1
|
Native aggregation is a common feature among triosephosphate isomerases of different species. Sci Rep 2020; 10:1338. [PMID: 31992784 PMCID: PMC6987189 DOI: 10.1038/s41598-020-58272-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Triosephosphate isomerase (TIM) is an enzyme of the glycolysis pathway which exists in almost all types of cells. Its structure is the prototype of a motif called TIM-barrel or (α/β)8 barrel, which is the most common fold of all known enzyme structures. The simplest form in which TIM is catalytically active is a homodimer, in many species of bacteria and eukaryotes, or a homotetramer in some archaea. Here we show that the purified homodimeric TIMs from nine different species of eukaryotes and one of an extremophile bacterium spontaneously form higher order aggregates that can range from 3 to 21 dimers per macromolecular complex. We analysed these aggregates with clear native electrophoresis with normal and inverse polarity, blue native polyacrylamide gel electrophoresis, liquid chromatography, dynamic light scattering, thermal shift assay and transmission electron and fluorescence microscopies, we also performed bioinformatic analysis of the sequences of all enzymes to identify and predict regions that are prone to aggregation. Additionally, the capacity of TIM from Trypanosoma brucei to form fibrillar aggregates was characterized. Our results indicate that all the TIMs we studied are capable of forming oligomers of different sizes. This is significant because aggregation of TIM may be important in some of its non-catalytic moonlighting functions, like being a potent food allergen, or in its role associated with Alzheimer’s disease.
Collapse
|
2
|
Nesmelova IV, Melnikova DL, Ranjan V, Skirda VD. Translational diffusion of unfolded and intrinsically disordered proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:85-108. [PMID: 31521238 DOI: 10.1016/bs.pmbts.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Translational (or self-diffusion) coefficient in dilute solution is inversely proportional to the size of a diffusing molecule, and hence self-diffusion coefficient measurements have been applied to determine the effective hydrodynamic radii for a range of native and nonnative protein conformations. In particular, translational diffusion coefficient measurements are useful to estimate the hydrodynamic radius of natively (or intrinsically) disordered proteins in solution, and, thereby, probe the compactness of a protein as well as its change when environmental parameters such as temperature, solution pH, or protein concentration are varied. The situation becomes more complicated in concentrated solutions. In this review, we discuss the translational diffusion of disordered proteins in dilute and crowded solutions, focusing primarily on the information provided by pulsed-field gradient NMR technique, and draw analogies to well-structured globular proteins and synthetic polymers.
Collapse
Affiliation(s)
- Irina V Nesmelova
- Department of Physics and Optical Sciences, University of North Carolina, Charlotte, NC, United States; Center for Biomedical Engineering and Science, University of North Carolina, Charlotte, NC, United States.
| | | | - Venkatesh Ranjan
- Department of Chemistry, University of North Carolina, Charlotte, NC, United States
| | | |
Collapse
|
3
|
Schulte‐Sasse M, Pardo‐Ávila F, Pulido‐Mayoral NO, Vázquez‐Lobo A, Costas M, García‐Hernández E, Rodríguez‐Romero A, Fernández‐Velasco DA. Structural, thermodynamic and catalytic characterization of an ancestral triosephosphate isomerase reveal early evolutionary coupling between monomer association and function. FEBS J 2019; 286:882-900. [DOI: 10.1111/febs.14741] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/01/2018] [Accepted: 12/23/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Mariana Schulte‐Sasse
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Fátima Pardo‐Ávila
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Nancy O. Pulido‐Mayoral
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| | - Alejandra Vázquez‐Lobo
- Centro de Investigación en Biodiversidad y Conservación Universidad Autónoma del Estado de Morelos Cuernavaca Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica Departamento de Fisicoquímica Facultad de Química Universidad Nacional Autónoma de México Mexico
| | | | | | - Daniel Alejandro Fernández‐Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas Departamento de Bioquímica Facultad de Medicina Universidad Nacional Autónoma de México Mexico
| |
Collapse
|
4
|
Romero-Romero S, Becerril-Sesín LA, Costas M, Rodríguez-Romero A, Fernández-Velasco DA. Structure and conformational stability of the triosephosphate isomerase from Zea mays. Comparison with the chemical unfolding pathways of other eukaryotic TIMs. Arch Biochem Biophys 2018; 658:66-76. [PMID: 30261166 DOI: 10.1016/j.abb.2018.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022]
Abstract
We studied the structure, function and thermodynamic properties for the unfolding of the Triosephosphate isomerase (TIM) from Zea mays (ZmTIM). ZmTIM shows a catalytic efficiency close to the diffusion limit. Native ZmTIM is a dimer that dissociates upon dilution into inactive and unfolded monomers. Its thermal unfolding is irreversible with a Tm of 61.6 ± 1.4 °C and an activation energy of 383.4 ± 11.5 kJ mol-1. The urea-induced unfolding of ZmTIM is reversible. Transitions followed by catalytic activity and spectroscopic properties are monophasic and superimposable, indicating that ZmTIM unfolds/refolds in a two-state behavior with an unfolding ΔG°(H20) = 99.8 ± 5.3 kJ mol-1. This contrasts with most other studied TIMs, where folding intermediates are common. The three-dimensional structure of ZmTIM was solved at 1.8 Å. A structural comparison with other eukaryotic TIMs shows a similar number of intramolecular and intermolecular interactions. Interestingly the number of interfacial water molecules found in ZmTIM is lower than those observed in most TIMs that show folding intermediates. Although with the available data, there is no clear correlation between structural properties and the number of equilibrium intermediates in the unfolding of TIM, the identification of such structural properties should increase our understanding of folding mechanisms.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico
| | - Luis A Becerril-Sesín
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico
| | - Adela Rodríguez-Romero
- Laboratorio de Química de Biomacromoléculas 3, Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico
| | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico.
| |
Collapse
|
5
|
Jimenez-Sandoval P, Vique-Sanchez JL, Hidalgo ML, Velazquez-Juarez G, Diaz-Quezada C, Arroyo-Navarro LF, Moran GM, Fattori J, Jessica Diaz-Salazar A, Rudiño-Pinera E, Sotelo-Mundo R, Figueira ACM, Lara-Gonzalez S, Benítez-Cardoza CG, Brieba LG. A competent catalytic active site is necessary for substrate induced dimer assembly in triosephosphate isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1423-1432. [DOI: 10.1016/j.bbapap.2017.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 11/30/2022]
|
6
|
Romero-Romero S, Costas M, Rodríguez-Romero A, Fernández-Velasco DA. Reversibility and two state behaviour in the thermal unfolding of oligomeric TIM barrel proteins. Phys Chem Chem Phys 2015. [DOI: 10.1039/c5cp01599e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The reversible thermal unfolding of oligomeric TIM barrels results from a delicate balance of physicochemical properties related to the sequence, the native and unfolded states and the transition between them.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas
- Departamento de Bioquímica
- Facultad de Medicina
- Universidad Nacional Autónoma de México
- 04510 Ciudad de México
| | - Miguel Costas
- Laboratorio de Biofisicoquímica
- Departamento de Fisicoquímica
- Facultad de Química
- Universidad Nacional Autónoma de México
- 04510 Ciudad de México
| | - Adela Rodríguez-Romero
- Laboratorio de Química de Biomacromoléculas 3
- Departamento de Química de Biomacromoléculas
- Instituto de Química
- Universidad Nacional Autónoma de México
- 04510 Ciudad de México
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas
- Departamento de Bioquímica
- Facultad de Medicina
- Universidad Nacional Autónoma de México
- 04510 Ciudad de México
| |
Collapse
|
7
|
Lara-González S, Estrella-Hernández P, Ochoa-Leyva A, Del Carmen Portillo-Téllez M, Caro-Gómez LA, Figueroa-Angulo EE, Salgado-Lugo H, Miranda Ozuna JFT, Ortega-López J, Arroyo R, Brieba LG, Benítez-Cardoza CG. Structural and thermodynamic folding characterization of triosephosphate isomerases from Trichomonas vaginalis reveals the role of destabilizing mutations following gene duplication. Proteins 2013; 82:22-33. [PMID: 23733417 DOI: 10.1002/prot.24333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 11/07/2022]
Abstract
We report the structures and thermodynamic analysis of the unfolding of two triosephosphate isomerases (TvTIM1 and TvTIM2) from Trichomonas vaginalis. Both isoforms differ by the character of four amino acids: E/Q 18, I/V 24, I/V 45, and P/A 239. Despite the high sequence and structural similarities between both isoforms, they display substantial differences in their stabilities. TvTIM1 (E18, I24, I45, and P239) is more stable and less dissociable than TvTIM2 (Q18, V24, V45, and A239). We postulate that the identities of residues 24 and 45 are responsible for the differences in monomer stability and dimer dissociability, respectively. The structural difference between both amino acids is one methyl group. In TvTIMs, residue 24 is involved in packing α-helix 1 against α-helix 2 of each monomer and residue 45 is located at the center of the dimer interface forming a "ball and socket" interplay with a hydrophobic cavity. The mutation of valine at position 45 for an alanine in TvTIM2 produces a protein that migrates as a monomer by gel filtration. A comparison with known TIM structures indicates that this kind of interplay is a conserved feature that stabilizes dimeric TIM structures. In addition, TvTIMs are located in the cytoplasm and in the membrane. As TvTIM2 is an easily dissociable dimer, the dual localization of TvTIMs may be related to the acquisition of a moonlighting activity of monomeric TvTIM2. To our knowledge, this is the simplest example of how a single amino acid substitution can provide alternative function to a TIM barrel protein.
Collapse
Affiliation(s)
- Samuel Lara-González
- IPICYT, División de Biología Molecular, Camino a la Presa San José 2055, San Luis Potosí, San Luis Potosí, México, CP 78216
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Tellez LA, Blancas-Mejia LM, Carrillo-Nava E, Mendoza-Hernández G, Cisneros DA, Fernández-Velasco DA. Thermal Unfolding of Triosephosphate Isomerase from Entamoeba histolytica: Dimer Dissociation Leads to Extensive Unfolding. Biochemistry 2008; 47:11665-73. [DOI: 10.1021/bi801360k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis A. Tellez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - Luis M. Blancas-Mejia
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - Ernesto Carrillo-Nava
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - Guillermo Mendoza-Hernández
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - David A. Cisneros
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, and Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF
| |
Collapse
|
9
|
Rao MK, Chapman TR, Finke JM. Crystallographic B-Factors Highlight Energetic Frustration in Aldolase Folding. J Phys Chem B 2008; 112:10417-31. [DOI: 10.1021/jp7117295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maithreyi K. Rao
- Department of Chemistry Oakland University Rochester, Michigan 48309-4477
| | - Tracy R. Chapman
- Department of Chemistry Oakland University Rochester, Michigan 48309-4477
| | - John M. Finke
- Department of Chemistry Oakland University Rochester, Michigan 48309-4477
| |
Collapse
|
10
|
Hernández-Alcántara G, Rodríguez-Romero A, Reyes-Vivas H, Peon J, Cabrera N, Ortiz C, Enríquez-Flores S, De la Mora-De la Mora I, López-Velázquez G. Unraveling the mechanisms of tryptophan fluorescence quenching in the triosephosphate isomerase from Giardia lamblia. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1493-500. [PMID: 18620084 DOI: 10.1016/j.bbapap.2008.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Revised: 05/09/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
In the native state several proteins exhibit a quenching of fluorescence of their tryptophans. We studied triosephosphate isomerase from Giardia lamblia (GlTIM) to dissect the mechanisms that account for the quenching of fluorescence of its Trp. GlTIM contains four Trp per monomer (Trp75, Trp162, Trp173, and Trp196) distributed throughout the 3D structure. The fluorescence of the denatured enzyme is 3-fold higher than that of native GlTIM. To ascertain the origin of this phenomenon, single and triple mutants of Trp per Phe were made. The intrinsic fluorescence was determined, and the data were interpreted on the basis of the crystal structure of the enzyme. Our data show that the fluorescence of all Trp residues is quenched through two different mechanisms. In one, fluorescence is quenched by aromatic-aromatic interactions due to the proximity and orientation of the indole groups of Trp196 and Trp162. The magnitude of the quenching of fluorescence in Trp162 is higher than in the other three Trp. Fluorescence quenching is also due to energy transfer to the charged residues that surround Trp 75, 173 and 196. Further analysis of the fluorescence of GlTIM showed that, among TIMs from other parasites, Trp at position 12 exhibits rather unique properties.
Collapse
|
11
|
Peimbert M, Domínguez-Ramírez L, Fernández-Velasco DA. Hydrophobic Repacking of the Dimer Interface of Triosephosphate Isomerase by in Silico Design and Directed Evolution. Biochemistry 2008; 47:5556-64. [DOI: 10.1021/bi702502k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mariana Peimbert
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF, Mexico
| | - Lenin Domínguez-Ramírez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF, Mexico
| | - D. Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apdo. Postal 70-159, 04510 México, DF, Mexico
| |
Collapse
|
12
|
Chu CH, Lai YJ, Huang H, Sun YJ. Kinetic and structural properties of triosephosphate isomerase from Helicobacter pylori. Proteins 2008; 71:396-406. [PMID: 17957775 DOI: 10.1002/prot.21709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triosephosphate isomerase (TIM) catalyzes the interconversion between dihydroxyacetone phosphate and D-glyceraldehyde-3-phosphate in the glycolysis-gluconeogenesis metabolism pathway. The Helicobacter pylori TIM gene (HpTIM) was cloned, and HpTIM was expressed and purified. The enzymatic activity of HpTIM for the substrate GAP was determined (K(m) = 3.46 +/- 0.23 mM and k(cat) = 8.8 x 10(4) min(-1)). The crystal structure of HpTIM was determined by molecular replacement at 2.3 A resolution. The overall structure of HpTIM was (beta/alpha)beta(beta/alpha)(6), which resembles the common TIM barrel fold, (beta/alpha)(8); however, a helix is missing after the second beta-strand. The conformation of loop 6 and binding of phosphate ion suggest that the determined structure of HpTIM was in the "closed" state. A highly conserved Arg-Asp salt bridge in the "DX(D/N)G" motif of most TIMs is absent in HpTIM because the sequence of this motif is "(211)SVDG(214)." To determine the significance of this salt bridge to HpTIM, four mutants, including K183S, K183A, D213Q, and D213A, were constructed and characterized. The results suggest that this conserved salt bridge is not essential for the enzymatic activity of HpTIM; however, it might contribute to the conformational stability of HpTIM.
Collapse
Affiliation(s)
- Chen-Hsi Chu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | | | | | | |
Collapse
|
13
|
Reyes-López CA, González-Mondragón E, Benítez-Cardoza CG, Chánez-Cárdenas ME, Cabrera N, Pérez-Montfort R, Hernández-Arana A. The conserved salt bridge linking two C-terminal β/α units in homodimeric triosephosphate isomerase determines the folding rate of the monomer. Proteins 2008; 72:972-9. [DOI: 10.1002/prot.21994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
|
15
|
Abstract
Kinetic simulations of the folding and unfolding of triosephosphate isomerase (TIM) from yeast were conducted using a single monomer gammaTIM polypeptide chain that folds as a monomer and two gammaTIM chains that fold to the native dimer structure. The basic protein model used was a minimalist Gō model using the native structure to determine attractive energies in the protein chain. For each simulation type--monomer unfolding, monomer refolding, dimer unfolding, and dimer refolding--thirty simulations were conducted, successfully capturing each reaction in full. Analysis of the simulations demonstrates four main conclusions. First, all four simulation types have a similar "folding order", i.e., they have similar structures in intermediate stages of folding between the unfolded and folded state. Second, despite this similarity, different intermediate stages are more or less populated in the four different simulations, with 1), no intermediates populated in monomer unfolding; 2), two intermediates populated with beta(2)-beta(4) and beta(1)-beta(5) regions folded in monomer refolding; 3), two intermediates populated with beta(2)-beta(3) and beta(2)-beta(4) regions folded in dimer unfolding; and 4), two intermediates populated with beta(1)-beta(5) and beta(1)-beta(5) + beta(6) + beta(7) + beta(8) regions folded in dimer refolding. Third, simulations demonstrate that dimer binding and unbinding can occur early in the folding process before complete monomer-chain folding. Fourth, excellent agreement is found between the simulations and MPAX (misincorporation proton alkyl exchange) experiments. In total, this agreement demonstrates that the computational Gō model is accurate for gammaTIM and that the energy landscape of gammaTIM appears funneled to the native state.
Collapse
Affiliation(s)
- Brijesh Patel
- Department of Chemistry, Oakland University, Rochester, Michigan, USA
| | | |
Collapse
|
16
|
Nájera H, Dagdug L, Fernández-Velasco DA. Thermodynamic and kinetic characterization of the association of triosephosphate isomerase: the role of diffusion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:985-94. [PMID: 17644053 DOI: 10.1016/j.bbapap.2007.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 05/26/2007] [Accepted: 06/13/2007] [Indexed: 12/12/2022]
Abstract
It is known that diffusion plays a central role in the folding of small monomeric proteins and in the rigid-body association of proteins, however, the role of diffusion in the association of the folding intermediates of oligomeric proteins has been scarcely explored. In this work, catalytic activity and fluorescence measurements were used to study the effect of viscosity in the unfolding and refolding of the homodimeric enzyme triosephosphate isomerase from Saccharamyces cerevisiae. Two transitions were found by equilibrium and kinetic experiments, suggesting a three-state model with a monomeric intermediate. Glycerol barely affects DeltaG(0)(fold) whereas DeltaG(0)(assoc) becomes more favourable in the presence of the cosolvent. From 0 to 60% (v/v) glycerol, the association rate constant showed a near unitary dependence on solvent viscosity. However, at higher glycerol concentrations deviations from Kramers theory were observed. The dissociation rate constant showed a viscosity effect much higher than one. This may be related to secondary effects such as short-range glycerol-induced repulsion between monomers. Nevertheless, after comparison under isostability conditions, a slope near one was also observed for the dissociation rate. These results strongly suggest that the bimolecular association producing the native dimer is limited by diffusional events of the polypeptide chains through the solvent.
Collapse
Affiliation(s)
- Hugo Nájera
- Area Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México.
| | | | | |
Collapse
|
17
|
Vázquez-Pérez AR, Fernández-Velasco DA. Pressure and Denaturants in the Unfolding of Triosephosphate Isomerase: The Monomeric Intermediates of the Enzymes from Saccharomyces cerevisiae and Entamoeba histolytica. Biochemistry 2007; 46:8624-33. [PMID: 17595057 DOI: 10.1021/bi061879j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Triosephosphate isomerase (TIM) is a dimeric enzyme formed by two identical (beta/alpha)8 barrels. In this work, we compare the unfolding and refolding of the TIMs from Entamoeba histolytica (EhTIM) and baker's yeast (yTIM). A monomeric intermediate was detected in the GdnHCl-induced unfolding of EhTIM. The thermodynamic, spectroscopic, catalytic, and hydrodynamic properties of this intermediate were found to be very similar to those previously described for a monomeric intermediate of yTIM observed in GdnHCl. Monomer unfolding was reversible for both TIMs; however, the dissociation step was reversible in yTIM and irreversible in EhTIM. Monomer unfolding induced by high pressure in the presence of GdnHCl was a reversible process. DeltaGUnf, DeltaVUnf, and P1/2 were obtained for the 0.7-1.2 M GdnHCl range. The linear extrapolation of these thermodynamic parameters to the absence of denaturant showed the same values for both intermediates. The DeltaVUnfH2O values calculated for EhTIM and yTIM monomeric intermediates are the same within experimental error (-57 +/- 10 and -76 +/- 14 mL/mol, respectively). These DeltaVUnf H2O values are smaller than those reported for the unfolding of monomeric proteins of similar size, suggesting that TIM intermediates are only partially hydrated. |DeltaVUnf| increased with denaturant concentration; this behavior is probably related to structural changes in the unfolded state induced by GdnHCl and pressure. From the thermodynamic parameters that were obtained, it is predicted that in the absence of denaturants, pressure would induce monomer unfolding (P1/2 approximately 140 MPa) prior to dimer dissociation (P1/2 approximately 580 MPa). Therefore, dimerization prevents the pressure unfolding of the monomer.
Collapse
Affiliation(s)
- Adrián R Vázquez-Pérez
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, México D.F., 04510 Mexico
| | | |
Collapse
|
18
|
González-Mondragón E, Zubillaga RA, Hernández-Arana A. Effect of a specific inhibitor on the unfolding and refolding kinetics of dimeric triosephosphate isomerase: Establishing the dimeric and similarly structured nature of the main transition states on the forward and backward reactions. Biophys Chem 2007; 125:172-8. [PMID: 16919384 DOI: 10.1016/j.bpc.2006.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 10/24/2022]
Abstract
2-Phosphoglycolate (PGA), a strong competitive inhibitor of the dimeric enzyme triosephosphate isomerase (TIM), brings about a large decrease in the unfolding rate constant of the protein. The data set of rate constants versus ligand concentration may be equally well explained by regarding either a monomeric or a dimeric transition state (TS). However, if the thermodynamics for binding of PGA to native TIM is taken into account, it becomes clear that a dimeric TS is the right assumption. Furthermore, by studying the effect of the ligand on the second-order refolding reaction, we found results indicating similar PGA-binding affinities to be present in the transition states for the rate-limiting steps of the forward and backward reactions. Most likely, therefore, both TS resemble each other in respect to the active site architecture. It should be mentioned, however, that our data do not rule out the possible occurrence of an unstable, (partially) folded monomeric intermediate, which would rapidly interconvert with the unfolded monomer.
Collapse
Affiliation(s)
- Edith González-Mondragón
- Area de Biofisicoquímica, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa, D.F. 09340, México
| | | | | |
Collapse
|
19
|
Jang DS, Lee HJ, Lee B, Hong BH, Cha HJ, Yoon J, Lim K, Yoon YJ, Kim J, Ree M, Lee HC, Choi KY. Detection of an intermediate during the unfolding process of the dimeric ketosteroid isomerase. FEBS Lett 2006; 580:4166-71. [PMID: 16828747 DOI: 10.1016/j.febslet.2006.06.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 10/24/2022]
Abstract
Failure to detect the intermediate in spite of its existence often leads to the conclusion that two-state transition in the unfolding process of the protein can be justified. In contrast to the previous equilibrium unfolding experiment fitted to a two-state model by circular dichroism and fluorescence spectroscopies, an equilibrium unfolding intermediate of a dimeric ketosteroid isomerase (KSI) could be detected by small angle X-ray scattering (SAXS) and analytical ultracentrifugation. The sizes of KSI were determined to be 18.7A in 0M urea, 17.3A in 5.2M urea, and 25.1A in 7M urea by SAXS. The size of KSI in 5.2M urea was significantly decreased compared with those in 0M and 7M urea, suggesting the existence of a compact intermediate. Sedimentation velocity as obtained by ultracentrifugation confirmed that KSI in 5.2M urea is distinctly different from native and fully-unfolded forms. The sizes measured by pulse field gradient nuclear magnetic resonance (NMR) spectroscopy were consistent with those obtained by SAXS. Discrepancy of equilibrium unfolding studies between size measurement methods and optical spectroscopies might be due to the failure in detecting the intermediate by optical spectroscopic methods. Further characterization of the intermediate using (1)H NMR spectroscopy and Kratky plot supported the existence of a partially-folded form of KSI which is distinct from those of native and fully-unfolded KSIs. Taken together, our results suggest that the formation of a compact intermediate should precede the association of monomers prior to the dimerization process during the folding of KSI.
Collapse
Affiliation(s)
- Do Soo Jang
- National Research Laboratory of Protein Folding and Engineering, Division of Molecular Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Moiseev VM, Rodina EV, Avaeva SM. Effect of mutation of the conservative glycine residues Gly100 and Gly147 on stability of Escherichia coli inorganic pyrophosphatase. BIOCHEMISTRY. BIOKHIMIIA 2005; 70:848-57. [PMID: 16212540 DOI: 10.1007/s10541-005-0194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Sequence alignment of inorganic pyrophosphatases (PPases) isolated from the different organisms shows that glycine residues Gly100 and Gly147 are conservative. These residues are located in flexible segments of a polypeptide chain that have similar structure in the different PPases. To elucidate the possible role of these segments in the functioning of PPase, the mutant variants Gly100Ala and Gly147Val in conservative loops have been obtained. In this work, the influence of these mutations on stability of PPase globular structure has been studied. Differential scanning calorimetry has been used to determine the apparent enthalpy of thermal denaturation for the native PPase and its mutant variants Gly100Ala and Gly147Val. Guanidine hydrochloride-induced chemical denaturation of PPase has also been studied. It is shown that the substitutions of Gly100 and Gly147 result in overall destabilization of the globular structure.
Collapse
Affiliation(s)
- V M Moiseev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | |
Collapse
|
21
|
Pan H, Raza AS, Smith DL. Equilibrium and Kinetic Folding of Rabbit Muscle Triosephosphate Isomerase by Hydrogen Exchange Mass Spectrometry. J Mol Biol 2004; 336:1251-63. [PMID: 15037083 DOI: 10.1016/j.jmb.2003.12.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 12/21/2003] [Accepted: 12/22/2003] [Indexed: 11/26/2022]
Abstract
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.
Collapse
Affiliation(s)
- Hai Pan
- Department of Chemistry, Nebraska Center for Mass Spectrometry, University of Nebraska-Lincoln, 29 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | | | | |
Collapse
|
22
|
Kang EH, Mansfield ML, Douglas JF. Numerical path integration technique for the calculation of transport properties of proteins. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 69:031918. [PMID: 15089333 DOI: 10.1103/physreve.69.031918] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Revised: 09/09/2003] [Indexed: 05/24/2023]
Abstract
We present a new technique for the computation of both the translational diffusivity and the intrinsic viscosity of macromolecules, and apply it here to proteins. Traditional techniques employ finite element representations of the surface of the macromolecule, taking the surface to be a union of spheres or of polygons, and have computation times that are O(m(3)) where m is the number of finite elements. The new technique, a numerical path integration method, has computation times that are only O(m). We have applied the technique to approximately 1000 different protein structures. The computed translational diffusivities and intrinsic viscosities are, to lowest order, proportional respectively to N(-1/3)(R) and N(0)(R), where N(R) is the number of amino acid residues in the protein. Our calculations also show some correlation with the shape of the molecule, as represented by the ratio m(2)/m(3), where m(2) and m(3) are, respectively, the middle and the smallest of the three principal moments of inertia. Comparisons with a number of experimental results are also performed, with results generally consistent to within experimental error.
Collapse
Affiliation(s)
- Eun-Hee Kang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | | | | |
Collapse
|
23
|
Shu Q, Frieden C. Urea-Dependent Unfolding of Murine Adenosine Deaminase: Sequential Destabilization As Measured by 19F NMR. Biochemistry 2004; 43:1432-9. [PMID: 14769019 DOI: 10.1021/bi035651x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Murine adenosine deaminase (mADA) is a 40 kDa (beta/alpha)(8)-barrel protein consisting of eight central beta-strands and eight peripheral alpha-helices containing four tryptophan residues. In this study, we investigated the urea-dependent behavior of the protein labeled with 6-fluorotryptophan (6-(19)F-Trp). The (19)F NMR spectrum of 6-(19)F-Trp-labeled mADA reveals four distinct resonances in the native state and three partly overlapped resonances in the unfolded state. The resonances were assigned unambiguously by site-directed mutagenesis. Equilibrium unfolding of 6-(19)F-Trp-labeled mADA was monitored using (19)F NMR based on these assignments. The changes in intensity of folded and unfolded resonances as a function of urea concentration show transition midpoints consistent with data observed by far-UV CD and fluorescence spectroscopy, indicating that conformational changes in mADA during urea unfolding can be followed by (19)F NMR. Chemical shifts of the (19)F resonances exhibited different changes between 1.0 and 6.0 M urea, indicating that local structures around 6-(19)F-Trp residues change differently. The urea-induced changes in local structure around four 6-(19)F-Trp residues of mADA were analyzed on the basis of the tertiary structure and chemical shifts of folded resonances. The results reveal that different local regions in mADA have different urea-dependent behavior, and that local regions of mADA change sequentially from native to intermediate topologies on the unfolding pathway.
Collapse
Affiliation(s)
- Qin Shu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
24
|
Zomosa-Signoret V, Hernández-Alcántara G, Reyes-Vivas H, Martínez-Martínez E, Garza-Ramos G, Pérez-Montfort R, Tuena De Gómez-Puyou M, Gómez-Puyou A. Control of the reactivation kinetics of homodimeric triosephosphate isomerase from unfolded monomers. Biochemistry 2003; 42:3311-8. [PMID: 12641463 DOI: 10.1021/bi0206560] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homodimeric triosephosphate isomerases from Trypanosoma cruzi (TcTIM) and Trypanosoma brucei (TbTIM) have markedly similar catalytic properties and 3-D structures; their overall amino acid sequence identity is 68% and 85% in their interface residues. Nonetheless, active dimer formation from guanidinium chloride unfolded monomers is faster and more efficient in TcTIM than in TbTIM. The enzymes thus provide a unique opportunity for exploring the factors that control the formation of active dimers. The kinetics of reactivation at different protein concentrations showed that the process involved three reactions: monomer folding, association of folded monomers, and a transition from inactive to active dimers. The rate constants of the reactions indicated that, at relatively low protein concentrations, the rate-limiting step of reactivation was the association reaction; at high protein concentrations the transition of inactive to active dimers was rate limiting. The rates of the latter two reactions were higher in TcTIM than in TbTIM. Studies with a mutant of TcTIM that had the interface residues of TbTIM showed that the association rate constant was similar to that of TbTIM. However, the rate of the transition from inactive to active dimers was close to that of TcTIM; thus, this transition depends on the noninterfacial portion of the enzymes. When unfolded monomers of TcTIM and TbTIM were allowed to reactivate together, TcTIM, the hybrid, and TbTIM were formed in a proportion of 1:0.9:0.2. This distribution suggests that, in the hybrid, the characteristics of the TcTIM monomers influence the properties of TbTIM monomers.
Collapse
Affiliation(s)
- Viviana Zomosa-Signoret
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70243, 04510 México, D. F., Mexico
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nájera H, Costas M, Fernández-Velasco DA. Thermodynamic characterization of yeast triosephosphate isomerase refolding: insights into the interplay between function and stability as reasons for the oligomeric nature of the enzyme. Biochem J 2003; 370:785-92. [PMID: 12472469 PMCID: PMC1223230 DOI: 10.1042/bj20021439] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2002] [Revised: 12/02/2002] [Accepted: 12/10/2002] [Indexed: 11/17/2022]
Abstract
The reasons underlying the oligomeric nature of some proteins such as triosephosphate isomerase (TIM) are unclear. It has been proposed that this enzyme is an oligomer, mainly because of its stability rather than for functional reasons. To address this issue, the reversible denaturation and renaturation of the homodimeric TIM from baker's yeast ( Saccharomyces cerevisiae ) induced by guanidinium chloride and urea have been characterized by spectroscopic, functional and hydrodynamic techniques. The unfolding and refolding of this enzyme are not coincident after 'conventional' equilibrium times. Unfolding experiments did not reach equilibrium, owing to a very slow dissociation and/or unfolding process. By contrast, equilibrium was reached in the refolding direction. The simplest equilibrium pathway compatible with the obtained data was found to be a three-state process involving an inactive and expanded monomer. The Gibbs energy changes for monomer folding (delta G (0)(fold) = -16.6+/-0.7 kJ x mol(-1)) and monomer association (delta G (0)(assoc) = -70.3+/-1.1 kJ x mol(-1)) were calculated from data obtained in the two denaturants. From an analysis of the present data and data from the literature on the stability of TIM from different species and for other beta/alpha barrels, and model simulations on the effect of stability in the catalytic activity of the enzyme, it is concluded that the low stability of the monomers is neither the only, nor the main, cause for the dimeric nature of TIM. There is interplay between function and stability.
Collapse
Affiliation(s)
- Hugo Nájera
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria. México, D.F. 04510, México
| | | | | |
Collapse
|
26
|
Weljie AM, Yamniuk AP, Yoshino H, Izumi Y, Vogel HJ. Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins. Protein Sci 2003; 12:228-36. [PMID: 12538886 PMCID: PMC2312419 DOI: 10.1110/ps.0226203] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Pulsed-field gradient (PFG) diffusion NMR spectroscopy studies were conducted with several helix-loop-helix regulatory Ca(2+)-binding proteins to characterize the conformational changes associated with Ca(2+)-saturation and/or binding targets. The calmodulin (CaM) system was used as a basis for evaluation, with similar hydrodynamic radii (R(h)) obtained for apo- and Ca(2+)-CaM, consistent with previously reported R(h) data. In addition, conformational changes associated with CaM binding to target peptides from myosin light chain kinase (MLCK), phosphodiesterase (PDE), and simian immunodeficiency virus (SIV) were accurately determined compared with small-angle X-ray scattering results. Both sets of data demonstrate the well-established collapse of the extended Ca(2+)-CaM molecule into a globular complex upon peptide binding. The R(h) of CaM complexes with target peptides from CaM-dependent protein kinase I (CaMKI) and an N-terminal portion of the SIV peptide (SIV-N), as well as the anticancer drug cisplatin were also determined. The CaMKI complex demonstrates a collapse analogous to that observed for MLCK, PDE, and SIV, while the SIV-N shows only a partial collapse. Interestingly, the covalent CaM-cisplatin complex shows a near complete collapse, not expected from previous studies. The method was extended to related calcium binding proteins to show that the R(h) of calcium and integrin binding protein (CIB), calbrain, and the calcium-binding region from soybean calcium-dependent protein kinase (CDPK) decrease on Ca(2+)-binding to various extents. Heteronuclear NMR spectroscopy suggests that for CIB and calbrain this is likely because of shifting the equilibrium from unfolded to folded conformations, with calbrain forming a dimer structure. These results demonstrate the utility of PFG-diffusion NMR to rapidly and accurately screen for molecular size changes on protein-ligand and protein-protein interactions for this class of proteins.
Collapse
Affiliation(s)
- Aalim M Weljie
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
27
|
Rodríguez-Romero A, Hernández-Santoyo A, del Pozo Yauner L, Kornhauser A, Fernández-Velasco DA. Structure and inactivation of triosephosphate isomerase from Entamoeba histolytica. J Mol Biol 2002; 322:669-75. [PMID: 12270704 DOI: 10.1016/s0022-2836(02)00809-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Triosephosphate isomerase (TIM) has been proposed as a target for drug design. TIMs from several parasites have a cysteine residue at the dimer interface, whose derivatization with thiol-specific reagents induces enzyme inactivation and aggregation. TIMs lacking this residue, such as human TIM, are less affected. TIM from Entamoeba histolytica (EhTIM) has the interface cysteine residue and presents more than ten insertions when compared with the enzyme from other pathogens. To gain further insight into the role that interface residues play in the stability and reactivity of these enzymes, we determined the high-resolution structure and characterized the effect of methylmethane thiosulfonate (MMTS) on the activity and conformational properties of EhTIM. The structure of this enzyme was determined at 1.5A resolution using molecular replacement, observing that the dimer is not symmetric. EhTIM is completely inactivated by MMTS, and dissociated into stable monomers that possess considerable secondary structure. Structural and spectroscopic analysis of EhTIM and comparison with TIMs from other pathogens reveal that conformational rearrangements of the interface after dissociation, as well as intramonomeric contacts formed by the inserted residues, may contribute to the unusual stability of the derivatized EhTIM monomer.
Collapse
Affiliation(s)
- Adela Rodríguez-Romero
- Laboratorio Universitario de Estructura de Proteínas and Departamento de Bioquímica, Instituto de Química, Universidad Nacional Autónoma de México, DF, Mexico.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The (beta/alpha)(8) barrel is the most commonly occurring fold among enzymes. A key step towards rationally engineering (beta/alpha)(8) barrel proteins is to understand their underlying structural organization and folding energetics. Using misincorporation proton-alkyl exchange (MPAX), a new tool for solution structural studies of large proteins, we have performed a native-state exchange analysis of the prototypical (beta/alpha)(8) barrel triosephosphate isomerase. Three cooperatively unfolding subdomains within the structure are identified, as well as two partially unfolded forms of the protein. The C-terminal domain coincides with domains reported to exist in four other (beta/alpha)(8) barrels, but the two N-terminal domains have not been observed previously. These partially unfolded forms may represent sequential intermediates on the folding pathway of triosephosphate isomerase. The methods reported here should be applicable to a variety of other biological problems involving protein conformational changes.
Collapse
Affiliation(s)
- Joshua A Silverman
- Department of Biochemistry, Stanford University, 279 Campus Drive West, Stanford, CA 94305, USA
| | | |
Collapse
|
29
|
Maithal K, Ravindra G, Nagaraj G, Singh SK, Balaram H, Balaram P. Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability. Protein Eng Des Sel 2002; 15:575-84. [PMID: 12200540 DOI: 10.1093/protein/15.7.575] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A mutation at the dimer interface of Plasmodium falciparum triosephosphate isomerase (PfTIM) was created by mutating a tyrosine residue at position 74, at the subunit interface, to glycine. Tyr74 is a critical residue, forming a part of an aromatic cluster at the interface. The resultant mutant, Y74G, was found to have considerably reduced stability compared with the wild-type protein (TIMWT). The mutant was found to be much less stable to denaturing agents such as urea and guanidinium chloride. Fluorescence and circular dichroism studies revealed that the Y74G mutant and TIMWT have similar spectroscopic properties, suggestive of similar folded structures. Further, the Y74G mutant also exhibited a concentration-dependent loss of enzymatic activity over the range 0.1-10 microM. In contrast, the wild-type enzyme did not show a concentration dependence of activity in this range. Fluorescence quenching of intrinsic tryptophan emission was much more efficient in case of Y74G than TIMWT, suggestive of greater exposure of Trp11, which lies adjacent to the dimer interface. Analytical gel filtration studies revealed that in Y74G, monomeric and dimeric species are in dynamic equilibrium, with the former predominating at low protein concentration. Spectroscopic studies established that the monomeric form of the mutant is largely folded. Low concentrations of urea also drive the equilibrium towards the monomeric form. These studies suggest that the replacement of tyrosine with a small residue at the interface of triosephosphate isomerase weakens the subunit-subunit interactions, giving rise to structured, but enzymatically inactive, monomers at low protein concentration.
Collapse
Affiliation(s)
- Kapil Maithal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | | | | | |
Collapse
|
30
|
Kursula I, Partanen S, Lambeir AM, Wierenga RK. The importance of the conserved Arg191-Asp227 salt bridge of triosephosphate isomerase for folding, stability, and catalysis. FEBS Lett 2002; 518:39-42. [PMID: 11997014 DOI: 10.1016/s0014-5793(02)02639-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triosephosphate isomerase (TIM) has a conserved salt bridge 20 A away from both the active site and the dimer interface. In this study, four salt bridge mutants of Trypanosoma brucei brucei TIM were characterized. The folding and stability of the mutants are impaired compared to the wild-type enzyme. This salt bridge is part of a hydrogen bonding network which tethers the C-terminal beta7alpha7beta8alpha8 unit to the bulk of the protein. In the variants D227N, D227A, and R191S, this network is preserved, as can be deduced from the structure of the R191S variant. In the R191A variant, the side chain at position 191 cannot contribute to this network. Also the catalytic power of this variant is most affected.
Collapse
Affiliation(s)
- Inari Kursula
- Department of Biochemistry and Biocenter Oulu, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland
| | | | | | | |
Collapse
|
31
|
Chánez-Cárdenas ME, Fernández-Velasco DA, Vázquez-Contreras E, Coria R, Saab-Rincón G, Pérez-Montfort R. Unfolding of triosephosphate isomerase from Trypanosoma brucei: identification of intermediates and insight into the denaturation pathway using tryptophan mutants. Arch Biochem Biophys 2002; 399:117-29. [PMID: 11888197 DOI: 10.1006/abbi.2001.2749] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The unfolding of triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) induced by guanidine hydrochloride (GdnHCl) was characterized. In contrast to other TIMs, where unfolding is a two or three state process, TbTIM showed two intermediates. The solvent exposure of different regions of the protein in the unfolding process was characterized spectroscopically with mutant proteins in which tryptophans (W) were changed to phenlylalanines (F). The midpoints of the transitions measured by circular dichroism, intrinsic fluorescence, and catalytic activity, as well as the increase in 1-aniline 8-naphthalene sulfonate fluorescence, show that the native state was destabilized in the W12F and W12F/W193F mutants, relative to the wild-type enzyme. Using the hydrodynamic profile for the unfolding of a monomeric TbTIM mutant (RMM0-1TIM) measured by size-exclusion chromatography as a standard, we determined the association state of these intermediates: D*, a partially expanded dimer, and M*, a partially expanded monomeric intermediate. High-molecular-weight aggregates were also detected. At concentrations over 2.0 M GdnHCl, the hydrodynamic properties of TbTIM and RMM0-1TIM are the same, suggesting that the dimeric intermediate dissociates and the unfolding proceeds through the denaturation of an expanded monomeric intermediate. The analysis of the denaturation process of the TbTIM mutants suggests a sequence for the gradual exposure of W residues: initially the expansion of the native dimer to form D* affects the environments of W12 and W159. The dissociation of D* to M* and further unfolding of M* to U induces the exposure of W170. The role of protein concentration in the formation of intermediates and aggregates is discussed considering the irreversibility of this unfolding process.
Collapse
Affiliation(s)
- María Elena Chánez-Cárdenas
- Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D.F., México
| | | | | | | | | | | |
Collapse
|
32
|
Choy WY, Mulder FAA, Crowhurst KA, Muhandiram DR, Millett IS, Doniach S, Forman-Kay JD, Kay LE. Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J Mol Biol 2002; 316:101-12. [PMID: 11829506 DOI: 10.1006/jmbi.2001.5328] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The size distribution of molecules within an unfolded state of the N-terminal SH3 domain of drk (drkN SH3) has been studied by small-angle X-ray scattering (SAXS) and pulsed-field-gradient NMR (PFG-NMR) methods. An empirical model to describe this distribution in the unfolded state ensemble has been proposed based on (i) the ensemble-averaged radius of gyration and hydrodynamic radius derived from the SAXS and PFG-NMR data, respectively, and (ii) a histogram of the size distribution of structures obtained from preliminary analyses of structural parameters recorded on the unfolded state. Results show that this unfolded state, U(exch), which exists in equilibrium with the folded state, F(exch), under non-denaturing conditions, is relatively compact, with the average size of conformers within the unfolded state ensemble only 30-40% larger than the folded state structure. In addition, the model predicts a significant overlap in the size range of structures comprising the U(exch) state with those in a denatured state obtained by addition of 2 M guanidinium chloride.
Collapse
Affiliation(s)
- Wing-Yiu Choy
- Protein Engineering Network Centers of Excellence and Department of Medical Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Benítez-Cardoza CG, Rojo-Domínguez A, Hernández-Arana A. Temperature-induced denaturation and renaturation of triosephosphate isomerase from Saccharomyces cerevisiae: evidence of dimerization coupled to refolding of the thermally unfolded protein. Biochemistry 2001; 40:9049-58. [PMID: 11467968 DOI: 10.1021/bi010528w] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The thermal denaturation of the dimeric enzyme triosephosphate isomerase (TIM) from Saccharomyces cerevisiae was studied by spectroscopic and calorimetric methods. At low protein concentration the structural transition proved to be reversible in thermal scannings conducted at a rate greater than 1.0 degrees C min(-1). Under these conditions, however, the denaturation-renaturation cycle exhibited marked hysteresis. The use of lower scanning rates lead to pronounced irreversibility. Kinetic studies indicated that denaturation of the enzyme likely consists of an initial first-order reaction that forms thermally unfolded (U) TIM, followed by irreversibility-inducing reactions which are probably linked to aggregation of the unfolded protein. As judged from CD measurements, U possesses residual secondary structure but lacks most of the tertiary interactions present in native TIM. Furthermore, the large increment in heat capacity upon denaturation suggests that extensive exposure of surface area occurs when U is formed. Above 63 degrees C, reactions leading to irreversibility were much slower than the unfolding process; as a result, U was sufficiently long-lived as to allow an investigation of its refolding kinetics. We found that U transforms into nativelike TIM through a second-order reaction in which association is coupled to the regain of secondary structure. The rate constants for unfolding and refolding of TIM displayed temperature dependences resembling those reported for monomeric proteins but with considerably larger activation enthalpies. Such large temperature dependences seem to be determinant for the occurrence of kinetically controlled transitions and thus constitute a simple explanation for the hysteresis observed in thermal scannings.
Collapse
Affiliation(s)
- C G Benítez-Cardoza
- Area de Biofisicoquímica, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa D.F. 09340, Mexico
| | | | | |
Collapse
|