1
|
He H, Li Y, Zhang L, Ding Z, Shi G. Understanding and application of Bacillus nitrogen regulation: A synthetic biology perspective. J Adv Res 2022:S2090-1232(22)00205-3. [PMID: 36103961 DOI: 10.1016/j.jare.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/22/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022] Open
Abstract
BACKGROUND Nitrogen sources play an essential role in maintaining the physiological and biochemical activity of bacteria. Nitrogen metabolism, which is the core of microorganism metabolism, makes bacteria able to autonomously respond to different external nitrogen environments by exercising complex internal regulatory networks to help them stay in an ideal state. Although various studies have been put forth to better understand this regulation in Bacillus, and many valuable viewpoints have been obtained, these views need to be presented systematically and their possible applications need to be specified. AIM OF REVIEW The intention is to provide a deep and comprehensive understanding of nitrogen metabolism in Bacillus, an important industrial microorganism, and thereby apply this regulatory logic to synthetic biology to improve biosynthesis competitiveness. In addition, the potential researches in the future are also discussed. KEY SCIENTIFIC CONCEPT OF REVIEW Understanding the meticulous regulation process of nitrogen metabolism in Bacillus not only could facilitate research on metabolic engineering but also could provide constructive insights and inspiration for studies of other microorganisms.
Collapse
Affiliation(s)
- Hehe He
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
2
|
Travis BA, Peck JV, Salinas R, Dopkins B, Lent N, Nguyen VD, Borgnia MJ, Brennan RG, Schumacher MA. Molecular dissection of the glutamine synthetase-GlnR nitrogen regulatory circuitry in Gram-positive bacteria. Nat Commun 2022; 13:3793. [PMID: 35778410 PMCID: PMC9249791 DOI: 10.1038/s41467-022-31573-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/21/2022] [Indexed: 11/23/2022] Open
Abstract
How bacteria sense and respond to nitrogen levels are central questions in microbial physiology. In Gram-positive bacteria, nitrogen homeostasis is controlled by an operon encoding glutamine synthetase (GS), a dodecameric machine that assimilates ammonium into glutamine, and the GlnR repressor. GlnR detects nitrogen excess indirectly by binding glutamine-feedback-inhibited-GS (FBI-GS), which activates its transcription-repression function. The molecular mechanisms behind this regulatory circuitry, however, are unknown. Here we describe biochemical and structural analyses of GS and FBI-GS-GlnR complexes from pathogenic and non-pathogenic Gram-positive bacteria. The structures show FBI-GS binds the GlnR C-terminal domain within its active-site cavity, juxtaposing two GlnR monomers to form a DNA-binding-competent GlnR dimer. The FBI-GS-GlnR interaction stabilizes the inactive GS conformation. Strikingly, this interaction also favors a remarkable dodecamer to tetradecamer transition in some GS, breaking the paradigm that all bacterial GS are dodecamers. These data thus unveil unique structural mechanisms of transcription and enzymatic regulation.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jared V Peck
- Cryo-EM core, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Raul Salinas
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Brandon Dopkins
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Nicholas Lent
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Viet D Nguyen
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Mario J Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Richard G Brennan
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA
| | - Maria A Schumacher
- Department of Biochemistry, 307 Research Dr., Box 3711, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
3
|
Gardner JG, Schreier HJ. Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems. Appl Microbiol Biotechnol 2021; 105:8109-8127. [PMID: 34611726 DOI: 10.1007/s00253-021-11614-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
Our current understanding of enzymatic polysaccharide degradation has come from a huge number of in vitro studies with purified enzymes. While this vast body of work has been invaluable in identifying and characterizing novel mechanisms of action and engineering desirable traits into these enzymes, a comprehensive picture of how these enzymes work as part of a native in vivo system is less clear. Recently, several model bacteria have emerged with genetic systems that allow for a more nuanced study of carbohydrate active enzymes (CAZymes) and how their activity affects bacterial carbon metabolism. With these bacterial model systems, it is now possible to not only study a single nutrient system in isolation (i.e., carbohydrate degradation and carbon metabolism), but also how multiple systems are integrated. Given that most environmental polysaccharides are carbon rich but nitrogen poor (e.g., lignocellulose), the interplay between carbon and nitrogen metabolism in polysaccharide-degrading bacteria can now be studied in a physiologically relevant manner. Therefore, in this review, we have summarized what has been experimentally determined for CAZyme regulation, production, and export in relation to nitrogen metabolism for two Gram-positive (Caldicellulosiruptor bescii and Clostridium thermocellum) and two Gram-negative (Bacteroides thetaiotaomicron and Cellvibrio japonicus) polysaccharide-degrading bacteria. By comparing and contrasting these four bacteria, we have highlighted the shared and unique features of each, with a focus on in vivo studies, in regard to carbon and nitrogen assimilation. We conclude with what we believe are two important questions that can act as guideposts for future work to better understand the integration of carbon and nitrogen metabolism in polysaccharide-degrading bacteria. KEY POINTS: • Regardless of CAZyme deployment system, the generation of a local pool of oligosaccharides is a common strategy among Gram-negative and Gram-positive polysaccharide degraders as a means to maximally recoup the energy expenditure of CAZyme production and export. • Due to the nitrogen deficiency of insoluble polysaccharide-containing substrates, Gram-negative and Gram-positive polysaccharide degraders have a diverse set of strategies for supplementation and assimilation. • Future work needs to precisely characterize the energetic expenditures of CAZyme deployment and bolster our understanding of how carbon and nitrogen metabolism are integrated in both Gram-negative and Gram-positive polysaccharide-degrading bacteria, as both of these will significantly influence a given bacterium's suitability for biotechnology applications.
Collapse
Affiliation(s)
- Jeffrey G Gardner
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.
| | - Harold J Schreier
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD, USA.,Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, MD, USA
| |
Collapse
|
4
|
Liu G, Vijayaraman SB, Dong Y, Li X, Andongmaa BT, Zhao L, Tu J, He J, Lin L. Bacillus velezensis LG37: transcriptome profiling and functional verification of GlnK and MnrA in ammonia assimilation. BMC Genomics 2020; 21:215. [PMID: 32143571 PMCID: PMC7060608 DOI: 10.1186/s12864-020-6621-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 02/25/2020] [Indexed: 11/14/2022] Open
Abstract
Background In recent years, interest in Bacillus velezensis has increased significantly due to its role in many industrial water bioremediation processes. In this study, we isolated and assessed the transcriptome of Bacillus velezensis LG37 (from an aquaculture pond) under different nitrogen sources. Since Bacillus species exhibit heterogeneity, it is worth investigating the molecular mechanism of LG37 through ammonia nitrogen assimilation, where nitrogen in the form of molecular ammonia is considered toxic to aquatic organisms. Results Here, a total of 812 differentially expressed genes (DEGs) from the transcriptomic sequencing of LG37 grown in minimal medium supplemented with ammonia (treatment) or glutamine (control) were obtained, from which 56 had Fold Change ≥2. BLAST-NCBI and UniProt databases revealed 27 out of the 56 DEGs were potentially involved in NH4+ assimilation. Among them, 8 DEGs together with the two-component regulatory system GlnK/GlnL were randomly selected for validation by quantitative real-time RT-PCR, and the results showed that expression of all the 8 DEGs are consistent with the RNA-seq data. Moreover, the transcriptome and relative expression analysis were consistent with the transporter gene amtB and it is not involved in ammonia transport, even in the highest ammonia concentrations. Besides, CRISPR-Cas9 knockout and overexpression glnK mutants further evidenced the exclusion of amtB regulation, suggesting the involvement of alternative transporter. Additionally, in the transcriptomic data, a novel ammonium transporter mnrA was expressed significantly in increased ammonia concentrations. Subsequently, OEmnrA and ΔmnrA LG37 strains showed unique expression pattern of specific genes compared to that of wild-LG37 strain. Conclusion Based on the transcriptome data, regulation of nitrogen related genes was determined in the newly isolated LG37 strain to analyse the key regulating factors during ammonia assimilation. Using genomics tools, the novel MnrA transporter of LG37 became apparent in ammonia transport instead of AmtB, which transports ammonium nitrogen in other Bacillus strains. Collectively, this study defines heterogeneity of B. velezensis LG37 through comprehensive transcriptome analysis and subsequently, by genome editing techniques, sheds light on the enigmatic mechanisms controlling the functional genes under different nitrogen sources also reveals the need for further research.
Collapse
Affiliation(s)
- Guangxin Liu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Sarath Babu Vijayaraman
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Yanjun Dong
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Xinfeng Li
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Binda Tembeng Andongmaa
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China
| | - Jiagang Tu
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Li Lin
- State Key Laboratory of Agricultural Microbiology, College of Fisheries and College of Life Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China. .,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, Guangdong, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, National Laboratory for Marine Science and Technology, Qingdao, 266071, Shandong, China.
| |
Collapse
|
5
|
Chen YYM, Chen YY, Hung JL, Chen PM, Chia JS. The GlnR Regulon in Streptococcus mutans Is Differentially Regulated by GlnR and PmrA. PLoS One 2016; 11:e0159599. [PMID: 27454482 PMCID: PMC4959772 DOI: 10.1371/journal.pone.0159599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/30/2016] [Indexed: 12/13/2022] Open
Abstract
GlnR-mediated repression of the GlnR regulon at acidic pH is required for optimal acid tolerance in Streptococcus mutans, the etiologic agent for dental caries. Unlike most streptococci, the GlnR regulon is also regulated by newly identified PmrA (SMUGS5_RS05810) at the transcriptional level in S. mutans GS5. Results from gel mobility shift assays confirmed that both GlnR and PmrA recognized the putative GlnR box in the promoter regions of the GlnR regulon genes. By using a chemostat culture system, we found that PmrA activated the expression of the GlnR regulon at pH 7, and that this activation was enhanced by excess glucose. Deletion of pmrA (strain ΔPmrA) reduced the survival rate of S. mutans GS5 at pH 3 moderately, whereas the GlnR mutant (strain ΔGlnR) exhibited an acid-sensitive phenotype in the acid killing experiments. Elevated biofilm formation in both ΔGlnR and ΔPmrA mutant strains is likely a result of indirect regulation of the GlnR regulon since GlnR and PmrA regulate the regulon differently. Taken together, it is suggested that activation of the GlnR regulon by PmrA at pH 7 ensures adequate biosynthesis of amino acid precursor, whereas repression by GlnR at acidic pH allows greater ATP generation for acid tolerance. The tight regulation of the GlnR regulon in response to pH provides an advantage for S. mutans to better survive in its primary niche, the oral cavity.
Collapse
Affiliation(s)
- Yi-Ywan M. Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| | - Yueh-Ying Chen
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jui-Lung Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Min Chen
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jean-San Chia
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Hauf K, Kayumov A, Gloge F, Forchhammer K. The Molecular Basis of TnrA Control by Glutamine Synthetase in Bacillus subtilis. J Biol Chem 2015; 291:3483-95. [PMID: 26635369 DOI: 10.1074/jbc.m115.680991] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/16/2022] Open
Abstract
TnrA is a master regulator of nitrogen assimilation in Bacillus subtilis. This study focuses on the mechanism of how glutamine synthetase (GS) inhibits TnrA function in response to key metabolites ATP, AMP, glutamine, and glutamate. We suggest a model of two mutually exclusive GS conformations governing the interaction with TnrA. In the ATP-bound state (A-state), GS is catalytically active but unable to interact with TnrA. This conformation was stabilized by phosphorylated L-methionine sulfoximine (MSX), fixing the enzyme in the transition state. When occupied by glutamine (or its analogue MSX), GS resides in a conformation that has high affinity for TnrA (Q-state). The A- and Q-state are mutually exclusive, and in agreement, ATP and glutamine bind to GS in a competitive manner. At elevated concentrations of glutamine, ATP is no longer able to bind GS and to bring it into the A-state. AMP efficiently competes with ATP and prevents formation of the A-state, thereby favoring GS-TnrA interaction. Surface plasmon resonance analysis shows that TnrA bound to a positively regulated promoter fragment binds GS in the Q-state, whereas it rapidly dissociates from a negatively regulated promoter fragment. These data imply that GS controls TnrA activity at positively controlled promoters by shielding the transcription factor in the DNA-bound state. According to size exclusion and multiangle light scattering analysis, the dodecameric GS can bind three TnrA dimers. The highly interdependent ligand binding properties of GS reveal this enzyme as a sophisticated sensor of the nitrogen and energy state of the cell to control the activity of DNA-bound TnrA.
Collapse
Affiliation(s)
- Ksenia Hauf
- From the Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Airat Kayumov
- the Department of Genetics, Kazan Federal University, Kremlevskaya 18, 420008, Kazan, Russia, and
| | - Felix Gloge
- Wyatt Technology Europe, Hochstrasse 12a, 56307 Dernbach, Germany
| | - Karl Forchhammer
- From the Interfaculty Institute for Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany,
| |
Collapse
|
7
|
Schumacher MA, Chinnam NB, Cuthbert B, Tonthat NK, Whitfill T. Structures of regulatory machinery reveal novel molecular mechanisms controlling B. subtilis nitrogen homeostasis. Genes Dev 2015; 29:451-64. [PMID: 25691471 PMCID: PMC4335299 DOI: 10.1101/gad.254714.114] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA and the repressor GlnR. Here, Schumacher et al. describe a comprehensive molecular dissection of this network that reveals novel mechanisms, including oligomeric transformations, by which their inducible signal transduction domains are employed to provide a readout of nitrogen levels. All cells must sense and adapt to changing nutrient availability. However, detailed molecular mechanisms coordinating such regulatory pathways remain poorly understood. In Bacillus subtilis, nitrogen homeostasis is controlled by a unique circuitry composed of the regulator TnrA, which is deactivated by feedback-inhibited glutamine synthetase (GS) during nitrogen excess and stabilized by GlnK upon nitrogen depletion, and the repressor GlnR. Here we describe a complete molecular dissection of this network. TnrA and GlnR, the global nitrogen homeostatic transcription regulators, are revealed as founders of a new structural family of dimeric DNA-binding proteins with C-terminal, flexible, effector-binding sensors that modulate their dimerization. Remarkably, the TnrA sensor domains insert into GS intersubunit catalytic pores, destabilizing the TnrA dimer and causing an unprecedented GS dodecamer-to-tetradecamer conversion, which concomitantly deactivates GS. In contrast, each subunit of the GlnK trimer “templates” active TnrA dimers. Unlike TnrA, GlnR sensors mediate an autoinhibitory dimer-destabilizing interaction alleviated by GS, which acts as a GlnR chaperone. Thus, these studies unveil heretofore unseen mechanisms by which inducible sensor domains drive metabolic reprograming in the model Gram-positive bacterium B. subtilis.
Collapse
Affiliation(s)
- Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Naga Babu Chinnam
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Bonnie Cuthbert
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Nam K Tonthat
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Travis Whitfill
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
8
|
CcpA-mediated catabolite activation of the Bacillus subtilis ilv-leu operon and its negation by either CodY- or TnrA-mediated negative regulation. J Bacteriol 2014; 196:3793-806. [PMID: 25157083 DOI: 10.1128/jb.02055-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis ilv-leu operon functions in the biosynthesis of branched-chain amino acids. It undergoes catabolite activation involving a promoter-proximal cre which is mediated by the complex of CcpA and P-Ser-HPr. This activation of ilv-leu expression is negatively regulated through CodY binding to a high-affinity site in the promoter region under amino acid-rich growth conditions, and it is negatively regulated through TnrA binding to the TnrA box under nitrogen-limited growth conditions. The CcpA-mediated catabolite activation of ilv-leu required a helix face-dependent interaction of the complex of CcpA and P-Ser-HPr with RNA polymerase and needed a 19-nucleotide region upstream of cre for full activation. DNase I footprinting indicated that CodY binding to the high-affinity site competitively prevented the binding of the complex of CcpA and P-Ser-HPr to cre. This CodY binding not only negated catabolite activation but also likely inhibited transcription initiation from the ilv-leu promoter. The footprinting also indicated that TnrA and the complex of CcpA and P-Ser-HPr simultaneously bound to the TnrA box and the cre site, respectively, which are 112 nucleotides apart; TnrA binding to its box was likely to induce DNA bending. This implied that interaction of TnrA bound to its box with the complex of CcpA and P-Ser-HPr bound to cre might negate catabolite activation, but TnrA bound to its box did not inhibit transcription initiation from the ilv-leu promoter. Moreover, this negation of catabolite activation by TnrA required a 26-nucleotide region downstream of the TnrA box.
Collapse
|
9
|
Fedorova K, Kayumov A, Woyda K, Ilinskaja O, Forchhammer K. Transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in Bacillus subtilis. FEBS Lett 2013; 587:1293-8. [PMID: 23535029 DOI: 10.1016/j.febslet.2013.03.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/25/2022]
Abstract
The Bacillus subtilis glutamine synthetase (GS) plays a dual role in cell metabolism by functioning as catalyst and regulator. GS catalyses the ATP-dependent synthesis of glutamine from glutamate and ammonium. Under nitrogen-rich conditions, GS becomes feedback-inhibited by high intracellular glutamine levels and then binds transcription factors GlnR and TnrA, which control the genes of nitrogen assimilation. While GS-bound TnrA is no longer able to interact with DNA, GlnR-DNA binding is shown to be stimulated by GS complex formation. In this paper we show a new physiological feature of the interaction between glutamine synthetase and TnrA. The transcription factor TnrA inhibits the biosynthetic activity of glutamine synthetase in vivo and in vitro, while the GlnR protein does not affect the activity of the enzyme.
Collapse
Affiliation(s)
- Ksenia Fedorova
- Kazan (Volga region) Federal University, Department of Microbiology, Kremlevskaya 18, 420008 Kazan, Russia
| | | | | | | | | |
Collapse
|
10
|
Gunka K, Commichau FM. Control of glutamate homeostasis in Bacillus subtilis: a complex interplay between ammonium assimilation, glutamate biosynthesis and degradation. Mol Microbiol 2012; 85:213-24. [DOI: 10.1111/j.1365-2958.2012.08105.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Groot Kormelink T, Koenders E, Hagemeijer Y, Overmars L, Siezen RJ, de Vos WM, Francke C. Comparative genome analysis of central nitrogen metabolism and its control by GlnR in the class Bacilli. BMC Genomics 2012; 13:191. [PMID: 22607086 PMCID: PMC3412718 DOI: 10.1186/1471-2164-13-191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 03/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The assimilation of nitrogen in bacteria is achieved through only a few metabolic conversions between alpha-ketoglutarate, glutamate and glutamine. The enzymes that catalyze these conversions are glutamine synthetase, glutaminase, glutamate dehydrogenase and glutamine alpha-ketoglutarate aminotransferase. In low-GC Gram-positive bacteria the transcriptional control over the levels of the related enzymes is mediated by four regulators: GlnR, TnrA, GltC and CodY. We have analyzed the genomes of all species belonging to the taxonomic families Bacillaceae, Listeriaceae, Staphylococcaceae, Lactobacillaceae, Leuconostocaceae and Streptococcaceae to determine the diversity in central nitrogen metabolism and reconstructed the regulation by GlnR. RESULTS Although we observed a substantial difference in the extent of central nitrogen metabolism in the various species, the basic GlnR regulon was remarkably constant and appeared not affected by the presence or absence of the other three main regulators. We found a conserved regulatory association of GlnR with glutamine synthetase (glnRA operon), and the transport of ammonium (amtB-glnK) and glutamine/glutamate (i.e. via glnQHMP, glnPHQ, gltT, alsT). In addition less-conserved associations were found with, for instance, glutamate dehydrogenase in Streptococcaceae, purine catabolism and the reduction of nitrite in Bacillaceae, and aspartate/asparagine deamination in Lactobacillaceae. CONCLUSIONS Our analyses imply GlnR-mediated regulation in constraining the import of ammonia/amino-containing compounds and the production of intracellular ammonia under conditions of high nitrogen availability. Such a role fits with the intrinsic need for tight control of ammonia levels to limit futile cycling.
Collapse
Affiliation(s)
- Tom Groot Kormelink
- Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Novel trans-Acting Bacillus subtilis glnA mutations that derepress glnRA expression. J Bacteriol 2009; 191:2485-92. [PMID: 19233925 DOI: 10.1128/jb.01734-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis contains two nitrogen transcription factors, GlnR and TnrA. The activities of GlnR and TnrA are regulated by direct protein-protein interactions with the feedback-inhibited form of glutamine synthetase (GS). To look for other factors involved in regulating GlnR activity, we isolated mutants with constitutive glnRA expression (Gln(C)). The twenty-seven Gln(C) mutants isolated in this mutant screen all contained mutations tightly linked to the glnRA operon which encodes GlnR (glnR) and GS (glnA). Four Gln(C) mutants contained mutations in the glnR gene that most likely impair the ability of GlnR to bind DNA. Three other Gln(C) mutants contained novel glnA mutations (S55F, V173I, and L174F). GlnR regulation was completely relieved in the three glnA mutants, while only modest defects in TnrA regulation were observed. In vitro enzymatic assays showed that the purified S55F mutant enzyme was catalytically defective while the V173I and L174F enzymes were highly resistant to feedback inhibition. The V173I and L174F GS proteins were found to require higher glutamine concentrations than the wild-type GS to regulate the DNA-binding activities of GlnR and TnrA in vitro. These results are consistent with a model where feedback-inhibited GS is the only cellular factor involved in regulating the activity of GlnR in B. subtilis.
Collapse
|
13
|
Kayumov A, Heinrich A, Sharipova M, Iljinskaya O, Forchhammer K. Inactivation of the general transcription factor TnrA in Bacillus subtilis by proteolysis. MICROBIOLOGY-SGM 2008; 154:2348-2355. [PMID: 18667567 DOI: 10.1099/mic.0.2008/019802-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Under conditions of nitrogen limitation, the general transcription factor TnrA in Bacillus subtilis activates the expression of genes involved in assimilation of various nitrogen sources. Previously, TnrA activity has been shown to be controlled by protein-protein interaction with glutamine synthetase, the key enzyme of ammonia assimilation. Furthermore, depending on ATP and 2-oxoglutarate levels, TnrA can bind to the GlnK-AmtB complex. Here, we report that upon transfer of nitrate-grown cells to combined nitrogen-depleted medium, TnrA is rapidly eliminated from the cells by proteolysis. As long as TnrA is membrane-bound through GlnK-AmtB interaction it seems to be protected from degradation. Upon removal of nitrogen sources, the localization of TnrA becomes cytosolic and degradation occurs. The proteolytic activity against TnrA was detected in the cytosolic fraction but not in the membrane, and its presence does not depend on the nitrogen regime of cell growth. The proteolytic degradation of TnrA as a response to complete nitrogen starvation might represent a novel mechanism of TnrA control in B. subtilis.
Collapse
Affiliation(s)
- Airat Kayumov
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Annette Heinrich
- Institut für Mikrobiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Margarita Sharipova
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Olga Iljinskaya
- Department of Microbiology, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Karl Forchhammer
- Institut für Mikrobiologie, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
14
|
Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. Proc Natl Acad Sci U S A 2008; 105:1014-9. [PMID: 18195355 DOI: 10.1073/pnas.0709949105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Bacillus subtilis GlnR repressor controls gene expression in response to nitrogen availability. Because all GlnR-regulated genes are expressed constitutively in mutants lacking glutamine synthetase (GS), GS is required for repression by GlnR. Feedback-inhibited GS (FBI-GS) was shown to activate GlnR DNA binding with an in vitro electophoretic mobility shift assay (EMSA). The activation of GlnR DNA binding by GS in these experiments depended on the feedback inhibitor glutamine and did not occur with mutant GS proteins defective in regulating GlnR activity in vivo. Although stable GS-GlnR-DNA ternary complexes were not observed in the EMSA experiments, cross-linking experiments showed that a protein-protein interaction occurs between GlnR and FBI-GS. This interaction was reduced in the absence of the feedback inhibitor glutamine and with mutant GS proteins. Because FBI-GS significantly reduced the dissociation rate of the GlnR-DNA complexes, the stability of these complexes is enhanced by FBI-GS. These results argue that FBI-GS acts as a chaperone that activates GlnR DNA binding through a transient protein-protein interaction that stabilizes GlnR-DNA complexes. GS was shown to control the activity of the B. subtilis nitrogen transcription factor TnrA by forming a stable complex between FBI-GS and TnrA that inhibits TnrA DNA binding. Thus, B. subtilis GS is an enzyme with dual catalytic and regulatory functions that uses distinct mechanisms to control the activity of two different transcription factors.
Collapse
|
15
|
Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J. The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 2008; 67:861-80. [PMID: 18179599 DOI: 10.1111/j.1365-2958.2007.06092.x] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptomyces coelicolor GlnR is a global regulator that controls genes involved in nitrogen metabolism. By genomic screening 10 new GlnR targets were identified, including enzymes for ammonium assimilation (glnII, gdhA), nitrite reduction (nirB), urea cleavage (ureA) and a number of biochemically uncharacterized proteins (SCO0255, SCO0888, SCO2195, SCO2400, SCO2404, SCO7155). For the GlnR regulon, a GlnR binding site which comprises the sequence gTnAc-n(6)-GaAAc-n(6)-GtnAC-n(6)-GAAAc-n(6) has been found. Reverse transcription analysis of S. coelicolor and the S. coelicolor glnR mutant revealed that GlnR activates or represses the expression of its target genes. Furthermore, glnR expression itself was shown to be nitrogen-dependent. Physiological studies of S. coelicolor and the S. coelicolor glnR mutant with ammonium and nitrate as the sole nitrogen source revealed that GlnR is not only involved in ammonium assimilation but also in ammonium supply. blast analysis demonstrated that GlnR-homologous proteins are present in different actinomycetes containing the glnA gene with the conserved GlnR binding site. By DNA binding studies, it was furthermore demonstrated that S. coelicolor GlnR is able to interact with these glnA upstream regions. We therefore suggest that GlnR-mediated regulation is not restricted to Streptomyces but constitutes a regulon conserved in many actinomycetes.
Collapse
Affiliation(s)
- Yvonne Tiffert
- Mikrobiologie/Biotechnologie, Institut für Mikrobiologie, Fakultät für Biologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Commichau FM, Stülke J. Trigger enzymes: bifunctional proteins active in metabolism and in controlling gene expression. Mol Microbiol 2007; 67:692-702. [PMID: 18086213 DOI: 10.1111/j.1365-2958.2007.06071.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
All regulatory processes require components that sense the environmental or metabolic conditions of the cell, and sophisticated sensory proteins have been studied in great detail. During the last few years, it turned out that enzymes can control gene expression in response to the availability of their substrates. Here, we review four different mechanisms by which these enzymes interfere with regulation in bacteria. First, some enzymes have acquired a DNA-binding domain and act as direct transcription repressors by binding DNA in the absence of their substrates. A second class is represented by aconitase, which can bind iron responsive elements in the absence of iron to control the expression of genes involved in iron homoeostasis. The third class of these enzymes is sugar permeases of the phosphotransferase system that control the activity of transcription regulators by phosphorylating them in the absence of the specific substrate. Finally, a fourth class of regulatory enzymes controls the activity of transcription factors by inhibitory protein-protein interactions. We suggest that the enzymes that are active in the control of gene expression should be designated as trigger enzymes. An analysis of the occurrence of trigger enzymes suggests that the duplication and subsequent functional specialization is a major pattern in their evolution.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August -University Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany
| | | |
Collapse
|
17
|
Martínez-Espinosa RM, Lledó B, Marhuenda-Egea FC, Bonete MJ. The effect of ammonium on assimilatory nitrate reduction in the haloarchaeon Haloferax mediterranei. Extremophiles 2007; 11:759-67. [PMID: 17572840 DOI: 10.1007/s00792-007-0095-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Accepted: 05/25/2007] [Indexed: 10/23/2022]
Abstract
Physiology, regulation and biochemical aspects of the nitrogen assimilation are well known in Prokarya or Eukarya but they are poorly described in Archaea domain. The haloarchaeon Haloferax mediterranei can use different nitrogen inorganic sources (NO (3) (-) , NO (2) (-) or NH (4) (+) ) for growth. Different approaches were considered to study the effect of NH (4) (+) on nitrogen assimilation in Hfx. mediterranei cells grown in KNO(3) medium. The NH (4) (+) addition to KNO(3) medium caused a decrease of assimilatory nitrate (Nas) and nitrite reductases (NiR) activities. Similar effects were observed when nitrate-growing cells were transferred to NH (4) (+) media. Both activities increased when NH (4) (+) was removed from culture, showing that the negative effect of NH (4) (+) on this pathway is reversible. These results suggest that ammonium causes the inhibition of the assimilatory nitrate pathway, while nitrate exerts a positive effect. This pattern has been confirmed by RT-PCR. In the presence of both NO (3) (-) and NH (4) (+) , NH (4) (+) was preferentially consumed, but NO (3) (-) uptake was not completely inhibited by NH (4) (+) at prolonged time scale. The addition of MSX to NH (4) (+) or NO (3) (-) cultures results in an increase of Nas and NiR activities, suggesting that NH (4) (+) assimilation, rather than NH (4) (+ ) per se, has a negative effect on assimilatory nitrate reduction in Hfx. mediterranei.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- División de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Alicante, Ap. 99, 03080, Alicante, Spain.
| | | | | | | |
Collapse
|
18
|
Loughman JA, Caparon MG. Contribution of invariant residues to the function of Rgg family transcription regulators. J Bacteriol 2006; 189:650-5. [PMID: 17098902 PMCID: PMC1797381 DOI: 10.1128/jb.01437-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rgg family of transcription regulators is widely distributed among gram-positive bacteria, yet how these proteins control transcription is poorly understood. Using Streptococcus pyogenes RopB as a model, we demonstrated that residues invariant among Rgg-like regulators are critical for function and obtained evidence for a mechanism involving protein complex formation.
Collapse
Affiliation(s)
- Jennifer A Loughman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110-1093, USA
| | | |
Collapse
|
19
|
Wray LV, Fisher SH. Functional analysis of the carboxy-terminal region of Bacillus subtilis TnrA, a MerR family protein. J Bacteriol 2006; 189:20-7. [PMID: 17085574 PMCID: PMC1797213 DOI: 10.1128/jb.01238-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis TnrA transcription factor belongs to the MerR family of proteins and regulates gene expression during nitrogen-limited growth. When B. subtilis cells are grown with excess nitrogen, feedback-inhibited glutamine synthetase forms a protein-protein complex with TnrA that prevents TnrA from binding to DNA. The C-terminal region of TnrA is required for the interaction with glutamine synthetase. Alanine scanning mutagenesis of the C-terminal region of TnrA identified three classes of mutants that altered the regulation by glutamine synthetase. While expression of the TnrA-regulated amtB gene was expressed constitutively in the class I (M96A, Q100A, and A103G) and class II (L97A, L101A, and F105A) mutants, the class II mutants were unable to grow on minimal medium unless a complex mixture of amino acids was present. The class III tnrA mutants (R93A, G99A, N102A, H104A, and Y107A mutants) were partially defective in the regulation of TnrA activity. In vitro experiments showed that feedback-inhibited glutamine synthetase had a significantly reduced ability to inhibit the DNA-binding activity of several class I and class II mutant TnrA proteins. A coiled-coil homology model of the C-terminal region of TnrA is used to explain the properties of the class I and II mutant proteins. The C-terminal region of TnrA corresponds to a dimerization domain in other MerR family proteins. Surprisingly, gel filtration and cross-linking analysis showed that a truncated TnrA protein which contained only the N-terminal DNA binding domain was dimeric. The implications of these results for the structure of TnrA are discussed.
Collapse
Affiliation(s)
- Lewis V Wray
- Department of Microbiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118-2526, USA
| | | |
Collapse
|
20
|
Fisher SH, Wray LV. Feedback-resistant mutations in Bacillus subtilis glutamine synthetase are clustered in the active site. J Bacteriol 2006; 188:5966-74. [PMID: 16885465 PMCID: PMC1540052 DOI: 10.1128/jb.00544-06] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The feedback-inhibited form of Bacillus subtilis glutamine synthetase regulates the activity of the TnrA transcription factor through a protein-protein interaction that prevents TnrA from binding to DNA. Five mutants containing feedback-resistant glutamine synthetases (E65G, S66P, M68I, H195Y, and P318S) were isolated by screening for colonies capable of cross-feeding Gln(-) cells. In vitro enzymatic assays revealed that the mutant enzymes had increased resistance to inhibition by glutamine, AMP, and methionine sulfoximine. The mutant proteins had a variety of enzymatic alterations that included changes in the levels of enzymatic activity and in substrate K(m) values. Constitutive expression of TnrA- and GlnR-regulated genes was seen in all five mutants. In gel mobility shift assays, the E65G and S66P enzymes were unable to inhibit TnrA DNA binding, while the other three mutant proteins (M68I, H195Y, and P318S) showed partial inhibition of TnrA DNA binding. A homology model of B. subtilis glutamine synthetase revealed that the five mutated amino acid residues are located in the enzyme active site. These observations are consistent with the hypothesis that glutamine and AMP bind at the active site to bring about feedback inhibition of glutamine synthetase.
Collapse
Affiliation(s)
- Susan H Fisher
- Department of Microbiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | |
Collapse
|
21
|
Zalieckas JM, Wray LV, Fisher SH. Cross-regulation of the Bacillus subtilis glnRA and tnrA genes provides evidence for DNA binding site discrimination by GlnR and TnrA. J Bacteriol 2006; 188:2578-85. [PMID: 16547045 PMCID: PMC1428417 DOI: 10.1128/jb.188.7.2578-2585.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Bacillus subtilis transcriptional factors, TnrA and GlnR, regulate gene expression in response to changes in nitrogen availability. These two proteins have similar amino acid sequences in their DNA binding domains and bind to DNA sites (GlnR/TnrA sites) that have the same consensus sequence. Expression of the tnrA gene was found to be activated by TnrA and repressed by GlnR. Mutational analysis demonstrated that a GlnR/TnrA site which lies immediately upstream of the -35 region of the tnrA promoter is required for regulation of tnrA expression by both GlnR and TnrA. Expression of the glnRA operon, which contains two GlnR/TnrA binding sites (glnRAo1 and glnRAo2) in its promoter region, is repressed by both GlnR and TnrA. The glnRAo2 site, which overlaps the -35 region of the glnRA promoter, was shown to be required for regulation by both GlnR and TnrA, while the glnRAo1 site which lies upstream of the -35 promoter region is only involved in GlnR-mediated regulation. Examination of TnrA binding to tnrA and glnRA promoter DNA in gel mobility shift experiments showed that TnrA bound with an equilibrium dissociation binding constant of 55 nM to the GlnR/TnrA site in the tnrA promoter region, while the affinities of TnrA for the two GlnR/TnrA sites in the glnRA promoter region were greater than 3 muM. These results demonstrate that GlnR and TnrA cross-regulate each other's expression and that there are differences in their DNA-binding specificities.
Collapse
Affiliation(s)
- Jill M Zalieckas
- Department of Microbiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
22
|
Wray LV, Fisher SH. A feedback-resistant mutant of Bacillus subtilis glutamine synthetase with pleiotropic defects in nitrogen-regulated gene expression. J Biol Chem 2005; 280:33298-304. [PMID: 16055443 DOI: 10.1074/jbc.m504957200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bacillus subtilis TnrA transcription factor regulates gene expression during nitrogen-limited growth. When cells are grown with excess nitrogen, feedback-inhibited glutamine synthetase forms a protein-protein complex with TnrA and prevents TnrA from binding to DNA. A mutation in glutamine synthetase with a phenylalanine replacement at the Ser-186 residue (S186F) was isolated by screening for B. subtilis mutants with constitutive TnrA activity. Although S186F glutamine synthetase has kinetic properties that are similar to the wild-type protein, the S186F enzyme is resistant to feedback inhibition by glutamine and AMP. Ligand binding experiments revealed that the S186F protein had a lower affinity for glutamine and AMP than the wild-type enzyme. S186F glutamine synthetase was defective in its ability to block DNA binding by TnrA in vitro. The properties of the feedback-resistant S186F mutant support the model in which the feedback-inhibited form of glutamine synthetase regulates TnrA activity in vivo.
Collapse
Affiliation(s)
- Lewis V Wray
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118-2526, USA
| | | |
Collapse
|
23
|
Tojo S, Satomura T, Morisaki K, Yoshida KI, Hirooka K, Fujita Y. Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA. J Bacteriol 2004; 186:7971-9. [PMID: 15547269 PMCID: PMC529080 DOI: 10.1128/jb.186.23.7971-7979.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The Bacillus subtilis ilv-leu operon is involved in the synthesis of branched-chain amino acids (valine, isoleucine, and leucine). The two- to threefold repression of expression of the ilv-leu operon during logarithmic-phase growth under nitrogen-limited conditions, which was originally detected by a DNA microarray analysis to compare the transcriptomes from the wild-type and tnrA mutant strains, was confirmed by lacZ fusion and Northern experiments. A genome-wide TnrA box search revealed a candidate box approximately 200 bp upstream of the transcription initiation base of the ilv-leu operon, the TnrA binding to which was verified by gel retardation and DNase I footprinting analyses. Deletion and base substitution of the TnrA box sequence affected the ilv-leu promoter activity in vivo, implying that TnrA bound to the box might be able to inhibit the promoter activity, possibly through DNA bending. The negative control of the expression of the ilv-leu operon by TnrA, which is considered to represent rather fine-tuning (two- to threefold), is a novel regulatory link between nitrogen and amino acid metabolism.
Collapse
Affiliation(s)
- Shigeo Tojo
- Department of Biotechnology, Faculty of Life Science and Technology, Fukuyama University, Fukuyama, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Alkema WBL, Lenhard B, Wasserman WW. Regulog analysis: detection of conserved regulatory networks across bacteria: application to Staphylococcus aureus. Genome Res 2004; 14:1362-73. [PMID: 15231752 PMCID: PMC442153 DOI: 10.1101/gr.2242604] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A transcriptional regulatory network encompasses sets of genes (regulons) whose expression states are directly altered in response to an activating signal, mediated by trans-acting regulatory proteins and cis-acting regulatory sequences. Enumeration of these network components is an essential step toward the creation of a framework for systems-based analysis of biological processes. Profile-based methods for the detection of cis-regulatory elements are often applied to predict regulon members, but they suffer from poor specificity. In this report we describe Regulogger, a novel computational method that uses comparative genomics to eliminate spurious members of predicted gene regulons. Regulogger produces regulogs, sets of coregulated genes for which the regulatory sequence has been conserved across multiple organisms. The quantitative method assigns a confidence score to each predicted regulog member on the basis of the degree of conservation of protein sequence and regulatory mechanisms. When applied to a reference collection of regulons from Escherichia coli, Regulogger increased the specificity of predictions up to 25-fold over methods that use cis-element detection in isolation. The enhanced specificity was observed across a wide range of biologically meaningful parameter combinations, indicating a robust and broad utility for the method. The power of computational pattern discovery methods coupled with Regulogger to unravel transcriptional networks was demonstrated in an analysis of the genome of Staphylococcus aureus. A total of 125 regulogs were found in this organism, including both well-defined functional groups and a subset with unknown functions.
Collapse
Affiliation(s)
- Wynand B L Alkema
- Center for Genomics and Bioinformatics, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Yoshida KI, Yamaguchi H, Kinehara M, Ohki YH, Nakaura Y, Fujita Y. Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol Microbiol 2003; 49:157-65. [PMID: 12823818 DOI: 10.1046/j.1365-2958.2003.03567.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis TnrA is a global regulator that responds to the availability of nitrogen sources and both activates and represses many genes during nitrogen-limited growth. In order to obtain a holistic view of the gene regulation depending on TnrA, we performed a genome-wide screening for TnrA-regulated genes associated with a TnrA box. A combination of DNA microarray hybridization and a genome-wide search for TnrA boxes allowed us to find 36 TnrA-regulated transcription units associated with a putative TnrA box. Gel retardation assaying, using probes carrying at least one putative TnrA box and the deletion derivatives of each box, indicated that 17 out of 36 transcription units were likely TnrA targets associated with the TnrA boxes, two of which (nasA and nasBCDEF) possessed a common TnrA box. The sequences of these TnrA boxes contained a consensus one, TGTNANAWWWTMTNACA. The TnrA targets detected in this study were nrgAB, pucJKLM, glnQHMP, nasDEF, oppABCDF, nasA, nasBCDEF and ywrD for positive regulation, and gltAB, pel, ywdIJK, yycCB, yttA, yxkC, ywlFG, yodF and alsT for negative regulation, nrgAB and gltAB being well-studied TnrA targets. It was unexpected that the negatively regulated TnrA targets were as many as the positively regulated targets. The physiological role of the TnrA regulon is discussed.
Collapse
Affiliation(s)
- Ken-ichi Yoshida
- Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, 985 Sanzo, Higashimura-cho, Fukuyama-shi, Fukuyama 729-0292, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Beier L, Nygaard P, Jarmer H, Saxild HH. Transcription analysis of the Bacillus subtilis PucR regulon and identification of a cis-acting sequence required for PucR-regulated expression of genes involved in purine catabolism. J Bacteriol 2002; 184:3232-41. [PMID: 12029039 PMCID: PMC135105 DOI: 10.1128/jb.184.12.3232-3241.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PucR protein of Bacillus subtilis has previously been suggested to regulate the expression of 15 genes, pucABCDE, pucFG, pucH, pucI, pucJKLM, pucR, and gde, all of which encode proteins involved in purine catabolism. When cells are grown under nitrogen-limiting conditions, the expression of these genes is induced and intermediary compounds of the purine catabolic pathway affect this expression. By using pucR deletion mutants, we have found that PucR induces the expression of pucFG, pucH, pucI, pucJKLM, and gde while it represses the expression of pucR and pucABCDE. Deletions in the promoters of the five induced operons and genes combined with bioinformatic analysis suggested a conserved upstream activating sequence, 5'-WWWCNTTGGTTAA-3', now named the PucR box. Potential PucR boxes overlapping the -35 and -10 regions of the pucABCDE promoter and located downstream of the pucR transcription start point were also found. The positions of these PucR boxes are consistent with PucR acting as a negative regulator of pucABCDE and pucR expression. Site-directed mutations in the PucR box upstream of pucH and pucI identified positions that are essential for the induction of pucH and pucI expression, respectively. Mutants with decreased pucH or increased pucR expression obtained from a library of clones containing random mutations in the pucH-to-pucR intercistronic region all contained mutations in or near the PucR box. The induction of pucR expression under nitrogen-limiting conditions was found to be mediated by the global nitrogen-regulatory protein TnrA. In other gram-positive bacteria, we have found open reading frames that encode proteins similar to PucR located next to other open reading frames encoding proteins with similarity to purine catabolic enzymes. Hence, the PucR homologues are likely to exert the same function in other gram-positive bacteria as PucR does in B. subtilis.
Collapse
Affiliation(s)
- Lars Beier
- BioCentrum-DTU, Technical University of Denmark, Lyngby
| | | | | | | |
Collapse
|
27
|
Fisher SH, Wray LV. Bacillus subtilis 168 contains two differentially regulated genes encoding L-asparaginase. J Bacteriol 2002; 184:2148-54. [PMID: 11914346 PMCID: PMC134974 DOI: 10.1128/jb.184.8.2148-2154.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Expression of the two Bacillus subtilis genes encoding L-asparaginase is controlled by independent regulatory factors. The ansZ gene (formerly yccC) was shown by mutational analysis to encode a functional L-asparaginase, the expression of which is activated during nitrogen-limited growth by the TnrA transcription factor. Gel mobility shift and DNase I footprinting experiments indicate that TnrA regulates ansZ expression by binding to a DNA site located upstream of the ansZ promoter. The expression of the ansA gene, which encodes the second L-asparaginase, was found to be induced by asparagine. The ansA repressor, AnsR, was shown to negatively regulate its own expression.
Collapse
Affiliation(s)
- Susan H Fisher
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
28
|
Wray LV, Zalieckas JM, Fisher SH. Bacillus subtilis glutamine synthetase controls gene expression through a protein-protein interaction with transcription factor TnrA. Cell 2001; 107:427-35. [PMID: 11719184 DOI: 10.1016/s0092-8674(01)00572-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacillus subtilis TnrA, a global regulator of transcription, responds to nitrogen availability, but the specific signal to which it responds has been elusive. Genetic studies indicate that glutamine synthetase is required for the regulation of TnrA activity in vivo. We report here that the feedback-inhibited form of glutamine synthetase directly interacts with TnrA and blocks the DNA binding activity of TnrA. Mutations in the tnrA gene (tnrA(C)) that allow constitutive high level expression of tnrA-activated genes were isolated and characterized. Feedback-inhibited glutamine synthetase had a significantly reduced ability to block the in vitro DNA binding by three of the TnrA(C) proteins. Thus, glutamine synthetase, an enzyme of central metabolism, directly interacts with and regulates the DNA binding activity of TnrA.
Collapse
Affiliation(s)
- L V Wray
- Department of Microbiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
29
|
Schultz AC, Nygaard P, Saxild HH. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J Bacteriol 2001; 183:3293-302. [PMID: 11344136 PMCID: PMC99626 DOI: 10.1128/jb.183.11.3293-3302.2001] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The soil bacterium Bacillus subtilis has developed a highly controlled system for the utilization of a diverse array of low-molecular-weight compounds as a nitrogen source when the preferred nitrogen sources, e.g., glutamate plus ammonia, are exhausted. We have identified such a system for the utilization of purines as nitrogen source in B. subtilis. Based on growth studies of strains with knockout mutations in genes, complemented with enzyme analysis, we could ascribe functions to 14 genes encoding enzymes or proteins of the purine degradation pathway. A functional xanthine dehydrogenase requires expression of five genes (pucA, pucB, pucC, pucD, and pucE). Uricase activity is encoded by the pucL and pucM genes, and a uric acid transport system is encoded by pucJ and pucK. Allantoinase is encoded by the pucH gene, and allantoin permease is encoded by the pucI gene. Allantoate amidohydrolase is encoded by pucF. In a pucR mutant, the level of expression was low for all genes tested, indicating that PucR is a positive regulator of puc gene expression. All 14 genes except pucI are located in a gene cluster at 284 to 285 degrees on the chromosome and are contained in six transcription units, which are expressed when cells are grown with glutamate as the nitrogen source (limiting conditions), but not when grown on glutamate plus ammonia (excess conditions). Our data suggest that the 14 genes and the gde gene, encoding guanine deaminase, constitute a regulon controlled by the pucR gene product. Allantoic acid, allantoin, and uric acid were all found to function as effector molecules for PucR-dependent regulation of puc gene expression. When cells were grown in the presence of glutamate plus allantoin, a 3- to 10-fold increase in expression was seen for most of the genes. However, expression of the pucABCDE unit was decreased 16-fold, while expression of pucR was decreased 4-fold in the presence of allantoin. We have identified genes of the purine degradation pathway in B. subtilis and showed that their expression is subject to both general nitrogen catabolite control and pathway-specific control.
Collapse
Affiliation(s)
- A C Schultz
- Section for Molecular Microbiology, BioCentrum-DTU, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | |
Collapse
|
30
|
Arcondéguy T, Jack R, Merrick M. P(II) signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 2001; 65:80-105. [PMID: 11238986 PMCID: PMC99019 DOI: 10.1128/mmbr.65.1.80-105.2001] [Citation(s) in RCA: 318] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The P(II) family of signal transduction proteins are among the most widely distributed signal proteins in the bacterial world. First identified in 1969 as a component of the glutamine synthetase regulatory apparatus, P(II) proteins have since been recognized as playing a pivotal role in control of prokaryotic nitrogen metabolism. More recently, members of the family have been found in higher plants, where they also potentially play a role in nitrogen control. The P(II) proteins can function in the regulation of both gene transcription, by modulating the activity of regulatory proteins, and the catalytic activity of enzymes involved in nitrogen metabolism. There is also emerging evidence that they may regulate the activity of proteins required for transport of nitrogen compounds into the cell. In this review we discuss the history of the P(II) proteins, their structures and biochemistry, and their distribution and functions in prokaryotes. We survey data emerging from bacterial genome sequences and consider other likely or potential targets for control by P(II) proteins.
Collapse
Affiliation(s)
- T Arcondéguy
- Department of Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
31
|
Nygaard P, Bested SM, Andersen KAK, Saxild HH. Bacillus subtilis guanine deaminase is encoded by the yknA gene and is induced during growth with purines as the nitrogen source. MICROBIOLOGY (READING, ENGLAND) 2000; 146 Pt 12:3061-3069. [PMID: 11101664 DOI: 10.1099/00221287-146-12-3061] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis can utilize the purine bases adenine, hypoxanthine and xanthine as nitrogen sources. The utilization of guanine as a nitrogen source is reported here. The first step is the deamination of guanine to xanthine catalysed by guanine deaminase (GDEase). To isolate mutants defective in GDEase activity, a collection of mutant strains was screened for strains unable to use guanine as a nitrogen source. The strain BFA1819 (yknA) showed the expected phenotype and no GDEase activity could be detected in this strain. A new name for yknA, namely gde, is proposed. The gde gene encodes a 156 amino acid polypeptide and was preceded by a promoter sequence that is recognized by the sigma(A) form of RNA polymerase. High levels of GDEase were found in cells grown with purines and intermediary compounds of the purine catabolic pathway as nitrogen sources. Allantoic acid, most likely, is a low molecular mass inducer molecule. The level of GDEase was found to be subjected to global nitrogen control exerted by the GlnA/TnrA-dependent signalling pathway. The two regulatory proteins of this pathway, TnrA and GlnR, indirectly and positively affected gde expression. This is the first instance of a gene whose expression is positively regulated by GlnR. The GDEase amino acid sequence shows no homology with the mammalian enzyme. In agreement with this are the different physiological roles for the two enzymes.
Collapse
Affiliation(s)
- Per Nygaard
- Department of Biological Chemistry, University of Copenhagen, DK-1307 Copenhagen K, Denmark1
| | - Søren M Bested
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark2
| | | | - Hans H Saxild
- Department of Microbiology, Technical University of Denmark, DK-2800 Lyngby, Denmark2
| |
Collapse
|
32
|
Belitsky BR, Wray LV, Fisher SH, Bohannon DE, Sonenshein AL. Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression. J Bacteriol 2000; 182:5939-47. [PMID: 11029411 PMCID: PMC94725 DOI: 10.1128/jb.182.21.5939-5947.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of glutamate, the cell's major donor of nitrogen groups and principal anion, occupies a significant fraction of bacterial metabolism. In Bacillus subtilis, the gltAB operon, encoding glutamate synthase, requires a specific positive regulator, GltC, for its expression. In addition, the gltAB operon was shown to be repressed by TnrA, a regulator of several other genes of nitrogen metabolism and active under conditions of ammonium (nitrogen) limitation. TnrA was found to bind directly to a site immediately downstream of the gltAB promoter. As is true for other genes, the activity of TnrA at the gltAB promoter was antagonized by glutamine synthetase under certain growth conditions.
Collapse
Affiliation(s)
- B R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|