1
|
Smets D, Tsirigotaki A, Smit JH, Krishnamurthy S, Portaliou AG, Vorobieva A, Vranken W, Karamanou S, Economou A. Evolutionary adaptation of the protein folding pathway for secretability. EMBO J 2022; 41:e111344. [PMID: 36031863 PMCID: PMC9713715 DOI: 10.15252/embj.2022111344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 01/15/2023] Open
Abstract
Secretory preproteins of the Sec pathway are targeted post-translationally and cross cellular membranes through translocases. During cytoplasmic transit, mature domains remain non-folded for translocase recognition/translocation. After translocation and signal peptide cleavage, mature domains fold to native states in the bacterial periplasm or traffic further. We sought the structural basis for delayed mature domain folding and how signal peptides regulate it. We compared how evolution diversified a periplasmic peptidyl-prolyl isomerase PpiA mature domain from its structural cytoplasmic PpiB twin. Global and local hydrogen-deuterium exchange mass spectrometry showed that PpiA is a slower folder. We defined at near-residue resolution hierarchical folding initiated by similar foldons in the twins, at different order and rates. PpiA folding is delayed by less hydrophobic native contacts, frustrated residues and a β-turn in the earliest foldon and by signal peptide-mediated disruption of foldon hierarchy. When selected PpiA residues and/or its signal peptide were grafted onto PpiB, they converted it into a slow folder with enhanced in vivo secretion. These structural adaptations in a secretory protein facilitate trafficking.
Collapse
Affiliation(s)
- Dries Smets
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Alexandra Tsirigotaki
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Jochem H Smit
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Srinath Krishnamurthy
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Athina G Portaliou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassia Vorobieva
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
| | - Wim Vranken
- Structural Biology BrusselsVrije Universiteit Brussel and Center for Structural BiologyBrusselsBelgium
- VIB‐VUB Center for Structural Biology, VIBBrusselsBelgium
- Interuniversity Institute of Bioinformatics in BrusselsFree University of BrusselsBrusselsBelgium
| | - Spyridoula Karamanou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| | - Anastassios Economou
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular BacteriologyKU LeuvenLeuvenBelgium
| |
Collapse
|
2
|
Biswas G, Ghosh S, Basu S, Bhattacharyya D, Datta AK, Banerjee R. Can the jigsaw puzzle model of protein folding re‐assemble a hydrophobic core? Proteins 2022; 90:1390-1412. [DOI: 10.1002/prot.26321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Gargi Biswas
- Saha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| | | | - Sankar Basu
- Saha Institute of Nuclear Physics Kolkata India
| | | | | | - Rahul Banerjee
- Saha Institute of Nuclear Physics Kolkata India
- Homi Bhabha National Institute Mumbai India
| |
Collapse
|
3
|
Tsirigotaki A, Chatzi KE, Koukaki M, De Geyter J, Portaliou AG, Orfanoudaki G, Sardis MF, Trelle MB, Jørgensen TJD, Karamanou S, Economou A. Long-Lived Folding Intermediates Predominate the Targeting-Competent Secretome. Structure 2018; 26:695-707.e5. [PMID: 29606594 DOI: 10.1016/j.str.2018.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Secretory preproteins carry signal peptides fused amino-terminally to mature domains. They are post-translationally targeted to cross the plasma membrane in non-folded states with the help of translocases, and fold only at their final destinations. The mechanism of this process of postponed folding is unknown, but is generally attributed to signal peptides and chaperones. We herein demonstrate that, during targeting, most mature domains maintain loosely packed folding intermediates. These largely soluble states are signal peptide independent and essential for translocase recognition. These intermediates are promoted by mature domain features: residue composition, elevated disorder, and reduced hydrophobicity. Consequently, a mature domain folds slower than its cytoplasmic structural homolog. Some mature domains could not evolve stable, loose intermediates, and hence depend on signal peptides for slow folding to the detriment of solubility. These unique features of secretory proteins impact our understanding of protein trafficking, folding, and aggregation, and thus place them in a distinct class.
Collapse
Affiliation(s)
- Alexandra Tsirigotaki
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Katerina E Chatzi
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Marina Koukaki
- Institute of Molecular Biology and Biotechnology, FoRTH, University of Crete, 70013 Heraklion, Crete, Greece
| | - Jozefien De Geyter
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Athina G Portaliou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FoRTH, University of Crete, 70013 Heraklion, Crete, Greece
| | - Marios Frantzeskos Sardis
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Morten Beck Trelle
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Spyridoula Karamanou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
de Mendonça MR, Rizzi LG, Contessoto V, Leite VBP, Alves NA. Inferring a weighted elastic network from partial unfolding with coarse-grained simulations. Proteins 2013; 82:119-29. [DOI: 10.1002/prot.24381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/29/2013] [Accepted: 07/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Matheus R. de Mendonça
- Departamento de Física, FFCLRP; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brazil
| | - Leandro G. Rizzi
- Departamento de Física, FFCLRP; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brazil
| | - Vinicius Contessoto
- Departamento de Física, IBILCE; Universidade Estadual Paulista; São José do Rio Preto 15054-000 SP Brazil
| | - Vitor B. P. Leite
- Departamento de Física, IBILCE; Universidade Estadual Paulista; São José do Rio Preto 15054-000 SP Brazil
| | - Nelson A. Alves
- Departamento de Física, FFCLRP; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brazil
| |
Collapse
|
5
|
Kitevski-LeBlanc JL, Prosser RS. Current applications of 19F NMR to studies of protein structure and dynamics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 62:1-33. [PMID: 22364614 DOI: 10.1016/j.pnmrs.2011.06.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/01/2011] [Indexed: 05/20/2023]
Affiliation(s)
- Julianne L Kitevski-LeBlanc
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd., North Mississauga, Ontario, Canada
| | | |
Collapse
|
6
|
Istomin AY, Jacobs DJ, Livesay DR. On the role of structural class of a protein with two-state folding kinetics in determining correlations between its size, topology, and folding rate. Protein Sci 2008; 16:2564-9. [PMID: 17962408 DOI: 10.1110/ps.073124507] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The time it takes for proteins to fold into their native states varies over several orders of magnitude depending on their native-state topology, size, and amino acid composition. In a number of previous studies, it was found that there is strong correlation between logarithmic folding rates and contact order for proteins that fold with two-state kinetics, while such correlation is absent for three-state proteins. Conversely, strong correlations between folding rates and chain length occur within three-state proteins, but not in two-state proteins. Here, we demonstrate that chain lengths and folding rates of two-state proteins are not correlated with each other only when all-alpha, all-beta, and mixed-class proteins are considered together, which is typically the case. However, when considering all-alpha and all-beta two-state proteins separately, there is significant linear correlation between folding rate and size. Moreover, the sets of data points for the all-alpha and all-beta classes define asymptotes of lower and upper limits on folding rates of mixed-class proteins. By analyzing correlation of other topological parameters with folding rates of two-state proteins, we find that only the long-range order exhibits correlation with folding rates that is uniform over all three classes. It is also the only descriptor to provide statistically significant correlations for each of the three structural classes. We give an interpretation of this observation in terms of Makarov and Plaxco's diffusion-based topomer-search model.
Collapse
Affiliation(s)
- Andrei Y Istomin
- Department of Physics and Optical Science, University of North Carolina at Charlotte 28223, USA.
| | | | | |
Collapse
|
7
|
Paul S, Singh C, Mishra S, Chaudhuri TK. The 69 kDaEscherichia colimaltodextrin glucosidase does not get encapsulated underneath GroES and folds throughtransmechanism during GroEL/ GroES‐assisted folding. FASEB J 2007; 21:2874-85. [PMID: 17494995 DOI: 10.1096/fj.06-7958com] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Escherichia coli chaperonin GroEL and GroES assist in folding of a wide variety of substrate proteins in the molecular mass range of approximately 50 kDa, using cis mechanism, but limited information is available on how they assist in folding of larger proteins. Considering that the central cavity of GroEL can accommodate a non-native protein of approximately 60 kDa, it is important to study the GroEL-GroES-assisted folding of substrate proteins that are large enough for cis encapsulation. In this study, we have reported the mechanism of GroEL/GroES-assisted in vivo and in vitro folding of a 69 kDa monomeric E. coli protein maltodextrin glucosidase (MalZ). Coexpression of GroEL and GroES in E. coli causes a 2-fold enhancement of exogenous MalZ activity in vivo. In vitro, GroEL and GroES in the presence of ATP give rise to a 7-fold enhancement in MalZ refolding. Neither GroEL nor single ring GroEL (SR1) in the presence or absence of ATP could enhance the in vitro folding of MalZ. GroES could not encapsulate GroEL-bound MalZ. All these experimental findings suggested that GroEL/GroES-assisted folding of MalZ followed trans mechanism, whereas denatured MalZ and GroES bound to the opposite rings of a GroEL molecule.
Collapse
Affiliation(s)
- Subhankar Paul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | | | | | |
Collapse
|
8
|
Ma BG, Chen LL, Zhang HY. What determines protein folding type? An investigation of intrinsic structural properties and its implications for understanding folding mechanisms. J Mol Biol 2007; 370:439-48. [PMID: 17524416 DOI: 10.1016/j.jmb.2007.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 04/08/2007] [Accepted: 04/18/2007] [Indexed: 12/01/2022]
Abstract
Protein folding experiments demonstrate that the folding behaviors of many proteins can be roughly classified into two types: two-state kinetics and multi-state kinetics. Although the two types of protein folding kinetics have been observed for a long time, what determines the folding type of a protein is still largely unclear. The present work performed a comparative study based on a dataset of 43 two-state and 42 multi-state folders at different levels of proteins' intrinsic properties from the simplest sequence length to native structure topology. The results show that protein's amino acids composition and the long-range interaction-based topological complexity rather than secondary structure contents are the major determinants of protein folding type. Furthermore, a sequence-based folding type prediction achieved an accuracy of more than 80%. These findings implicate that there is no clear boundary between secondary and tertiary structure formation during the protein folding process and support the existence of a continuum of folding mechanism between the two ends of hierarchic and nucleation folding scenarios.
Collapse
Affiliation(s)
- Bin-Guang Ma
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China.
| | | | | |
Collapse
|
9
|
Liu F, Gruebele M. Tuning lambda6-85 towards downhill folding at its melting temperature. J Mol Biol 2007; 370:574-84. [PMID: 17532338 DOI: 10.1016/j.jmb.2007.04.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/26/2007] [Accepted: 04/11/2007] [Indexed: 11/19/2022]
Abstract
The five-helix bundle lambda6-85* is a fast two-state folder. Several stabilized mutants have been reported to fold kinetically near-downhill or downhill. These mutants undergo a transition to two-state folding kinetics when heated. It has been suggested that this transition is caused by increased hydrophobicity at higher temperature. Here we investigate two histidine-containing mutants of lambda6-85* to see if a weaker hydrophobic core can extend the temperature range of downhill folding. The very stable lambdaHA is the fastest-folding lambda repressor to date (k(f)(-1) approximately k(obs)(-1)=2.3 micros at 44 degrees C). It folds downhill at low temperature, but transits back to two-state folding at its unfolding midpoint. lambdaHG has a weakened hydrophobic core. It is less stable than some slower folding mutants of lambda6-85*, and it has more exposed hydrophobic surface area in the folded state. This mutant nonetheless folds very rapidly, and has the non-exponential folding kinetics of an incipient downhill folder even at the unfolding midpoint (k(m)(-1) approximately 2 micros, k(a)(-1)=15 micros at 56 degrees C). We also compare the thermodynamic melting transition of lambdaHG with the nominal two-state folding mutant lambdaQG, which has a similar melting temperature. Unlike lambdaQG, lambdaHG yields fluorescence wavelength-dependent cooperativities and probe-dependent melting temperatures. This result combined with previous work shows that the energy landscapes of lambda repressor mutants support all standard folding mechanisms.
Collapse
Affiliation(s)
- Feng Liu
- Center for Biophysics and Computational Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
10
|
Zhang L, Sun T. Folding rate prediction using n-order contact distance for proteins with two- and three-state folding kinetics. Biophys Chem 2006; 113:9-16. [PMID: 15617806 DOI: 10.1016/j.bpc.2004.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 07/19/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
It is a challenging task to understand the relationship between sequences and folding rates of proteins. Previous studies are found that one of contact order (CO), long-range order (LRO), total contact distance (TCD), chain topology parameter (CTP), and effective length (Leff) has a significant correlation with folding rate of proteins. In this paper, we introduce a new parameter called n-order contact distance (nOCD) and use it to predict folding rate of proteins with two- and three-state folding kinetics. A good linear correlation between the folding rate logarithm lnkf and nOCD with n=1.2, alpha=0.6 is found for two-state folders (correlation coefficient is -0.809, P-value<0.0001) and n=2.8, alpha=1.5 for three-state folders (correlation coefficient is -0.816, P-value<0.0001). However, this correlation is completely absent for three-state folders with n=1.2, alpha=0.6 (correlation coefficient is 0.0943, P-value=0.661) and for two-state folders with n=2.8, alpha=1.5 (correlation coefficient is -0.235, P-value=0.2116). We also find that the average number of contacts per residue Pm in the interval of m for two-state folders is smaller than that for three-state folders. The probability distribution P(gamma) of residue having gamma pairs of contacts fits a Gaussian distribution for both two- and three-state folders. We observe that the correlations between square radius of gyration S2 and number of residues for two- and three-state folders are both good, and the correlation coefficient is 0.908 and 0.901, and the slope of the fitting line is 1.202 and 0.795, respectively. Maybe three-state folders are more compact than two-state folders. Comparisons with nTCD and nCTP are also made, and it is found that nOCD is the best one in folding rate prediction.
Collapse
Affiliation(s)
- Linxi Zhang
- Department of Physics, Wenzhou Normal College, Wenzhou 325027, PR China.
| | | |
Collapse
|
11
|
Gromiha MM. A Statistical Model for Predicting Protein Folding Rates from Amino Acid Sequence with Structural Class Information. J Chem Inf Model 2005; 45:494-501. [PMID: 15807515 DOI: 10.1021/ci049757q] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prediction of protein folding rates from amino acid sequences is one of the most important challenges in molecular biology. In this work, I have related the protein folding rates with physical-chemical, energetic and conformational properties of amino acid residues. I found that the classification of proteins into different structural classes shows an excellent correlation between amino acid properties and folding rates of two- and three-state proteins, indicating the importance of native state topology in determining the protein folding rates. I have formulated a simple linear regression model for predicting the protein folding rates from amino acid sequences along with structural class information and obtained an excellent agreement between predicted and experimentally observed folding rates of proteins; the correlation coefficients are 0.99, 0.96 and 0.95, respectively, for all-alpha, all-beta and mixed class proteins. This is the first available method, which is capable of predicting the protein folding rates just from the amino acid sequence with the aid of generic amino acid properties and structural class information.
Collapse
Affiliation(s)
- M Michael Gromiha
- Computational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), Aomi Frontier Building 17F, 2-43 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| |
Collapse
|
12
|
Yang WY, Gruebele M. Folding lambda-repressor at its speed limit. Biophys J 2004; 87:596-608. [PMID: 15240492 PMCID: PMC1304381 DOI: 10.1529/biophysj.103.039040] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 03/29/2004] [Indexed: 11/18/2022] Open
Abstract
We show that the five-helix bundle lambda(6-85) can be engineered and solvent-tuned to make the transition from activated two-state folding to downhill folding. The transition manifests itself as the appearance of additional dynamics faster than the activated kinetics, followed by the disappearance of the activated kinetics when the bias toward the native state is increased. Our fastest value of 1 micros for the "speed" limit of lambda(6-85) is measured at low concentrations of a denaturant that smooths the free-energy surface. Complete disappearance of the activated phase is obtained in stabilizing glucose buffer. Langevin dynamics on a rough free-energy surface with variable bias toward the native state provides a robust and quantitative description of the transition from activated to downhill folding. Based on our simulation, we estimate the residual energetic frustration of lambda(6-85) to be delta(2) G approximately 0.64 k(2)T(2). We show that lambda(6-86), as well as very fast folding proteins or folding intermediates estimated to lie near the speed limit, provide a better rate-topology correlation than proteins with larger energetic frustration. A limit of beta > or = 0.7 on any stretching of lambda(6-85) barrier-free dynamics suggests that a low-dimensional free-energy surface is sufficient to describe folding.
Collapse
Affiliation(s)
- Wei Yuan Yang
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 61801, USA
| | | |
Collapse
|
13
|
Ivankov DN, Garbuzynskiy SO, Alm E, Plaxco KW, Baker D, Finkelstein AV. Contact order revisited: influence of protein size on the folding rate. Protein Sci 2003; 12:2057-62. [PMID: 12931003 PMCID: PMC2324001 DOI: 10.1110/ps.0302503] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Revised: 05/23/2003] [Accepted: 05/28/2003] [Indexed: 10/27/2022]
Abstract
Guided by the recent success of empirical model predicting the folding rates of small two-state folding proteins from the relative contact order (CO) of their native structures, by a theoretical model of protein folding that predicts that logarithm of the folding rate decreases with the protein chain length L as L(2/3), and by the finding that the folding rates of multistate folding proteins strongly correlate with their sizes and have very bad correlation with CO, we reexamined the dependence of folding rate on CO and L in attempt to find a structural parameter that determines folding rates for the totality of proteins. We show that the Abs_CO = CO x L, is able to predict rather accurately folding rates for both two-state and multistate folding proteins, as well as short peptides, and that this Abs_CO scales with the protein chain length as L(0.70 +/- 0.07) for the totality of studied single-domain proteins and peptides.
Collapse
Affiliation(s)
- Dmitry N Ivankov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | | | | | | | |
Collapse
|
14
|
Galzitskaya OV, Garbuzynskiy SO, Ivankov DN, Finkelstein AV. Chain length is the main determinant of the folding rate for proteins with three-state folding kinetics. Proteins 2003; 51:162-6. [PMID: 12660985 DOI: 10.1002/prot.10343] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We demonstrate that chain length is the main determinant of the folding rate for proteins with the three-state folding kinetics. The logarithm of their folding rate in water (k(f)) strongly anticorrelates with their chain length L (the correlation coefficient being -0.80). At the same time, the chain length has no correlation with the folding rate for two-state folding proteins (the correlation coefficient is -0.07). Another significant difference of these two groups of proteins is a strong anticorrelation between the folding rate and Baker's "relative contact order" for the two-state folders and the complete absence of such correlation for the three-state folders.
Collapse
Affiliation(s)
- Oxana V Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- F X Schmid
- Biochemisches Laboratorium, Universität Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|