1
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
2
|
Bhamidimarri SP, Zahn M, Prajapati JD, Schleberger C, Söderholm S, Hoover J, West J, Kleinekathöfer U, Bumann D, Winterhalter M, van den Berg B. A Multidisciplinary Approach toward Identification of Antibiotic Scaffolds for Acinetobacter baumannii. Structure 2019; 27:268-280.e6. [DOI: 10.1016/j.str.2018.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/19/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
|
3
|
Rouse SL, Stylianou F, Wu HYG, Berry JL, Sewell L, Morgan RML, Sauerwein AC, Matthews S. The FapF Amyloid Secretion Transporter Possesses an Atypical Asymmetric Coiled Coil. J Mol Biol 2018; 430:3863-3871. [PMID: 29886016 PMCID: PMC6173795 DOI: 10.1016/j.jmb.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Gram-negative bacteria possess specialized biogenesis machineries that facilitate the export of amyloid subunits, the fibers of which are key components of their biofilm matrix. The secretion of bacterial functional amyloid requires a specialized outer-membrane protein channel through which unfolded amyloid substrates are translocated. We previously reported the crystal structure of the membrane-spanning domain of the amyloid subunit transporter FapF from Pseudomonas. However, the structure of the periplasmic domain, which is essential for amyloid transport, is yet to be determined. Here, we present the crystal structure of the N-terminal periplasmic domain at 1.8-Å resolution. This domain forms a novel asymmetric trimeric coiled coil that possesses a single buried tyrosine residue as well as an extensive hydrogen-bonding network within a glutamine layer. This new structural insight allows us to understand this newly described functional amyloid secretion system in greater detail.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Fisentzos Stylianou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - H Y Grace Wu
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Jamie-Lee Berry
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Lee Sewell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - R Marc L Morgan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Andrea C Sauerwein
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Steve Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
4
|
Rouse SL, Hawthorne WJ, Berry JL, Chorev DS, Ionescu SA, Lambert S, Stylianou F, Ewert W, Mackie U, Morgan RML, Otzen D, Herbst FA, Nielsen PH, Dueholm M, Bayley H, Robinson CV, Hare S, Matthews S. A new class of hybrid secretion system is employed in Pseudomonas amyloid biogenesis. Nat Commun 2017; 8:263. [PMID: 28811582 PMCID: PMC5557850 DOI: 10.1038/s41467-017-00361-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/23/2017] [Indexed: 11/25/2022] Open
Abstract
Gram-negative bacteria possess specialised biogenesis machineries that facilitate the export of amyloid subunits for construction of a biofilm matrix. The secretion of bacterial functional amyloid requires a bespoke outer-membrane protein channel through which unfolded amyloid substrates are translocated. Here, we combine X-ray crystallography, native mass spectrometry, single-channel electrical recording, molecular simulations and circular dichroism measurements to provide high-resolution structural insight into the functional amyloid transporter from Pseudomonas, FapF. FapF forms a trimer of gated β-barrel channels in which opening is regulated by a helical plug connected to an extended coil-coiled platform spanning the bacterial periplasm. Although FapF represents a unique type of secretion system, it shares mechanistic features with a diverse range of peptide translocation systems. Our findings highlight alternative strategies for handling and export of amyloid protein sequences.Gram-negative bacteria assemble biofilms from amyloid fibres, which translocate across the outer membrane as unfolded amyloid precursors through a secretion system. Here, the authors characterise the structural details of the amyloid transporter FapF in Pseudomonas.
Collapse
Affiliation(s)
- Sarah L Rouse
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - William J Hawthorne
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Jamie-Lee Berry
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Dror S Chorev
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sandra A Ionescu
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sebastian Lambert
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Fisentzos Stylianou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Wiebke Ewert
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Uma Mackie
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
- Walthamstow School for Girls, London, E17 9RZ, UK
| | - R Marc L Morgan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Daniel Otzen
- Interdisciplinary Nanoscience Center (iNANO), Centre for Insoluble Protein Structures (inSPIN), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Hagan Bayley
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Carol V Robinson
- Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Stephen Hare
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK
| | - Stephen Matthews
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW72AZ, UK.
| |
Collapse
|
5
|
de María N, Guevara A, Serra MT, García-Luque I, González-Sama A, García de Lacoba M, de Felipe MR, Fernández-Pascual M. Putative porin of Bradyrhizobium sp. (Lupinus) bacteroids induced by glyphosate. Appl Environ Microbiol 2007; 73:5075-82. [PMID: 17557843 PMCID: PMC1950976 DOI: 10.1128/aem.00392-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 05/30/2007] [Indexed: 11/20/2022] Open
Abstract
Application of glyphosate (N-[phosphonomethyl] glycine) to Bradyrhizobium sp. (Lupinus)-nodulated lupin plants caused modifications in the protein pattern of bacteroids. The most significant change was the presence of a 44-kDa polypeptide in bacteroids from plants treated with the higher doses of glyphosate employed (5 and 10 mM). The polypeptide has been characterized by the amino acid sequencing of its N terminus and the isolation and nucleic acid sequencing of its encoding gene. It is putatively encoded by a single gene, and the protein has been identified as a putative porin. Protein modeling revealed the existence of several domains sharing similarity to different porins, such as a transmembrane beta-barrel. The protein has been designated BLpp, for Bradyrhizobium sp. (Lupinus) putative porin, and would be the first porin described in Bradyrhizobium sp. (Lupinus). In addition, a putative conserved domain of porins has been identified which consists of 87 amino acids, located in the BLpp sequence 30 amino acids downstream of the N-terminal region. In bacteroids, mRNA of the BLpp gene shows a basal constitutive expression that increases under glyphosate treatment, and the expression of the gene is seemingly regulated at the transcriptional level. By contrast, in free-living bacteria glyphosate treatment leads to an inhibition of BLpp mRNA accumulation, indicating a different effect of glyphosate on BLpp gene expression in bacteroids and free-living bacteria. The possible role of BLpp in a metabolite interchange between Bradyrhizobium and lupin is discussed.
Collapse
Affiliation(s)
- Nuria de María
- Instituto de Recursos Naturales, Centro de Ciencias Medioambientales, CSIC, Serrano, 115-bis, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Berven FS, Karlsen OA, Straume AH, Flikka K, Murrell JC, Fjellbirkeland A, Lillehaug JR, Eidhammer I, Jensen HB. Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools. Arch Microbiol 2005; 184:362-77. [PMID: 16311759 DOI: 10.1007/s00203-005-0055-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/13/2005] [Accepted: 11/03/2005] [Indexed: 02/05/2023]
Abstract
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting beta-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP ( http://www.bioinfo.no/tools/bomp ) predicted 43 beta-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8-3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins ( http://www.bioinfo.no/tools/lipo ). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph.
Collapse
Affiliation(s)
- Frode S Berven
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5020, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Gram-negative bacteria characteristically are surrounded by an additional membrane layer, the outer membrane. Although outer membrane components often play important roles in the interaction of symbiotic or pathogenic bacteria with their host organisms, the major role of this membrane must usually be to serve as a permeability barrier to prevent the entry of noxious compounds and at the same time to allow the influx of nutrient molecules. This review summarizes the development in the field since our previous review (H. Nikaido and M. Vaara, Microbiol. Rev. 49:1-32, 1985) was published. With the discovery of protein channels, structural knowledge enables us to understand in molecular detail how porins, specific channels, TonB-linked receptors, and other proteins function. We are now beginning to see how the export of large proteins occurs across the outer membrane. With our knowledge of the lipopolysaccharide-phospholipid asymmetric bilayer of the outer membrane, we are finally beginning to understand how this bilayer can retard the entry of lipophilic compounds, owing to our increasing knowledge about the chemistry of lipopolysaccharide from diverse organisms and the way in which lipopolysaccharide structure is modified by environmental conditions.
Collapse
Affiliation(s)
- Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA.
| |
Collapse
|
8
|
Duguay AR, Silhavy TJ. Signal sequence mutations as tools for the characterization of LamB folding intermediates. J Bacteriol 2002; 184:6918-28. [PMID: 12446642 PMCID: PMC135451 DOI: 10.1128/jb.184.24.6918-6928.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
lamBA23DA25Y and lamBA23YA25Y tether LamB to the inner membrane by blocking signal sequence processing. We isolated suppressors of lamBA23DA25Y and lamBA23YA25Y, all of which mapped within the LamB signal sequence. Most interesting were mutations that changed an amino acid with a strong positive charge to an amino acid with no charge. Further characterization of two such suppressors revealed that they produce functional LamB that is localized to the outer membrane with its entire signal sequence still attached. Biochemical analysis shows that mutant LamB monomer chases into an oligomeric species with properties different from those of wild-type LamB trimer. Because assembly of mutant LamB is slowed, these mutations provide useful tools for the characterization of LamB folding intermediates.
Collapse
|
9
|
Abstract
The Gram-negative bacterial outer membrane contains several independent, biochemically distinct transport systems for the acquisition of solutes from the environment. Three or more different classes of membrane proteins exist within the porin superfamily, that facilitate the uptake of sugars, amino acids, nucleotides, vitamins and metals. In spite of crystallographic descriptions of these protein transporters over the past decade, the mechanisms by which porins catalyze solute internalization are controversial, and in some cases still obscure. For many years the research of Maurice Hofnung endeavored to explain the transport of maltose and maltodextrins by LamB, also known as maltoporin. In the shadow of recent crystal structures, his work helped outline a different picture of outer membrane transport physiology, that is a tribute to the powerful genetic approaches Maurice pioneered. These data suggest that the principal determinant of maltodextrin recognition by maltoporin derives from the configuration of aromatic amino acids in its surface loops.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA.
| |
Collapse
|
10
|
Michels J, Geyer A, Mocanu V, Welte W, Burlingame AL, Przybylski M. Structure and functional characterization of the periplasmic N-terminal polypeptide domain of the sugar-specific ion channel protein (ScrY porin). Protein Sci 2002; 11:1565-74. [PMID: 12021455 PMCID: PMC2373611 DOI: 10.1110/ps.2760102] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The structure of the sucrose-specific porin (ScrY) from Salmonella typhimurium has been elucidated by X-ray crystallography to consist of 18 antiparallel beta-strands, associated as a trimer complex similar to ion-transport channels. However, the 71-amino-acid-residue N-terminal periplasmic domain was not determined from the crystal structure due to the absence of sufficient electron density. The N-terminal polypeptide contains a coiled-coil structural motif and has been assumed to play a role in the sugar binding of ScrY porin. In this study the proteolytic stability and a specific proteolytic truncation site at the N-terminal domain were identified by the complete primary structure characterization of ScrY porin, using MALDI mass spectrometry and post-source-decay fragmentation. The secondary structure and supramolecular association of the coiled-coil N-terminal domain were determined by chemical synthesis of the complete N-terminal polypeptide and several partial sequences and their spectroscopic, biophysical, and mass spectrometric characterization. Circular dichroism spectra revealed predominant alpha-helical conformation for the putative coiled-coil domain comprising residues 4-46. Specific association to both dimer and trimer complexes was identified by electrospray ionization mass spectra and was ascertained by dynamic light scattering and electrophoresis data. The role of the N-terminal domain in sugar binding was examined by comparative TR-NOE-NMR spectroscopy of the complete ScrY porin and a recombinant mutant, ScrY(delta1-62), lacking the N-terminal polypeptide. The TR-NOE-NMR data showed a strong influence of ScrY porin on the sugar-binding affinity and suggested a possible function of the periplasmic N terminus for supramolecular stabilization and low-affinity sugar binding.
Collapse
Affiliation(s)
- Jenny Michels
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|