1
|
Murata H, Toko K, Chikenji G. Protein superfolds are characterised as frustration-free topologies: A case study of pure parallel β-sheet topologies. PLoS Comput Biol 2024; 20:e1012282. [PMID: 39110764 PMCID: PMC11333010 DOI: 10.1371/journal.pcbi.1012282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/19/2024] [Accepted: 06/26/2024] [Indexed: 08/21/2024] Open
Abstract
A protein superfold is a type of protein fold that is observed in at least three distinct, non-homologous protein families. Structural classification studies have revealed a limited number of prevalent superfolds alongside several infrequent occurring folds, and in α/β type superfolds, the C-terminal β-strand tends to favor the edge of the β-sheet, while the N-terminal β-strand is often found in the middle. The reasons behind these observations, whether they are due to evolutionary sampling bias or physical interactions, remain unclear. This article offers a physics-based explanation for these observations, specifically for pure parallel β-sheet topologies. Our investigation is grounded in several established structural rules that are based on physical interactions. We have identified "frustration-free topologies" which are topologies that can satisfy all the rules simultaneously. In contrast, topologies that cannot are termed "frustrated topologies." Our findings reveal that frustration-free topologies represent only a fraction of all theoretically possible patterns, these topologies strongly favor positioning the C-terminal β-strand at the edge of the β-sheet and the N-terminal β-strand in the middle, and there is significant overlap between frustration-free topologies and superfolds. We also used a lattice protein model to thoroughly investigate sequence-structure relationships. Our results show that frustration-free structures are highly designable, while frustrated structures are poorly designable. These findings suggest that superfolds are highly designable due to their lack of frustration, and the preference for positioning C-terminal β-strands at the edge of the β-sheet is a direct result of frustration-free topologies. These insights not only enhance our understanding of sequence-structure relationships but also have significant implications for de novo protein design.
Collapse
Affiliation(s)
- Hiroto Murata
- Department of Applied Physics, Nagoya University, Nagoya, Aichi, Japan
| | - Kazuma Toko
- Department of Applied Physics, Nagoya University, Nagoya, Aichi, Japan
| | - George Chikenji
- Department of Applied Physics, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Wang P, Fredj Z, Zhang H, Rong G, Bian S, Sawan M. Blocking Superantigen-Mediated Diseases: Challenges and Future Trends. J Immunol Res 2024; 2024:2313062. [PMID: 38268531 PMCID: PMC10807946 DOI: 10.1155/2024/2313062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/26/2024] Open
Abstract
Superantigens are virulence factors secreted by microorganisms that can cause various immune diseases, such as overactivating the immune system, resulting in cytokine storms, rheumatoid arthritis, and multiple sclerosis. Some studies have demonstrated that superantigens do not require intracellular processing and instated bind as intact proteins to the antigen-binding groove of major histocompatibility complex II on antigen-presenting cells, resulting in the activation of T cells with different T-cell receptor Vβ and subsequent overstimulation. To combat superantigen-mediated diseases, researchers have employed different approaches, such as antibodies and simulated peptides. However, due to the complex nature of superantigens, these approaches have not been entirely successful in achieving optimal therapeutic outcomes. CD28 interacts with members of the B7 molecule family to activate T cells. Its mimicking peptide has been suggested as a potential candidate to block superantigens, but it can lead to reduced T-cell activity while increasing the host's infection risk. Thus, this review focuses on the use of drug delivery methods to accurately target and block superantigens, while reducing the adverse effects associated with CD28 mimic peptides. We believe that this method has the potential to provide an effective and safe therapeutic strategy for superantigen-mediated diseases.
Collapse
Affiliation(s)
- Pengbo Wang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Zina Fredj
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Hongyong Zhang
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Guoguang Rong
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Sumin Bian
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Mohamad Sawan
- CenBRAIN Neurotech, School of Engineering, Westlake University, Hangzhou 310030, China
| |
Collapse
|
3
|
Minami S, Kobayashi N, Sugiki T, Nagashima T, Fujiwara T, Tatsumi-Koga R, Chikenji G, Koga N. Exploration of novel αβ-protein folds through de novo design. Nat Struct Mol Biol 2023; 30:1132-1140. [PMID: 37400653 PMCID: PMC10442233 DOI: 10.1038/s41594-023-01029-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
A fundamental question in protein evolution is whether nature has exhaustively sampled nearly all possible protein folds throughout evolution, or whether a large fraction of the possible folds remains unexplored. To address this question, we defined a set of rules for β-sheet topology to predict novel αβ-folds and carried out a systematic de novo protein design exploration of the novel αβ-folds predicted by the rules. The designs for all eight of the predicted novel αβ-folds with a four-stranded β-sheet, including a knot-forming one, folded into structures close to the design models. Further, the rules predicted more than 10,000 novel αβ-folds with five- to eight-stranded β-sheets; this number far exceeds the number of αβ-folds observed in nature so far. This result suggests that a vast number of αβ-folds are possible, but have not emerged or have become extinct due to evolutionary bias.
Collapse
Affiliation(s)
- Shintaro Minami
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
| | - Naohiro Kobayashi
- Institute for Protein Research (IPR), Osaka University, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | - Toshihiko Sugiki
- Institute for Protein Research (IPR), Osaka University, Osaka, Japan
| | - Toshio Nagashima
- RIKEN Center for Biosystems Dynamics Research, RIKEN, Yokohama, Japan
| | | | - Rie Tatsumi-Koga
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Japan
| | - George Chikenji
- Department of Applied Physics, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Nobuyasu Koga
- Protein Design Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan.
- Research Center of Integrative Molecular Systems, Institute for Molecular Science (IMS), National Institutes of Natural Sciences (NINS), Okazaki, Japan.
- Laboratory for Protein Design, Institute for Protein Research (IPR), Osaka University, Osaka, Japan.
| |
Collapse
|
4
|
Medved L, Weisel JW. The Story of the Fibrin(ogen) αC-Domains: Evolution of Our View on Their Structure and Interactions. Thromb Haemost 2022; 122:1265-1278. [PMID: 34902868 PMCID: PMC10658776 DOI: 10.1055/a-1719-5584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Although much has been established concerning the overall structure and function of fibrinogen, much less has been known about its two αC regions, each consisting of an αC-connector and an αC-domain, but new information has been accumulating. This review summarizes the state of our current knowledge of the structure and interactions of fibrinogen's αC regions. A series of studies with isolated αC regions and their fragments demonstrated that the αC-domain forms compact ordered structures consisting of N- and C-terminal subdomains including β sheets and suggested that the αC-connector has a poly(L-proline) type II structure. Functionally, the αC-domains interact intramolecularly with each other and with the central region of the molecule, first demonstrated by electron microscopy and then quantified by optical trap force spectroscopy. Upon conversion of fibrinogen into fibrin, the αC-domains switch from intra- to intermolecular interactions to form ordered αC polymers. The formation of αC polymers occurs mainly through the homophilic interaction between the N-terminal subdomains; interaction between the C-terminal subdomains and the αC-connectors also contributes to this process. Considerable evidence supports the idea that the αC-regions accelerate fibrin polymerization and affect the final structure of fibrin clots. The interactions between αC-regions are important for the mechanical properties of clots, increasing their stiffness and extensibility. Conversion of fibrinogen into fibrin results in exposure of multiple binding sites in its αC regions, providing interaction of fibrin with different proteins and cell types during hemostasis and wound healing. This heretofore mysterious part of the fibrinogen molecule is finally giving up its secrets.
Collapse
Affiliation(s)
- Leonid Medved
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Nishina T, Nakajima M, Sasai M, Chikenji G. The Structural Rule Distinguishing a Superfold: A Case Study of Ferredoxin Fold and the Reverse Ferredoxin Fold. Molecules 2022; 27:3547. [PMID: 35684484 PMCID: PMC9181952 DOI: 10.3390/molecules27113547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 01/27/2023] Open
Abstract
Superfolds are folds commonly observed among evolutionarily unrelated multiple superfamilies of proteins. Since discovering superfolds almost two decades ago, structural rules distinguishing superfolds from the other ordinary folds have been explored but remained elusive. Here, we analyzed a typical superfold, the ferredoxin fold, and the fold which reverses the N to C terminus direction from the ferredoxin fold as a case study to find the rule to distinguish superfolds from the other folds. Though all the known structural characteristics for superfolds apply to both the ferredoxin fold and the reverse ferredoxin fold, the reverse fold has been found only in a single superfamily. The database analyses in the present study revealed the structural preferences of αβ- and βα-units; the preferences separate two α-helices in the ferredoxin fold, preventing their collision and stabilizing the fold. In contrast, in the reverse ferredoxin fold, the preferences bring two helices near each other, inducing structural conflict. The Rosetta folding simulations suggested that the ferredoxin fold is physically much more realizable than the reverse ferredoxin fold. Therefore, we propose that minimal structural conflict or minimal frustration among secondary structures is the rule to distinguish a superfold from ordinary folds. Intriguingly, the database analyses revealed that a most stringent structural rule in proteins, the right-handedness of the βαβ-unit, is broken in a set of structures to prevent the frustration, suggesting the proposed rule of minimum frustration among secondary structural units is comparably strong as the right-handedness rule of the βαβ-unit.
Collapse
Affiliation(s)
- Takumi Nishina
- Department of Applied Physics, Nagoya University, Nagoya 464-8601, Japan; (T.N.); (M.N.)
| | - Megumi Nakajima
- Department of Applied Physics, Nagoya University, Nagoya 464-8601, Japan; (T.N.); (M.N.)
| | - Masaki Sasai
- Department of Applied Physics, Nagoya University, Nagoya 464-8601, Japan; (T.N.); (M.N.)
- Department of Complex Systems Science, Nagoya University, Nagoya 464-8601, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8501, Japan
| | - George Chikenji
- Department of Applied Physics, Nagoya University, Nagoya 464-8601, Japan; (T.N.); (M.N.)
| |
Collapse
|
6
|
Youkharibache P, Veretnik S, Li Q, Stanek KA, Mura C, Bourne PE. The Small β-Barrel Domain: A Survey-Based Structural Analysis. Structure 2018; 27:6-26. [PMID: 30393050 DOI: 10.1016/j.str.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/12/2018] [Accepted: 09/19/2018] [Indexed: 11/27/2022]
Abstract
The small β-barrel (SBB) is an ancient protein structural domain characterized by extremes: it features a broad range of structural varieties, a deeply intricate evolutionary history, and it is associated with a bewildering array of cellular pathways. Here, we present a thorough, survey-based analysis of the structural properties of SBBs. We first consider the defining properties of the SBB, including various systems of nomenclature used to describe it, and we introduce the unifying concept of an "urfold." To begin elucidating how vast functional diversity can be achieved by a relatively simple domain, we explore the anatomy of the SBB and its representative structural variants. Many SBB proteins assemble into cyclic oligomers as the biologically functional units; these oligomers often bind RNA, and typically exhibit great quaternary structural plasticity (homomeric and heteromeric rings, variable subunit stoichiometries, etc.). We conclude with three themes that emerge from the rich structure ↔ function versatility of the SBB.
Collapse
Affiliation(s)
- Philippe Youkharibache
- National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda, MD 20894, USA
| | - Stella Veretnik
- National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda, MD 20894, USA.
| | - Qingliang Li
- National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda, MD 20894, USA
| | - Kimberly A Stanek
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Cameron Mura
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA.
| | - Philip E Bourne
- National Center for Biotechnology Information, The National Library of Medicine, The National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
7
|
Minami S, Chikenji G, Ota M. Rules for connectivity of secondary structure elements in protein: Two-layer αβ sandwiches. Protein Sci 2017; 26:2257-2267. [PMID: 28856751 DOI: 10.1002/pro.3285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 11/09/2022]
Abstract
In protein structures, the fold is described according to the spatial arrangement of secondary structure elements (SSEs: α-helices and β-strands) and their connectivity. The connectivity or the pattern of links among SSEs is one of the most important factors for understanding the variety of protein folds. In this study, we introduced the connectivity strings that encode the connectivities by using the types, positions, and connections of SSEs, and computationally enumerated all the connectivities of two-layer αβ sandwiches. The calculated connectivities were compared with those in natural proteins determined using MICAN, a nonsequential structure comparison method. For 2α-4β, among 23,000 of all connectivities, only 48 were free from irregular connectivities such as loop crossing. Of these, only 20 were found in natural proteins and the superfamilies were biased toward certain types of connectivities. A similar disproportional distribution was confirmed for most of other spatial arrangements of SSEs in the two-layer αβ sandwiches. We found two connectivity rules that explain the bias well: the abundances of interlayer connecting loops that bridge SSEs in the distinct layers; and nonlocal β-strand pairs, two spatially adjacent β-strands located at discontinuous positions in the amino acid sequence. A two-dimensional plot of these two properties indicated that the two connectivity rules are not independent, which may be interpreted as a rule for the cooperativity of proteins.
Collapse
Affiliation(s)
- Shintaro Minami
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, 464-8601, Japan
| | - George Chikenji
- Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8601, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Nagoya, 464-8601, Japan
| |
Collapse
|
8
|
Abstract
Globular proteins typically fold into tightly packed arrays of regular secondary structures. We developed a model to approximate the compact parallel and antiparallel arrangement of α-helices and β-strands, enumerated all possible topologies formed by up to five secondary structural elements (SSEs), searched for their occurrence in spatial structures of proteins, and documented their frequencies of occurrence in the PDB. The enumeration model grows larger super-secondary structure patterns (SSPs) by combining pairs of smaller patterns, a process that approximates a potential path of protein fold evolution. The most prevalent SSPs are typically present in superfolds such as the Rossmann-like fold, the ferredoxin-like fold, and the Greek key motif, whereas the less frequent SSPs often possess uncommon structure features such as split β-sheets, left-handed connections, and crossing loops. This complete SSP enumeration model, for the first time, allows us to investigate which theoretically possible SSPs are not observed in available protein structures. All SSPs with up to four SSEs occurred in proteins. However, among the SSPs with five SSEs, approximately 20% (218) are absent from existing folds. Of these unobserved SSPs, 80% contain two or more uncommon structure features. To facilitate future efforts in protein structure classification, engineering, and design, we provide the resulting patterns and their frequency of occurrence in proteins at: http://prodata.swmed.edu/ssps/.
Collapse
|
9
|
Gopi S, Rajasekaran N, Singh A, Ranu S, Naganathan AN. Energetic and topological determinants of a phosphorylation-induced disorder-to-order protein conformational switch. Phys Chem Chem Phys 2016; 17:27264-9. [PMID: 26421497 DOI: 10.1039/c5cp04765j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We show that the phosphorylation of 4E-BP2 acts as a triggering event to shape its folding-function landscape that is delicately balanced between conflicting favorable energetics and intrinsically unfavorable topological connectivity. We further provide first evidence that the fitness landscapes of proteins at the threshold of disorder can differ considerably from ordered domains.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | | | | | | | | |
Collapse
|
10
|
McLuskey K, Mottram J. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases. Biochem J 2015; 466:219-32. [PMID: 25697094 PMCID: PMC4357240 DOI: 10.1042/bj20141324] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Abstract
Clan CD forms a structural group of cysteine peptidases, containing seven individual families and two subfamilies of structurally related enzymes. Historically, it is most notable for containing the mammalian caspases, on which the structures of the clan were founded. Interestingly, the caspase family is split into two subfamilies: the caspases, and a second subfamily containing both the paracaspases and the metacaspases. Structural data are now available for both the paracaspases and the metacaspases, allowing a comprehensive structural analysis of the entire caspase family. In addition, a relative plethora of structural data has recently become available for many of the other families in the clan, allowing both the structures and the structure-function relationships of clan CD to be fully explored. The present review compares the enzymes in the caspase subfamilies with each other, together with a comprehensive comparison of all the structural families in clan CD. This reveals a diverse group of structures with highly conserved structural elements that provide the peptidases with a variety of substrate specificities and activation mechanisms. It also reveals conserved structural elements involved in substrate binding, and potential autoinhibitory functions, throughout the clan, and confirms that the metacaspases are structurally diverse from the caspases (and paracaspases), suggesting that they should form a distinct family of clan CD peptidases.
Collapse
Key Words
- caspase
- clan cd
- crystallography
- metacaspase
- peptidase
- protein structure
- ap, activation peptide
- card, caspase recruitment domain
- chf, caspase/haemoglobinase fold
- cpd, cysteine peptidase domain
- csd, c-terminal subdomain
- dd, death domain
- ded, death effector domain
- insp6, myo-inositol hexakisphosphate
- lsam, legumain stabilization and activity modulation
- lsd1, lesion-simulating disease 1
- malt1, mucosa-associated lymphoid tissue translocation protein 1
- martx, multi-functional, autoprocessing repeat in toxin
- rmsd, root-mean-square deviation
- sse, secondary structural element
- xiap, x-linked inhibitor of apoptosis
- z-vrpr-fmk, benzoxycarbonyl-val-arg-pro-arg-fluoromethylketone
Collapse
Affiliation(s)
- Karen McLuskey
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jeremy C. Mottram
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
11
|
Ganesh Kumar M, Benke SN, Poopathi Raja KM, Gopi HN. Engineering polypeptide folding through trans double bonds: transformation of miniature β-meanders to hybrid helices. Chem Commun (Camb) 2015. [DOI: 10.1039/c5cc04523a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilization of conjugated double bonds to engineer the novel folded miniature β-meander type structures, transformation of miniature β-meanders into 10/12-helices using catalytic hydrogenation, their solution and single crystal conformations are reported.
Collapse
Affiliation(s)
- Mothukuri Ganesh Kumar
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune-411 008
- India
| | - Sushil N. Benke
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune-411 008
- India
| | - K. Muruga Poopathi Raja
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| | - Hosahudya N. Gopi
- Department of Chemistry
- Indian Institute of Science Education and Research
- Pune-411 008
- India
| |
Collapse
|
12
|
Xu BY, Dai YN, Zhou K, Liu YT, Sun Q, Ren YM, Chen Y, Zhou CZ. Structure of the gas vesicle protein GvpF from the cyanobacteriumMicrocystis aeruginosa. ACTA ACUST UNITED AC 2014; 70:3013-22. [DOI: 10.1107/s1399004714021312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/25/2014] [Indexed: 11/11/2022]
Abstract
Gas vesicles are gas-filled proteinaceous organelles that provide buoyancy for bacteria and archaea. A gene cluster that is highly conserved in various species encodes about 8–14 proteins (Gvp proteins) that are involved in the formation of gas vesicles. Here, the first crystal structure of the gas vesicle protein GvpF fromMicrocystis aeruginosaPCC 7806 is reported at 2.7 Å resolution. GvpF is composed of two structurally distinct domains (the N-domain and C-domain), both of which display an α+β class overall structure. The N-domain adopts a novel fold, whereas the C-domain has a modified ferredoxin fold with an apparent variation owing to an extension region consisting of three sequential helices. The two domains pack against each otherviainteractions with a C-terminal tail that is conserved among cyanobacteria. Taken together, it is concluded that the overall architecture of GvpF presents a novel fold. Moreover, it is shown that GvpF is most likely to be a structural protein that is localized at the gas-facing surface of the gas vesicle by immunoblotting and immunogold labelling-based tomography.
Collapse
|
13
|
Aksianov E. Motif Analyzer for protein 3D structures. J Struct Biol 2014; 186:62-7. [PMID: 24607867 DOI: 10.1016/j.jsb.2014.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/26/2014] [Indexed: 11/16/2022]
Abstract
The topology of the protein structure of all-β- or α/β-class is a special arrangement of β-strands within β-sheets (and α-helices surrounding β-sheets) and the order of them along the polypeptide chain. Structural motifs are a subset of strands and/or helices with widely spread topology. Structural motifs are used for classification of protein structure. Because of an increasing variety of known structures, an automatic tool for motif detection is needed. MotAn is an algorithmic detector of structural motifs in a given 3D protein structure. It detects β-hairpins, β-meanders, β-helices, Greek keys, interlocks, jellyrolls, β-α-β-motifs and β-α-β-helices. MotAn was tested on selected SCOP families and shown to be more sensitive detector than the PTGL and PROMOTIF programs. MotAn is available at http://mouse.belozersky.msu.ru/motan.
Collapse
Affiliation(s)
- Evgeniy Aksianov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, 1/40, 119992 Moscow, Russia.
| |
Collapse
|
14
|
Savojardo C, Fariselli P, Martelli PL, Casadio R. BCov: a method for predicting β-sheet topology using sparse inverse covariance estimation and integer programming. ACTA ACUST UNITED AC 2013; 29:3151-7. [PMID: 24064422 DOI: 10.1093/bioinformatics/btt555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MOTIVATION Prediction of protein residue contacts, even at the coarse-grain level, can help in finding solutions to the protein structure prediction problem. Unlike α-helices that are locally stabilized, β-sheets result from pairwise hydrogen bonding of two or more disjoint regions of the protein backbone. The problem of predicting contacts among β-strands in proteins has been addressed by several supervised computational approaches. Recently, prediction of residue contacts based on correlated mutations has been greatly improved and finally allows the prediction of 3D structures of the proteins. RESULTS In this article, we describe BCov, which is the first unsupervised method to predict the β-sheet topology starting from the protein sequence and its secondary structure. BCov takes advantage of the sparse inverse covariance estimation to define β-strand partner scores. Then an optimization based on integer programming is carried out to predict the β-sheet connectivity. When tested on the prediction of β-strand pairing, BCov scores with average values of Matthews Correlation Coefficient (MCC) and F1 equal to 0.56 and 0.61, respectively, on a non-redundant dataset of 916 protein chains known with atomic resolution. Our approach well compares with the state-of-the-art methods trained so far for this specific task. AVAILABILITY AND IMPLEMENTATION The method is freely available under General Public License at http://biocomp.unibo.it/savojard/bcov/bcov-1.0.tar.gz. The new dataset BetaSheet1452 can be downloaded at http://biocomp.unibo.it/savojard/bcov/BetaSheet1452.dat.
Collapse
Affiliation(s)
- Castrense Savojardo
- Biocomputing Group, CIRI-Health Science and Technology/Department of Biology, University of Bologna, 40126 Bologna, Italy and Department of Computer Science and Engineering, Via Mura Anteo Zamboni 7, 40127 Bologna, Italy
| | | | | | | |
Collapse
|
15
|
Abstract
Metacaspases are distantly related caspase-family cysteine peptidases implicated in programmed cell death in plants and lower eukaryotes. They differ significantly from caspases because they are calcium-activated, arginine-specific peptidases that do not require processing or dimerization for activity. To elucidate the basis of these differences and to determine the impact they might have on the control of cell death pathways in lower eukaryotes, the previously undescribed crystal structure of a metacaspase, an inactive mutant of metacaspase 2 (MCA2) from Trypanosoma brucei, has been determined to a resolution of 1.4 Å. The structure comprises a core caspase fold, but with an unusual eight-stranded β-sheet that stabilizes the protein as a monomer. Essential aspartic acid residues, in the predicted S1 binding pocket, delineate the arginine-specific substrate specificity. In addition, MCA2 possesses an unusual N terminus, which encircles the protein and traverses the catalytic dyad, with Y31 acting as a gatekeeper residue. The calcium-binding site is defined by samarium coordinated by four aspartic acid residues, whereas calcium binding itself induces an allosteric conformational change that could stabilize the active site in a fashion analogous to subunit processing in caspases. Collectively, these data give insights into the mechanistic basis of substrate specificity and mode of activation of MCA2 and provide a detailed framework for understanding the role of metacaspases in cell death pathways of lower eukaryotes.
Collapse
|
16
|
Tsurupa G, Pechik I, Litvinov RI, Hantgan RR, Tjandra N, Weisel JW, Medved L. On the mechanism of αC polymer formation in fibrin. Biochemistry 2012; 51:2526-38. [PMID: 22397628 DOI: 10.1021/bi2017848] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous studies revealed that the fibrinogen αC-domains undergo conformational changes and adopt a physiologically active conformation upon their self-association into αC polymers in fibrin. In the present study, we analyzed the mechanism of αC polymer formation and tested our hypothesis that self-association of the αC-domains occurs through the interaction between their N-terminal subdomains and may include β-hairpin swapping. Our binding experiments performed by size-exclusion chromatography and optical trap-based force spectroscopy revealed that the αC-domains self-associate exclusively through their N-terminal subdomains, while their C-terminal subdomains were found to interact with the αC-connectors that tether the αC-domains to the bulk of the molecule. This interaction should reinforce the structure of αC polymers and provide the proper orientation of their reactive residues for efficient cross-linking by factor XIIIa. Molecular modeling of self-association of the N-terminal subdomains confirmed that the hypothesized β-hairpin swapping does not impose any steric hindrance. To "freeze" the conformation of the N-terminal subdomain and prevent the hypothesized β-hairpin swapping, we introduced by site-directed mutagenesis an extra disulfide bond between two β-hairpins of the bovine Aα406-483 fragment corresponding to this subdomain. The experiments performed by circular dichroism revealed that Aα406-483 mutant containing Lys429Cys/Thr463Cys mutations preserved its β-sheet structure. However, in contrast to wild-type Aα406-483, this mutant had lower tendency for oligomerization, and its structure was not stabilized upon oligomerization, in agreement with the above hypothesis. On the basis of the results obtained and our previous findings, we propose a model of fibrin αC polymer structure and molecular mechanism of assembly.
Collapse
Affiliation(s)
- Galina Tsurupa
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | | | | | | | | | | | | |
Collapse
|
17
|
Aydin Z, Altunbasak Y, Erdogan H. Bayesian models and algorithms for protein β-sheet prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2011; 8:395-409. [PMID: 21233522 DOI: 10.1109/tcbb.2008.140] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prediction of the 3D structure greatly benefits from the information related to secondary structure, solvent accessibility, and nonlocal contacts that stabilize a protein's structure. We address the problem of \beta-sheet prediction defined as the prediction of \beta--strand pairings, interaction types (parallel or antiparallel), and \beta-residue interactions (or contact maps). We introduce a Bayesian approach for proteins with six or less \beta-strands in which we model the conformational features in a probabilistic framework by combining the amino acid pairing potentials with a priori knowledge of \beta-strand organizations. To select the optimum \beta-sheet architecture, we significantly reduce the search space by heuristics that enforce the amino acid pairs with strong interaction potentials. In addition, we find the optimum pairwise alignment between \beta-strands using dynamic programming in which we allow any number of gaps in an alignment to model \beta-bulges more effectively. For proteins with more than six \beta-strands, we first compute \beta-strand pairings using the BetaPro method. Then, we compute gapped alignments of the paired \beta-strands and choose the interaction types and \beta--residue pairings with maximum alignment scores. We performed a 10-fold cross-validation experiment on the BetaSheet916 set and obtained significant improvements in the prediction accuracy.
Collapse
Affiliation(s)
- Zafer Aydin
- Department of Genome Sciences, University of Washington, Genome Sciences, Box 357456, 1705 NE Pacific St., Seattle, WA 98195-5065, USA.
| | | | | |
Collapse
|
18
|
Wathen B, Jia Z. Protein beta-sheet nucleation is driven by local modular formation. J Biol Chem 2010; 285:18376-84. [PMID: 20382979 DOI: 10.1074/jbc.m110.120824] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite its central role in the protein folding process, the specific mechanism(s) behind beta-sheet formation has yet to be determined. For example, whether the nucleation of beta-sheets, often containing strands separated in sequence by many residues, is local or not remains hotly debated. Here, we investigate the initial nucleation step of beta-sheet formation by performing an analysis of the smallest beta-sheets in a non-redundant dataset on the grounds that the smallest sheets, having undergone little growth after nucleation, will be enriched for nucleating characteristics. We find that the residue propensities are similar for small and large beta-sheets as are their interstrand pairing preferences, suggesting that nucleation is not primarily driven by specific residues or interacting pairs. Instead, an examination of the structural environments of the two-stranded sheets shows that virtually all of them are contained in single, compact structural modules, or when multiple modules are present, one or both of the chain termini are involved. We, therefore, find that beta-nucleation is a local phenomenon resulting either from sequential or topological proximity. We propose that beta-nucleation is a result of two opposite factors; that is, the relative rigidity of an associated folding module that holds two stretches of coil close together in topology coupled with sufficient chain flexibility that enables the stretches of coil to bring their backbones in close proximity. Our findings lend support to the hydrophobic zipper model of protein folding (Dill, K. A., Fiebig, K. M., and Chan, H. S. (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 1942-1946). Implications for protein folding are discussed.
Collapse
Affiliation(s)
- Brent Wathen
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
19
|
Sawai H, Sugimoto H, Kato Y, Asano Y, Shiro Y, Aono S. X-ray crystal structure of michaelis complex of aldoxime dehydratase. J Biol Chem 2009; 284:32089-96. [PMID: 19740758 DOI: 10.1074/jbc.m109.018762] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aldoxime dehydratase (Oxd) catalyzes the dehydration of aldoximes (R-CH=N-OH) to their corresponding nitrile (R-C triple bond N). Oxd is a heme-containing enzyme that catalyzes the dehydration reaction as its physiological function. We have determined the first two structures of Oxd: the substrate-free OxdRE at 1.8 A resolution and the n-butyraldoxime- and propionaldoxime-bound OxdREs at 1.8 and 1.6 A resolutions, respectively. Unlike other heme enzymes, the organic substrate is directly bound to the heme iron in OxdRE. We determined the structure of the Michaelis complex of OxdRE by using the unique substrate binding and activity regulation properties of Oxd. The Michaelis complex was prepared by x-ray cryoradiolytic reduction of the ferric dead-end complex in which Oxd contains a Fe(3+) heme form. The crystal structures reveal the mechanism of substrate recognition and the catalysis of OxdRE.
Collapse
Affiliation(s)
- Hitomi Sawai
- From the Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Crystal structure of chlorite dismutase, a detoxifying enzyme producing molecular oxygen. J Mol Biol 2009; 387:192-206. [PMID: 19361444 DOI: 10.1016/j.jmb.2009.01.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 11/22/2022]
Abstract
Chlorite dismutase (Cld) is a key enzyme of perchlorate and chlorate respiration. This heme-based protein reduces the toxic compound chlorite into the innocuous chloride anion in a very efficient way while producing molecular oxygen. A sequence comparison between Cld homologues shows a highly conserved family. The crystal structure of Azospira oryzae strain GR-1 Cld is reported to 2.1 A resolution. The structure reveals a hexameric organization of the Cld, while each monomer exhibits a ferredoxin-like fold. The six subunits are organized in a ring structure with a maximal diameter of 9 nm and an inner diameter of 2 nm. The heme active-site pocket is solvent accessible both from the inside and the outside of the ring. Moreover, a second anion binding site that could accommodate the assumed reaction intermediate ClO(-) for further transformation has been identified near the active site. The environment of the heme cofactor was investigated with electron paramagnetic resonance spectroscopy. Apart from the high-spin ferric signal of the five-coordinate resting-state enzyme, two low-spin signals were found corresponding to six-coordinate species. The current crystal structure confirms and complements a recently proposed catalytic mechanism that proceeds via a ferryl species and a ClO(-) anion. Our structural data exclude cooperativity between the iron centers.
Collapse
|
21
|
Jeong J, Berman P, Przytycka TM. Improving strand pairing prediction through exploring folding cooperativity. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2008; 5:484-491. [PMID: 18989036 PMCID: PMC2597093 DOI: 10.1109/tcbb.2008.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The topology of beta-sheets is defined by the pattern of hydrogen-bonded strand pairing. Therefore, predicting hydrogen bonded strand partners is a fundamental step towards predicting beta-sheet topology. At the same time, finding the correct partners is very difficult due to long range interactions involved in strand pairing. Additionally, patterns of amino acids involved, in beta-sheet formations are very general and therefore difficult to use for computational recognition of specific contacts between strands. In this work, we report a new strand pairing algorithm. To address above mentioned difficulties, our algorithm attempts to mimic elements of the folding process. Namely, in addition to ensuring that the predicted hydrogen bonded strand pairs satisfy basic global consistency constraints, it takes into account hypothetical folding pathways. Consistently with this view, introducing hydrogen bonds between a pair of strands changes the probabilities of forming hydrogen bonds between other pairs of strand. We demonstrate that this approach provides an improvement over previously proposed algorithms. We also compare the performance of this method to that of a global optimization algorithm that poses the problem as integer linear programming optimization problem and solves it using ILOG CPLEX package.
Collapse
Affiliation(s)
- Jieun Jeong
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
22
|
Structural basis for EGFR ligand sequestration by Argos. Nature 2008; 453:1271-5. [PMID: 18500331 DOI: 10.1038/nature06978] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 04/07/2008] [Indexed: 01/13/2023]
Abstract
Members of the epidermal growth factor receptor (EGFR) or ErbB/HER family and their activating ligands are essential regulators of diverse developmental processes. Inappropriate activation of these receptors is a key feature of many human cancers, and its reversal is an important clinical goal. A natural secreted antagonist of EGFR signalling, called Argos, was identified in Drosophila. We showed previously that Argos functions by directly binding (and sequestering) growth factor ligands that activate EGFR. Here we describe the 1.6-A resolution crystal structure of Argos bound to an EGFR ligand. Contrary to expectations, Argos contains no EGF-like domain. Instead, a trio of closely related domains (resembling a three-finger toxin fold) form a clamp-like structure around the bound EGF ligand. Although structurally unrelated to the receptor, Argos mimics EGFR by using a bipartite binding surface to entrap EGF. The individual Argos domains share unexpected structural similarities with the extracellular ligand-binding regions of transforming growth factor-beta family receptors. The three-domain clamp of Argos also resembles the urokinase-type plasminogen activator (uPA) receptor, which uses a similar mechanism to engulf the EGF-like module of uPA. Our results indicate that undiscovered mammalian counterparts of Argos may exist among other poorly characterized structural homologues. In addition, the structures presented here define requirements for the design of artificial EGF-sequestering proteins that would be valuable anti-cancer therapeutics.
Collapse
|
23
|
Burton RA, Tsurupa G, Hantgan RR, Tjandra N, Medved L. NMR solution structure, stability, and interaction of the recombinant bovine fibrinogen alphaC-domain fragment. Biochemistry 2007; 46:8550-60. [PMID: 17590019 PMCID: PMC2597398 DOI: 10.1021/bi700606v] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
According to the existing hypothesis, in fibrinogen, the COOH-terminal portions of two Aalpha chains are folded into compact alphaC-domains that interact intramolecularly with each other and with the central region of the molecule; in fibrin, the alphaC-domains switch to an intermolecular interaction resulting in alphaC-polymers. In agreement, our recent NMR study identified within the bovine fibrinogen Aalpha374-538 alphaC-domain fragment an ordered compact structure including a beta-hairpin restricted at the base by a 423-453 disulfide linkage. To establish the complete structure of the alphaC-domain and to further test the hypothesis, we expressed a shorter alphaC-fragment, Aalpha406-483, and performed detailed analysis of its structure, stability, and interactions. NMR experiments on the Aalpha406-483 fragment identified a second loose beta-hairpin formed by residues 459-476, yielding a structure consisting of an intrinsically unstable mixed parallel/antiparallel beta-sheet. Size-exclusion chromatography and sedimentation velocity experiments revealed that the Aalpha406-483 fragment forms soluble oligomers whose fraction increases with an increase in concentration. This was confirmed by sedimentation equilibrium analysis, which also revealed that the addition of each monomer to an assembling alphaC-oligomer substantially increases its stabilizing free energy. In agreement, unfolding experiments monitored by CD established that oligomerization of Aalpha406-483 results in increased thermal stability. Altogether, these experiments establish the complete NMR solution structure of the Aalpha406-483 alphaC-domain fragment, provide direct evidence for the intra- and intermolecular interactions between the alphaC-domains, and confirm that these interactions are thermodynamically driven.
Collapse
Affiliation(s)
- Robert A. Burton
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 Center Drive, Bethesda, MD 20892
| | - Galina Tsurupa
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD 21201
| | - Roy R. Hantgan
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Nico Tjandra
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, 50 Center Drive, Bethesda, MD 20892
- To whom correspondence should be addressed. Leonid Medved. E-mail: . Phone: (410) 706-8065. Fax (410) 706-8121. Nico Tjandra. E-mail: . Phone: (301) 402-3029. Fax (301) 402-3404
| | - Leonid Medved
- Center for Vascular and Inflammatory Diseases and the Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 800 West Baltimore Street, Baltimore, MD 21201
- To whom correspondence should be addressed. Leonid Medved. E-mail: . Phone: (410) 706-8065. Fax (410) 706-8121. Nico Tjandra. E-mail: . Phone: (301) 402-3029. Fax (301) 402-3404
| |
Collapse
|
24
|
Villegas ME, Vila JA, Scheraga HA. Effects of side-chain orientation on the 13C chemical shifts of antiparallel beta-sheet model peptides. JOURNAL OF BIOMOLECULAR NMR 2007; 37:137-46. [PMID: 17180547 DOI: 10.1007/s10858-006-9118-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 11/03/2006] [Indexed: 05/13/2023]
Abstract
The dependence of the (13)C chemical shift on side-chain orientation was investigated at the density functional level for a two-strand antiparallel beta-sheet model peptide represented by the amino acid sequence Ac-(Ala)(3)-X-(Ala)(12)-NH(2) where X represents any of the 17 naturally occurring amino acids, i.e., not including alanine, glycine and proline. The dihedral angles adopted for the backbone were taken from, and fixed at, observed experimental values of an antiparallel beta-sheet. We carried out a cluster analysis of the ensembles of conformations generated by considering the side-chain dihedral angles for each residue X as variables, and use them to compute the (13)C chemical shifts at the density functional theory level. It is shown that the adoption of the locally-dense basis set approach for the quantum chemical calculations enabled us to reduce the length of the chemical-shift calculations while maintaining good accuracy of the results. For the 17 naturally occurring amino acids in an antiparallel beta-sheet, there is (i) good agreement between computed and observed (13)C(alpha) and (13)C(beta) chemical shifts, with correlation coefficients of 0.95 and 0.99, respectively; (ii) significant variability of the computed (13)C(alpha) and (13)C(beta) chemical shifts as a function of chi(1) for all amino acid residues except Ser; and (iii) a smaller, although significant, dependence of the computed (13)C(alpha) chemical shifts on chi(xi) (with xi > or = 2) compared to chi(1) for eleven out of seventeen residues. Our results suggest that predicted (13)C(alpha) and (13)C(beta) chemical shifts, based only on backbone (phi,psi) dihedral angles from high-resolution X-ray structure data or from NMR-derived models, may differ significantly from those observed in solution if the dihedral-angle preferences for the side chains are not taken into account.
Collapse
Affiliation(s)
- Myriam E Villegas
- Facultad de Ciencias Físico Matemáticas y Naturales, Instituto de Matemática Aplicada San Luis, Universidad Nacional de San Luis, CONICET, Ejército de Los Andes, San Luis, 950-5700, Argentina
| | | | | |
Collapse
|
25
|
Ebihara A, Yao M, Masui R, Tanaka I, Yokoyama S, Kuramitsu S. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci 2006; 15:1494-9. [PMID: 16672237 PMCID: PMC2242536 DOI: 10.1110/ps.062131106] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We have determined the crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 at 1.9 A resolution. This protein is a member of the Escherichia coli ygcH sequence family, which contains approximately 15 sequence homologs of bacterial origin. These homologs have a high isoelectric point. The crystal structure reveals that TTHB192 consists of two independently folded domains, and that each domain exhibits a ferredoxin-like fold with a four-stranded antiparallel beta-sheet packed on one side by alpha-helices. These two tandem domains face each other to generate a beta-sheet platform. TTHB192 displays overall structural similarity to Sex-lethal protein and poly(A)-binding protein fragments. These proteins have RNA binding activity which is supported by a beta-sheet platform formed by two tandem repeats of an RNA recognition motif domain with signature sequence motifs on the beta-sheet surface. Although TTHB192 does not have the same signature sequence motif as the RNA recognition motif domain, the presence of an evolutionarily conserved basic patch on the beta-sheet platform could be functionally relevant for nucleic acid-binding. This report shows that TTHB192 and its sequence homologs adopt an RNA recognition motif-like domain and provides the first testable functional hypothesis for this protein family.
Collapse
Affiliation(s)
- Akio Ebihara
- RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Kister AE, Fokas AS, Papatheodorou TS, Gelfand IM. Strict rules determine arrangements of strands in sandwich proteins. Proc Natl Acad Sci U S A 2006; 103:4107-10. [PMID: 16537492 PMCID: PMC1449654 DOI: 10.1073/pnas.0510747103] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
From a computer analysis of the spatial organization of the secondary structures of beta-sandwich proteins, we find certain sets of consecutive strands that are connected by hydrogen bonds, which we call "strandons." The analysis of the arrangements of strandons in 491 protein structures that come from 69 different superfamilies reveals strict regularities in the arrangements of strandons and the formation of what we call "canonical supermotifs." Six such supermotifs account for approximately 90% of all observed structures. Simple geometric rules are described that dictate the formation of these supermotifs.
Collapse
Affiliation(s)
- A. E. Kister
- *Department of Health Informatics, School of Health Related Professions, University of Medicine and Dentistry of New Jersey, Newark, NJ 07107
- To whom correspondence may be addressed. E-mail:
or
| | - A. S. Fokas
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - T. S. Papatheodorou
- High Performance Computing Laboratory, Department of Computer Engineering and Informatics, University of Patras, Patras 26500, Greece; and
| | - I. M. Gelfand
- Department of Mathematics, Rutgers, The State University of New Jersey, Piscataway, NJ 08855
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
27
|
Urich T, Gomes CM, Kletzin A, Frazão C. X-ray Structure of a Self-Compartmentalizing Sulfur Cycle Metalloenzyme. Science 2006; 311:996-1000. [PMID: 16484493 DOI: 10.1126/science.1120306] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Numerous microorganisms oxidize sulfur for energy conservation and contribute to the global biogeochemical sulfur cycle. We have determined the 1.7 angstrom-resolution structure of the sulfur oxygenase reductase from the thermoacidophilic archaeon Acidianus ambivalens, which catalyzes an oxygen-dependent disproportionation of elemental sulfur. Twenty-four monomers form a large hollow sphere enclosing a positively charged nanocompartment. Apolar channels provide access for linear sulfur species. A cysteine persulfide and a low-potential mononuclear non-heme iron site ligated by a 2-His-1-carboxylate facial triad in a pocket of each subunit constitute the active sites, accessible from the inside of the sphere. The iron is likely the site of both sulfur oxidation and sulfur reduction.
Collapse
Affiliation(s)
- Tim Urich
- Darmstadt University of Technology, Institute of Microbiology and Genetics, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
28
|
Fokas AS, Papatheodorou TS, Kister AE, Gelfand IM. A geometric construction determines all permissible strand arrangements of sandwich proteins. Proc Natl Acad Sci U S A 2005; 102:15851-3. [PMID: 16249331 PMCID: PMC1276083 DOI: 10.1073/pnas.0507335102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For a large class of proteins called sandwich-like proteins (SPs), the secondary structures consist of two beta-sheets packed face-to-face, with each beta-sheet consisting typically of three to five beta-strands. An important step in the prediction of the three-dimensional structure of a SP is the prediction of its supersecondary structure, namely the prediction of the arrangement of the beta-strands in the two beta-sheets. Recently, significant progress in this direction was made, where it was shown that 91% of observed SPs form what we here call "canonical motifs." Here, we show that all canonical motifs can be constructed in a simple manner that is based on thermodynamic considerations and uses certain geometric structures. The number of these structures is much smaller than the number of possible strand arrangements. For instance, whereas for SPs consisting of six strands there exist a priori 900 possible strand arrangements, there exist only five geometric structures. Furthermore, the few motifs that are noncanonial can be constructed from canonical motifs by a simple procedure.
Collapse
Affiliation(s)
- A S Fokas
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Ebihara A, Okamoto A, Kousumi Y, Yamamoto H, Masui R, Ueyama N, Yokoyama S, Kuramitsu S. Structure-based functional identification of a novel heme-binding protein from Thermus thermophilus HB8. ACTA ACUST UNITED AC 2005; 6:21-32. [PMID: 15965735 DOI: 10.1007/s10969-005-1103-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 01/11/2005] [Indexed: 12/22/2022]
Abstract
The TT1485 gene from Thermus thermophilus HB8 encodes a hypothetical protein of unknown function with about 20 sequence homologs of bacterial or archaeal origin. Together they form a family of uncharacterized proteins, the cluster of orthologous group COG3253. Using a combination of amino acid sequence analysis, three-dimensional structural studies and biochemical assays, we identified TT1485 as a novel heme-binding protein. The crystal structure reveals that this protein is a pentamer and each monomer exhibits a beta-barrel fold. TT1485 is structurally similar to muconolactone isomerase, but this provided no functional clues. Amino acid sequence analysis revealed remote homology to a heme enzyme, chlorite dismutase. Strikingly, amino acid residues that are highly conserved in the homologous hypothetical proteins and chlorite dismutase cluster around a deep cavity on the surface of each monomer. Molecular modeling shows that the cavity can accommodate a heme group with a strictly conserved His as a heme ligand. TT1485 reconstituted with iron protoporphyrin IX chloride gave a low chlorite dismutase activity, indicating that TT1485 catalyzes a reaction other than chlorite degradation. The presence of a possible Fe-His-Asp triad in the heme proximal site suggests that TT1485 functions as a novel heme peroxidase to detoxify hydrogen peroxide within the cell.
Collapse
Affiliation(s)
- Akio Ebihara
- RIKEN Harima Institute at SPring-8, Kouto, Mikazuki-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang I, Lou YC, Wu KP, Wu SH, Chang WC, Chen C. Novel Solution Structure of Porcine β-Microseminoprotein. J Mol Biol 2005; 346:1071-82. [PMID: 15701518 DOI: 10.1016/j.jmb.2004.12.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 12/07/2004] [Accepted: 12/14/2004] [Indexed: 10/26/2022]
Abstract
A number of beta-microseminoproteins (MSPs) have been identified from different species. MSPs are all non-glycosylated and disulfide bond-rich, but show a relatively low level of conservation. Although all Cys residues are conserved, our previous study showed that the disulfide bond pairings differ in porcine and ostrich MSPs. Despite the variety of biological functions that have been suggested for MSPs, their real function is still poorly understood. Furthermore, no 3D structure has been reported for any MSP, so the determination of the structure and function of MSPs is an interesting and important task. In the present study, we determined the 3D solution structure of porcine MSP on the basis of 1018 restraints. The ensemble of 20 NMR structures was well defined, with average root-mean-square deviations of 0.83(+/-0.16) A for the backbone atoms and 1.37(+/-0.17) A for heavy-atoms in residues 2-90. The 3D structure showed that porcine MSP is clearly composed of two domains, an N-terminal domain consisting of one double-stranded and one four-stranded antiparallel beta-sheet, and a C-terminal domain consisting of two double-stranded antiparallel beta-sheet. The orientation of the two domains was derived mainly on the basis of long-range NOEs and verified using residual dipolar coupling data. No inter-domain hydrophobic interaction or H-bonding was detected. However, a number of charged residues were found in close proximity between the domains, indicating that electrostatic interaction may be the key factor for the orientation of the two domains. This is the first report of a 3D structure for any MSP. In addition, structural comparison based on distance matrix alignment (DALI), class architecture topology and homologous superfamily (CATH) and combinatorial extension (CE) methods revealed that porcine MSP has a novel structure with a new fold providing valuable information for future structural studies on other MSPs and for understanding their biological functions.
Collapse
Affiliation(s)
- Iren Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
31
|
Shin DH, Lou Y, Jancarik J, Yokota H, Kim R, Kim SH. Crystal structure of YjeQ from Thermotoga maritima contains a circularly permuted GTPase domain. Proc Natl Acad Sci U S A 2004; 101:13198-203. [PMID: 15331784 PMCID: PMC516547 DOI: 10.1073/pnas.0405202101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have determined the crystal structure of the GDP complex of the YjeQ protein from Thermotoga maritima (TmYjeQ), a member of the YjeQ GTPase subfamaily. TmYjeQ, a homologue of Escherichia coli YjeQ, which is known to bind to the ribosome, is composed of three domains: an N-terminal oligonucleotide/oligosaccharide-binding fold domain, a central GTPase domain, and a C-terminal zinc-finger domain. The crystal structure of TmYjeQ reveals two interesting domains: a circularly permutated GTPase domain and an unusual zinc-finger domain. The binding mode of GDP in the GTPase domain of TmYjeQ is similar to those of GDP or GTP analogs in ras proteins, a prototype GTPase. The N-terminal oligonucleotide/oligosaccharide-binding fold domain, together with the GTPase domain, forms the extended RNA-binding site. The C-terminal domain has an unusual zinc-finger motif composed of Cys-250, Cys-255, Cys-263, and His-257, with a remote structural similarity to a portion of a DNA-repair protein, rad51 fragment. The overall structural features of TmYjeQ make it a good candidate for an RNA-binding protein, which is consistent with the biochemical data of the YjeQ subfamily in binding to the ribosome.
Collapse
Affiliation(s)
- Dong Hae Shin
- Berkeley Structural Genomics Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
32
|
Chen S, Jancrick J, Yokota H, Kim R, Kim SH. Crystal structure of a protein associated with cell division from Mycoplasma pneumoniae (GI: 13508053): a novel fold with a conserved sequence motif. Proteins 2004; 55:785-91. [PMID: 15146477 DOI: 10.1002/prot.10593] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UPF0040 is a family of proteins implicated in a cellular function of bacteria cell division. There is no structure information available on protein of this family. We have determined the crystal structure of a protein from Mycoplasma pneumoniae that belongs to this family using X-ray crystallography. Structural homology search reveals that this protein has a novel fold with no significant similarity to any proteins of known three-dimensional structure. The crystal structures of the protein in three different crystal forms reveal that the protein exists as a ring of octamer. The conserved protein residues, including a highly conserved DXXXR motif, are examined on the basis of crystal structure.
Collapse
Affiliation(s)
- Shengfeng Chen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
33
|
Shin DH, Yokota H, Kim R, Kim SH. Crystal structure of a conserved hypothetical protein from Escherichia coli. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 2:53-66. [PMID: 12836674 DOI: 10.1023/a:1014450817696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The crystal structure of a conserved hypothetical protein from Escherichia coli has been determined using X-ray crystallography. The protein belongs to the Cluster of Orthologous Group COG1553 (National Center for Biotechnology Information database, NLM, NIH), for which there was no structural information available until now. Structural homology search with DALI algorism indicated that this protein has a new fold with no obvious similarity to those of other proteins with known three-dimensional structures. The protein quaternary structure consists of a dimer of trimers, which makes a characteristic cylinder shape. There is a large closed cavity with approximate dimensions of 16 A x 16 A x 20 A in the center of the hexameric structure. Six putative active sites are positioned along the equatorial surface of the hexamer. There are several highly conserved residues including two possible functional cysteines in the putative active site. The possible molecular function of the protein is discussed.
Collapse
Affiliation(s)
- Dong Hae Shin
- Department of Chemistry, University of California, Berkeley, California 94720-5230, USA
| | | | | | | |
Collapse
|
34
|
Steward RE, Thornton JM. Prediction of strand pairing in antiparallel and parallel beta-sheets using information theory. Proteins 2002; 48:178-91. [PMID: 12112687 DOI: 10.1002/prot.10152] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An information theory approach was developed to predict the alignment of interacting antiparallel and parallel beta-strands. Information scores were derived for the preference of a residue on a beta-strand to be opposite a sequence of residues on an adjacent beta-strand. These scores were used to predict the interstrand register of interacting beta-strands from 10 alternative offset positions either side of the experimentally observed beta-sheet register. The amino acid sequence of an internal beta-strand can be correctly aligned with two beta-strands in a fixed position either side of the strand in 45% of antiparallel and 48% of parallel arrangements. For comparison, when another beta-strand from a nonhomologous protein substitutes the internal beta-strand, the same register is predicted for only 24 and 36% of antiparallel and parallel arrangements. As expected, alignment of a single fixed strand with just a second beta-strand sequence was more difficult, and gave a correct register in 31 and 37% of antiparallel and parallel beta-pairs, respectively. These scores are 10% higher than for two randomly selected beta-strand sequences. In general, prediction accuracy was not improved by information tables that distinguished hydrogen-bonding patterns or beta-strand order. These results will contribute to predicting the arrangement of beta-strands in beta-pleated sheets and protein topology.
Collapse
Affiliation(s)
- Robert E Steward
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | |
Collapse
|
35
|
Lin Y, Hwang WC, Basavappa R. Structural and functional analysis of the human mitotic-specific ubiquitin-conjugating enzyme, UbcH10. J Biol Chem 2002; 277:21913-21. [PMID: 11927573 DOI: 10.1074/jbc.m109398200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell cycle progression is controlled at several different junctures by the targeted destruction of cell cycle regulatory proteins. These carefully orchestrated events include the destruction of the securin protein to permit entry into anaphase, and the destruction of cyclin B to permit exit from mitosis. These destruction events are mediated by the ubiquitin/proteasome system. The human ubiquitin-conjugating enzyme, UbcH10, is an essential mediator of the mitotic destruction events. We report here the 1.95-A crystal structure of a mutant UbcH10, in which the active site cysteine has been replaced with a serine. Functional analysis indicates that the mutant is active in accepting ubiquitin, although not as efficiently as wild-type. Examination of the crystal structure reveals that the NH2-terminal extension in UbcH10 is disordered and that a conserved 3(10)-helix places a lysine residue near the active site. Analysis of relevant mutants demonstrates that for ubiquitin-adduct formation the presence or absence of the NH2-terminal extension has little effect, whereas the lysine residue near the active site has significant effect. The structure provides additional insight into UbcH10 function including possible sites of interaction with the anaphase promoting complex/cyclosome and the disposition of a putative destruction box motif in the structure.
Collapse
Affiliation(s)
- Yaqiong Lin
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
36
|
Shin DH, Yokota H, Kim R, Kim SH. Crystal structure of conserved hypothetical protein Aq1575 from Aquifex aeolicus. Proc Natl Acad Sci U S A 2002; 99:7980-5. [PMID: 12060744 PMCID: PMC123006 DOI: 10.1073/pnas.132241399] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2002] [Indexed: 11/18/2022] Open
Abstract
The crystal structure of a conserved hypothetical protein, Aq1575, from Aquifex aeolicus has been determined by using x-ray crystallography. The protein belongs to the domain of unknown function DUF28 in the Pfam and PALI databases for which there was no structural information available until now. A structural homology search with the DALI algorithm indicates that this protein has a new fold with no obvious similarity to those of other proteins of known three-dimensional structure. The protein reveals a monomer consisting of three domains arranged along a pseudo threefold symmetry axis. There is a large cleft with approximate dimensions of 10 A x 10 A x 20 A in the center of the three domains along the symmetry axis. Two possible active sites are suggested based on the structure and multiple sequence alignment. There are several highly conserved residues in these putative active sites. The structure based molecular properties and thermostability of the protein are discussed.
Collapse
Affiliation(s)
- Dong Hae Shin
- Department of Chemistry, University of California, Berkeley, CA 94720-5230, USA
| | | | | | | |
Collapse
|
37
|
Sato S, Raleigh DP. pH-dependent stability and folding kinetics of a protein with an unusual alpha-beta topology: the C-terminal domain of the ribosomal protein L9. J Mol Biol 2002; 318:571-82. [PMID: 12051860 DOI: 10.1016/s0022-2836(02)00015-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| | | |
Collapse
|
38
|
Przytycka T, Srinivasan R, Rose GD. Recursive domains in proteins. Protein Sci 2002; 11:409-17. [PMID: 11790851 PMCID: PMC2373444 DOI: 10.1110/ps.24701] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2001] [Revised: 11/08/2001] [Accepted: 11/09/2001] [Indexed: 10/17/2022]
Abstract
The domain is a fundamental unit of protein structure. Numerous studies have analyzed folding patterns in protein domains of known structure to gain insight into the underlying protein folding process. Are such patterns a haphazard assortment or are they similar to sentences in a language, which can be generated by an underlying grammar? Specifically, can a small number of intuitively sensible rules generate a large class of folds, including feasible new folds? In this paper, we explore the extent to which four simple rules can generate the known all-beta folds, using tools from graph theory. As a control, an exhaustive set of beta-sandwiches was tested and found to be largely incompatible with such a grammar. The existence of a protein grammar has potential implications for both the mechanism of folding and the evolution of domains.
Collapse
Affiliation(s)
- Teresa Przytycka
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
39
|
Metzler DE, Metzler CM, Sauke DJ. Ribosomes and the Synthesis of Proteins. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50032-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
Teplova M, Tereshko V, Sanishvili R, Joachimiak A, Bushueva T, Anderson WF, Egli M. The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Protein Sci 2000; 9:2557-66. [PMID: 11206077 PMCID: PMC2144518 DOI: 10.1110/ps.9.12.2557] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The yrdC family of genes codes for proteins that occur both independently and as a domain in proteins that have been implicated in regulation. An example for the latter case is the sua5 gene from yeast. SuaS was identified as a suppressor of a translation initiation defect in cytochrome c and is required for normal growth in yeast (Na JG, Pinto I, Hampsey M, 1992, Genetics 11:791-801). However, the function of the Sua5 protein remains unknown; Sua5 could act either at the transcriptional or the posttranscriptional levels to compensate for an aberrant translation start codon in the cyc gene. To potentially learn more about the function of YrdC and proteins featuring this domain, the crystal structure of the YrdC protein from Escherichia coli was determined at a resolution of 2.0 A. YrdC adopts a new fold with no obvious similarity to those of other proteins with known three-dimensional (3D) structure. The protein features a large concave surface on one side that exhibits a positive electrostatic potential. The dimensions of this depression, its curvature, and the fact that conserved basic amino acids are located at its floor suggest that YrdC may be a nucleic acid binding protein. An investigation of YrdC's binding affinities for single- and double-stranded RNA and DNA fragments as well as tRNAs demonstrates that YrdC binds preferentially to double-stranded RNA. Our work provides evidence that 3D structures of functionally uncharacterized gene products with unique sequences can yield novel folds and functional insights.
Collapse
Affiliation(s)
- M Teplova
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | |
Collapse
|