicases share common biochemical properties that include the binding of single- and double-stranded DNA, nucleoside 5'-triphosphate binding and hydrolysis, and nucleoside 5'-triphosphate hydrolysis-coupled, polar unwinding of duplex DNA. These enzymes participate in every aspect of DNA metabolism due to the requirement for transient separation of small regions of the duplex genome into its component strands so that replication, recombination, and repair can occur. In Escherichia coli, there are currently twelve DNA helicases that perform a variety of tasks ranging from simple strand separation at the replication fork to more sophisticated processes in DNA repair and genetic recombination. In this chapter, the superfamily classification, role(s) in DNA metabolism, effects of mutations, biochemical analysis, oligomeric nature, and interacting partner proteins of each of the twelve DNA helicases are discussed.
Collapse
|
40
|
Insight into helicase mechanism and function revealed through single-molecule approaches. Q Rev Biophys 2010; 43:185-217. [PMID: 20682090 DOI: 10.1017/s0033583510000107] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Helicases are a class of nucleic acid (NA) motors that catalyze NTP-dependent unwinding of NA duplexes into single strands, a reaction essential to all areas of NA metabolism. In the last decade, single-molecule (sm) technology has proven to be highly useful in revealing mechanistic insight into helicase activity that is not always detectable via ensemble assays. A combination of methods based on fluorescence, optical and magnetic tweezers, and flow-induced DNA stretching has enabled the study of helicase conformational dynamics, force generation, step size, pausing, reversal and repetitive behaviors during translocation and unwinding by helicases working alone and as part of multiprotein complexes. The contributions of these sm investigations to our understanding of helicase mechanism and function will be discussed.
Collapse
|
41
|
Pugh RA, Honda M, Spies M. Ensemble and single-molecule fluorescence-based assays to monitor DNA binding, translocation, and unwinding by iron-sulfur cluster containing helicases. Methods 2010; 51:313-21. [PMID: 20167274 PMCID: PMC2911022 DOI: 10.1016/j.ymeth.2010.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/04/2010] [Accepted: 02/12/2010] [Indexed: 11/23/2022] Open
Abstract
Many quantitative approaches for analysis of helicase-nucleic acid interactions require a robust and specific signal, which reports on the presence of the helicase and its position on a nucleic acid lattice. Since 2006, iron-sulfur (FeS) clusters have been found in a number of helicases. They serve as endogenous quenchers of Cy3 and Cy5 fluorescence which can be exploited to characterize FeS cluster containing helicases both in ensemble-based assays and at the single-molecule level. Synthetic oligonucleotides site-specifically labeled with either Cy3 or Cy5 can be used to create a variety of DNA substrates that can be used to characterized DNA binding, as well as helicase translocation and unwinding. Equilibrium binding affinities for ssDNA, duplex and branched DNA substrates can be determined using bulk assays. Identification of preferred cognate substrates, and the orientation and position of the helicase when bound to DNA can also be determined by taking advantage of the intrinsic quencher in the helicase. At the single-molecule level, real-time observation of the helicase translocating along DNA either towards the dye or away from the dye can be used to determine the rate of translocation by the helicase on ssDNA and its orientation when bound to DNA. The use of duplex substrates can reveal the rate of unwinding and processivity of the helicase. Finally, the FeS cluster can be used to visualize protein-protein interactions, and to examine the interplay between helicases and other DNA binding proteins on the same DNA substrate.
Collapse
Affiliation(s)
- Robert A. Pugh
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Masayoshi Honda
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Maria Spies
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
42
|
Rajagopal V, Gurjar M, Levin MK, Patel SS. The protease domain increases the translocation stepping efficiency of the hepatitis C virus NS3-4A helicase. J Biol Chem 2010; 285:17821-32. [PMID: 20363755 PMCID: PMC2878546 DOI: 10.1074/jbc.m110.114785] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/01/2010] [Indexed: 01/24/2023] Open
Abstract
Hepatitis C virus (HCV) NS3 protein has two enzymatic activities of helicase and protease that are essential for viral replication. The helicase separates the strands of DNA and RNA duplexes using the energy from ATP hydrolysis. To understand how ATP hydrolysis is coupled to helicase movement, we measured the single turnover helicase translocation-dissociation kinetics and the pre-steady-state P(i) release kinetics on single-stranded RNA and DNA substrates of different lengths. The parameters of stepping were determined from global fitting of the two types of kinetic measurements into a computational model that describes translocation as a sequence of coupled hydrolysis-stepping reactions. Our results show that the HCV helicase moves with a faster rate on single stranded RNA than on DNA. The HCV helicase steps on the RNA or DNA one nucleotide at a time, and due to imperfect coupling, not every ATP hydrolysis event produces a successful step. Comparison of the helicase domain (NS3h) with the protease-helicase (NS3-4A) shows that the most significant contribution of the protease domain is to improve the translocation stepping efficiency of the helicase. Whereas for NS3h, only 20% of the hydrolysis events result in translocation, the coupling for NS3-4A is near-perfect 93%. The presence of the protease domain also significantly reduces the stepping rate, but it doubles the processivity. These effects of the protease domain on the helicase can be explained by an improved allosteric cross-talk between the ATP- and nucleic acid-binding sites achieved by the overall stabilization of the helicase domain structure.
Collapse
Affiliation(s)
- Vaishnavi Rajagopal
- From the
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854 and
| | - Madhura Gurjar
- From the
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854 and
| | - Mikhail K. Levin
- the
Department of Biostatistics & Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710
| | - Smita S. Patel
- From the
Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854 and
| |
Collapse
|
43
|
Dou SX, Xi XG. Fluorometric assays for characterizing DNA helicases. Methods 2010; 51:295-302. [PMID: 20451616 DOI: 10.1016/j.ymeth.2010.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 04/30/2010] [Indexed: 11/27/2022] Open
Abstract
DNA helicases belong to an important class of motor proteins and are involved in almost all aspects of DNA metabolism. They hydrolyze NTP to translocate along ssDNA and unwind dsDNA by relying on chemical to physical energy transfer processes that are achieved via nucleotide-state-dependent conformational changes. For understanding the mechanisms by which helicases unwind DNA as well as their cellular functions, various properties of helicases need to be characterized. For these purposes, many assays have been developed, among which fluorometric assays are in the majority. Fluorometric assays are generally simple, direct and convenient to perform. Here we introduce several frequently used fluorometric assays for determining the basic properties of DNA helicases such as equilibrium ATP and DNA binding, kinetics of dissociation from DNA substrate and kinetics of DNA unwinding. Problems that may be encountered in experiments and possible ways to circumvent them are discussed.
Collapse
Affiliation(s)
- Shuo-Xing Dou
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | |
Collapse
|
44
|
Kumari A, Minko IG, Smith RL, Lloyd RS, McCullough AK. Modulation of UvrD helicase activity by covalent DNA-protein cross-links. J Biol Chem 2010; 285:21313-22. [PMID: 20444702 DOI: 10.1074/jbc.m109.078964] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
UvrD (DNA helicase II) has been implicated in DNA replication, DNA recombination, nucleotide excision repair, and methyl-directed mismatch repair. The enzymatic function of UvrD is to translocate along a DNA strand in a 3' to 5' direction and unwind duplex DNA utilizing a DNA-dependent ATPase activity. In addition, UvrD interacts with many other proteins involved in the above processes and is hypothesized to facilitate protein turnover, thus promoting further DNA processing. Although UvrD interactions with proteins bound to DNA have significant biological implications, the effects of covalent DNA-protein cross-links on UvrD helicase activity have not been characterized. Herein, we demonstrate that UvrD-catalyzed strand separation was inhibited on a DNA strand to which a 16-kDa protein was covalently bound. Our sequestration studies suggest that the inhibition of UvrD activity is most likely due to a translocation block and not helicase sequestration on the cross-link-containing DNA substrate. In contrast, no inhibition of UvrD-catalyzed strand separation was apparent when the protein was linked to the complementary strand. The latter result is surprising given the earlier observations that the DNA in this covalent complex is severely bent ( approximately 70 degrees ), with both DNA strands making multiple contacts with the cross-linked protein. In addition, UvrD was shown to be required for replication of plasmid DNAs containing covalent DNA-protein complexes. Combined, these data suggest a critical role for UvrD in the processing of DNA-protein cross-links.
Collapse
Affiliation(s)
- Anuradha Kumari
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Center for Research on Occupational and Environmental Toxicology, Portland, Oregon 97239, USA
| | | | | | | | | |
Collapse
|
45
|
Yang Y, Dou SX, Xu YN, Bazeille N, Wang PY, Rigolet P, Xu HQ, Xi XG. Kinetic mechanism of DNA unwinding by the BLM helicase core and molecular basis for its low processivity. Biochemistry 2010; 49:656-68. [PMID: 20028084 DOI: 10.1021/bi901459c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bloom's syndrome (BS) is a rare human autosomal recessive disorder characterized by a strong predisposition to a wide range of cancers commonly affecting the general population. Understanding the functioning mechanism of the BLM protein may provide the opportunity to develop new effective therapy strategies. In this work, we studied the DNA unwinding kinetic mechanism of the helicase core of the BLM protein using various stopped-flow assays. We show that the helicase core of BLM unwinds duplex DNA as monomers even under conditions strongly favoring oligomerization. An unwinding rate of approximately 20 steps per second and a step size of 1 bp have been determined. We have observed that the helicase has a very low processivity. From dissociation and inhibition experiments, we have found that during its ATP hydrolysis cycle in DNA unwinding the helicase tends to dissociate from the DNA substrate in the ADP state. The experimental results imply that the BLM helicase core may unwind duplex DNA in an inchworm manner.
Collapse
Affiliation(s)
- Ye Yang
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Pan BY, Dou SX, Yang Y, Xu YN, Bugnard E, Ding XY, Zhang L, Wang PY, Li M, Xi XG. Mutual inhibition of RecQ molecules in DNA unwinding. J Biol Chem 2010; 285:15884-93. [PMID: 20233727 DOI: 10.1074/jbc.m110.104299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helicases make conformational changes and mechanical movements through hydrolysis of NTP to unwind duplex DNA (or RNA). Most helicases require a single-stranded overhang for loading onto the duplex DNA substrates. Some helicases have been observed to exhibit an enhanced unwinding efficiency with increasing length of the single-stranded DNA tail both by preventing reannealing of the unwound DNA and by compensating for premature dissociation of the leading monomers. Here we report a previously unknown mutual inhibition of neighboring monomers in DNA unwinding by the monomeric Escherichia coli RecQ helicase. With single molecule fluorescence resonance energy transfer microscopy, we observed that the unwinding initiation of RecQ at saturating concentrations was more delayed for a long rather than a short tailed DNA. In stopped-flow kinetic studies under both single and multiple turnover conditions, the unwinding efficiency decreased with increasing enzyme concentration for long tailed substrates. In addition, preincubation of RecQ and DNA in the presence of 5'-adenylyl-beta,gamma-imidodiphosphate was observed to alleviate the inhibition. We propose that the mutual inhibition effect results from a forced closure of cleft between the two RecA-like domains of a leading monomer by a trailing one, hence the forward movements of both monomers are stalled by prohibition of ATP binding to the leading one. This effect represents direct evidence for the relative movements of the two RecA-like domains of RecQ in DNA unwinding. It may occur for all superfamily I and II helicases possessing two RecA-like domains.
Collapse
Affiliation(s)
- Bing-Yi Pan
- From the Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Manelyte L, Guy CP, Smith RM, Dillingham MS, McGlynn P, Savery NJ. The unstructured C-terminal extension of UvrD interacts with UvrB, but is dispensable for nucleotide excision repair. DNA Repair (Amst) 2009; 8:1300-10. [PMID: 19762288 PMCID: PMC2997466 DOI: 10.1016/j.dnarep.2009.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 12/28/2022]
Abstract
During nucleotide excision repair (NER) in bacteria the UvrC nuclease and the short oligonucleotide that contains the DNA lesion are removed from the post-incision complex by UvrD, a superfamily 1A helicase. Helicases are frequently regulated by interactions with partner proteins, and immunoprecipitation experiments have previously indicated that UvrD interacts with UvrB, a component of the post-incision complex. We examined this interaction using 2-hybrid analysis and surface plasmon resonance spectroscopy, and found that the N-terminal domain and the unstructured region at the C-terminus of UvrD interact with UvrB. We analysed the properties of a truncated UvrD protein that lacked the unstructured C-terminal region and found that it showed a diminished affinity for single-stranded DNA, but retained the ability to displace both UvrC and the lesion-containing oligonucleotide from a post-incision nucleotide excision repair complex. The interaction of the C-terminal region of UvrD with UvrB is therefore not an essential feature of the mechanism by which UvrD disassembles the post-incision complex during NER. In further experiments we showed that PcrA helicase from Bacillus stearothermophilus can also displace UvrC and the excised oligonucleotide from a post-incision NER complex, which supports the idea that PcrA performs a UvrD-like function during NER in Gram-positive organisms.
Collapse
Affiliation(s)
- Laura Manelyte
- DNA-protein Interactions Unit, Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
48
|
Lohman TM, Tomko EJ, Wu CG. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat Rev Mol Cell Biol 2008; 9:391-401. [PMID: 18414490 DOI: 10.1038/nrm2394] [Citation(s) in RCA: 272] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Helicases and nucleic acid translocases are motor proteins that have essential roles in nearly all aspects of nucleic acid metabolism, ranging from DNA replication to chromatin remodelling. Fuelled by the binding and hydrolysis of nucleoside triphosphates, helicases move along nucleic acid filaments and separate double-stranded DNA into their complementary single strands. Recent evidence indicates that the ability to simply translocate along single-stranded DNA is, in many cases, insufficient for helicase activity. For some of these enzymes, self assembly and/or interactions with accessory proteins seem to regulate their translocase and helicase activities.
Collapse
Affiliation(s)
- Timothy M Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
49
|
Yang Y, Dou SX, Ren H, Wang PY, Zhang XD, Qian M, Pan BY, Xi XG. Evidence for a functional dimeric form of the PcrA helicase in DNA unwinding. Nucleic Acids Res 2008; 36:1976-89. [PMID: 18276648 PMCID: PMC2346599 DOI: 10.1093/nar/gkm1174] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PcrA helicase, a member of the superfamily 1, is an essential enzyme in many bacteria. The first crystal structures of helicases were obtained with PcrA. Based on structural and biochemical studies, it was proposed and then generally believed that PcrA is a monomeric helicase that unwinds DNA by an inchworm mechanism. But a functional state of PcrA from unwinding kinetics studies has been lacking. In this work, we studied the kinetic mechanism of PcrA-catalysed DNA unwinding with fluorometric stopped-flow method under both single- and multiple-turnover conditions. It was found that the PcrA-catalysed DNA unwinding depended strongly on the PcrA concentration as well as on the 3′-ssDNA tail length of the substrate, indicating that an oligomerization was indispensable for efficient unwinding. Study of the effect of ATP concentration on the unwinding rate gave a Hill coefficient of ∼2, suggesting strongly that PcrA functions as a dimer. It was further determined that PcrA unwound DNA with a step size of 4 bp and a rate of ∼9 steps per second. Surprisingly, it was observed that PcrA unwound 12-bp duplex substrates much less efficiently than 16-bp ones, highlighting the importance of protein-DNA duplex interaction in the helicase activity. From the present studies, it is concluded that PcrA is a dimeric helicase with a low processivity in vitro. Implications of the experimental results for the DNA unwinding mechanism of PcrA are discussed.
Collapse
Affiliation(s)
- Ye Yang
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Singleton MR, Dillingham MS, Wigley DB. Structure and mechanism of helicases and nucleic acid translocases. Annu Rev Biochem 2007; 76:23-50. [PMID: 17506634 DOI: 10.1146/annurev.biochem.76.052305.115300] [Citation(s) in RCA: 985] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helicases and translocases are a ubiquitous, highly diverse group of proteins that perform an extraordinary variety of functions in cells. Consequently, this review sets out to define a nomenclature for these enzymes based on current knowledge of sequence, structure, and mechanism. Using previous definitions of helicase families as a basis, we delineate six superfamilies of enzymes, with examples of crystal structures where available, and discuss these structures in the context of biochemical data to outline our present understanding of helicase and translocase activity. As a result, each superfamily is subdivided, where appropriate, on the basis of mechanistic understanding, which we hope will provide a framework for classification of new superfamily members as they are discovered and characterized.
Collapse
Affiliation(s)
- Martin R Singleton
- Macromolecular Structure and Function Laboratory, The London Research Institute, London WC2A 3PX, United Kingdom.
| | | | | |
Collapse
|