1
|
Rio1 promotes rDNA stability and downregulates RNA polymerase I to ensure rDNA segregation. Nat Commun 2015; 6:6643. [PMID: 25851096 DOI: 10.1038/ncomms7643] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 02/13/2015] [Indexed: 01/30/2023] Open
Abstract
The conserved protein kinase Rio1 localizes to the cytoplasm and nucleus of eukaryotic cells. While the roles of Rio1 in the cytoplasm are well characterized, its nuclear function remains unknown. Here we show that nuclear Rio1 promotes rDNA array stability and segregation in Saccharomyces cerevisiae. During rDNA replication in S phase, Rio1 downregulates RNA polymerase I (PolI) and recruits the histone deacetylase Sir2. Both interventions ensure rDNA copy-number homeostasis and prevent the formation of extrachromosomal rDNA circles, which are linked to accelerated ageing in yeast. During anaphase, Rio1 downregulates PolI by targeting its subunit Rpa43, causing PolI to dissociate from the rDNA. By stimulating the processing of PolI-generated transcripts at the rDNA, Rio1 allows for rDNA condensation and segregation in late anaphase. These events finalize the genome transmission process. We identify Rio1 as an essential nucleolar housekeeper that integrates rDNA replication and segregation with ribosome biogenesis.
Collapse
|
2
|
Chen YC, Kenworthy J, Gabrielse C, Hänni C, Zegerman P, Weinreich M. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae. Genetics 2013; 194:389-401. [PMID: 23564203 PMCID: PMC3664849 DOI: 10.1534/genetics.113.149740] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/21/2013] [Indexed: 12/25/2022] Open
Abstract
Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.
Collapse
Affiliation(s)
- Ying-Chou Chen
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
- Michigan State University, Genetics Program, East Lansing, Michigan 48824
| | - Jessica Kenworthy
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Carrie Gabrielse
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Christine Hänni
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Philip Zegerman
- Department of Zoology, Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
| | - Michael Weinreich
- Laboratory of Genome Integrity and Tumorigenesis, Van Andel Research Institute, Grand Rapids, Michigan 49503
| |
Collapse
|
3
|
Pershad K, Wypisniak K, Kay BK. Directed evolution of the forkhead-associated domain to generate anti-phosphospecific reagents by phage display. J Mol Biol 2012; 424:88-103. [PMID: 22985966 DOI: 10.1016/j.jmb.2012.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 08/10/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was ~8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (~20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display.
Collapse
Affiliation(s)
- Kritika Pershad
- Department of Biological Sciences, Laboratory for Molecular Biology (M/C 567), University of Illinois at Chicago, Molecular Biology Research Building, Chicago, IL 60607, USA.
| | | | | |
Collapse
|
4
|
Li Y, Liu Z, Wang R. Test MM-PB/SA on true conformational ensembles of protein-ligand complexes. J Chem Inf Model 2011; 50:1682-92. [PMID: 20695488 DOI: 10.1021/ci100036a] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular mechanics Poisson-Boltzmann surface area (MM-PB/SA) method has been popular for computing protein-ligand binding free energies in recent years. All previous evaluations of the MM-PB/SA method are based upon computer-generated conformational ensembles, which may be affected by the defective computational methods used for preparing these conformational ensembles. In an attempt to reach more convincing conclusions, we have evaluated the MM-PB/SA method on a set of 24 diverse protein-ligand complexes, each of which has a set of conformations derived from NMR spectroscopy. Our results indicate that both MM-PB/SA and molecular mechanics generalized Born surface area (MM-GB/SA) are able to produce a modest correlation between their results and the experimentally measured binding free energies on our test set. In particular, both MM-PB/SA and MM-GB/SA produced better results by using a representative structure (R = 0.72-0.79) rather than averaging over the conformational ensemble of each given complex (R = 0.61-0.74). A head-to-head comparison with four selected scoring functions (X-Score, PLP, ChemScore, and DrugScore) on the same test set reveals that MM-PB/SA and MM-GB/SA results are marginally better than those produced by scoring funcitons, supporting the value of the MM-PB/SA method. Nevertheless, scoring functions are still more cost-effective options, especially for high-throughput tasks.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Bioorganic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, People's Republic of China
| | | | | |
Collapse
|
5
|
Phosphorylation-independent dual-site binding of the FHA domain of KIF13 mediates phosphoinositide transport via centaurin alpha1. Proc Natl Acad Sci U S A 2010; 107:20346-51. [PMID: 21057110 DOI: 10.1073/pnas.1009008107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphatidylinositol 3,4,5-triphosphate (PIP3) plays a key role in neuronal polarization and axon formation. PIP3-containing vesicles are transported to axon tips by the kinesin KIF13B via an adaptor protein, centaurin α1 (CENTA1). KIF13B interacts with CENTA1 through its forkhead-associated (FHA) domain. We solved the crystal structures of CENTA1 in ligand-free, KIF13B-FHA domain-bound, and PIP3 head group (IP4)-bound conformations, and the CENTA1/KIF13B-FHA/IP4 ternary complex. The first pleckstrin homology (PH) domain of CENTA1 specifically binds to PIP3, while the second binds to both PIP3 and phosphatidylinositol 3,4-biphosphate (PI(3,4)P(2)). The FHA domain of KIF13B interacts with the PH1 domain of one CENTA1 molecule and the ArfGAP domain of a second CENTA1 molecule in a threonine phosphorylation-independent fashion. We propose that full-length KIF13B and CENTA1 form heterotetramers that can bind four phosphoinositide molecules in the vesicle and transport it along the microtubule.
Collapse
|
6
|
Mahajan A, Yuan C, Lee H, Chen ESW, Wu PY, Tsai MD. Structure and function of the phosphothreonine-specific FHA domain. Sci Signal 2008; 1:re12. [PMID: 19109241 DOI: 10.1126/scisignal.151re12] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The forkhead-associated (FHA) domain is the only known phosphoprotein-binding domain that specifically recognizes phosphothreonine (pThr) residues, distinguishing them from phosphoserine (pSer) residues. In contrast to its very strict specificity toward pThr, the FHA domain recognizes very diverse patterns in the residues surrounding the pThr residue. For example, the FHA domain of Ki67, a protein associated with cellular proliferation, binds to an extended target surface involving residues remote from the pThr, whereas the FHA domain of Dun1, a DNA damage-response kinase, specifically recognizes a doubly phosphorylated Thr-Gln (TQ) cluster by virtue of its possessing two pThr-binding sites. The FHA domain exists in various proteins with diverse functions and is particularly prevalent among proteins involved in the DNA damage response. Despite a very short history, a number of unique structural and functional properties of the FHA domain have been uncovered. This review highlights the diversity of biological functions of the FHA domain-containing proteins and the structural bases for the novel binding specificities and multiple binding modes of FHA domains.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
7
|
Brooks MA, Dziembowski A, Quevillon-Cheruel S, Henriot V, Faux C, van Tilbeurgh H, Séraphin B. Structure of the yeast Pml1 splicing factor and its integration into the RES complex. Nucleic Acids Res 2008; 37:129-43. [PMID: 19033360 PMCID: PMC2615620 DOI: 10.1093/nar/gkn894] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RES complex was previously identified in yeast as a splicing factor affecting nuclear pre-mRNA retention. This complex was shown to contain three subunits, namely Snu17, Bud13 and Pml1, but its mode of action remains ill-defined. To obtain insights into its function, we have performed a structural investigation of this factor. Production of a short N-terminal truncation of residues that are apparently disordered allowed us to determine the X-ray crystallographic structure of Pml1. This demonstrated that it consists mainly of a FHA domain, a fold which has been shown to mediate interactions with phosphothreonine-containing peptides. Using a new sensitive assay based on alternative splice-site choice, we show, however, that mutation of the putative phosphothreonine-binding pocket of Pml1 does not affect pre-mRNA splicing. We have also investigated how Pml1 integrates into the RES complex. Production of recombinant complexes, combined with serial truncation and mutagenesis of their subunits, indicated that Pml1 binds to Snu17, which itself contacts Bud13. This analysis allowed us to demarcate the binding sites involved in the formation of this assembly. We propose a model of the organization of the RES complex based on these results, and discuss the functional consequences of this architecture.
Collapse
Affiliation(s)
- Mark A. Brooks
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Andrzej Dziembowski
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Sophie Quevillon-Cheruel
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Véronique Henriot
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Céline Faux
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Herman van Tilbeurgh
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
| | - Bertrand Séraphin
- IBBMC-CNRS UMR8619, IFR 115, Bât. 430, Université Paris-Sud, 91405 Orsay, Equipe Labelisée La Ligue, CGM, CNRS UPR2167, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, Univ Paris-Sud, Orsay, F-91405 and Université Pierre et Marie Curie- Paris 6, Paris, F-75005, France
- *To whom correspondence should be addressed. Tel: + 33 1 69 82 38 84; Fax: + 33 1 69 82 38 77;
| |
Collapse
|
8
|
Trowitzsch S, Weber G, Lührmann R, Wahl MC. Crystal structure of the Pml1p subunit of the yeast precursor mRNA retention and splicing complex. J Mol Biol 2008; 385:531-41. [PMID: 19010333 DOI: 10.1016/j.jmb.2008.10.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/21/2008] [Indexed: 10/21/2022]
Abstract
The precursor mRNA retention and splicing (RES) complex mediates nuclear retention and enhances splicing of precursor mRNAs. The RES complex from yeast comprises three proteins, Snu17p, Bud13p and Pml1p. Snu17p acts as a central platform that concomitantly binds the Bud13p and Pml1p subunits via short peptide epitopes. As a step to decipher the molecular architecture of the RES complex, we have determined crystal structures of full-length Pml1p and N-terminally truncated Pml1p. The first 50 residues of full-length Pml1p, encompassing the Snu17p-binding region, are disordered, showing that Pml1p binds to Snu17p via an intrinsically unstructured region. The remainder of Pml1p folds as a forkhead-associated (FHA) domain, which is expanded by a number of noncanonical elements compared with known FHA domains from other proteins. An atypical N-terminal appendix runs across one beta-sheet and thereby stabilizes the domain as shown by deletion experiments. FHA domains are thought to constitute phosphopeptide-binding elements. Consistently, a sulfate ion was found at the putative phosphopeptide-binding loops of full-length Pml1p. The N-terminally truncated version of the protein lacked a similar phosphopeptide mimic but retained an almost identical structure. A long loop neighboring the putative phosphopeptide-binding site was disordered in both structures. Comparison with other FHA domain proteins suggests that this loop adopts a defined conformation upon ligand binding and thereby confers ligand specificity. Our results show that in the RES complex, an FHA domain of Pml1p is flexibly tethered via an unstructured N-terminal region to Snu17p.
Collapse
Affiliation(s)
- Simon Trowitzsch
- Zelluläre Biochemie, Max-Planck-Institut für Biophysikalische Chemie, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
9
|
Diphosphothreonine-specific interaction between an SQ/TQ cluster and an FHA domain in the Rad53-Dun1 kinase cascade. Mol Cell 2008; 30:767-78. [PMID: 18570878 DOI: 10.1016/j.molcel.2008.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/21/2008] [Accepted: 05/13/2008] [Indexed: 01/22/2023]
Abstract
Forkhead-associated (FHA) domains recognize phosphothreonines, and SQ/TQ cluster domains (SCDs) contain concentrated phosphorylation sites for ATM/ATR-like DNA-damage-response kinases. The Rad53-SCD1 has dual functions in regulating the activation of the Rad53-Dun1 checkpoint kinase cascade but with unknown molecular mechanisms. Here we present structural, biochemical, and genetic evidence that Dun1-FHA possesses an unprecedented diphosphothreonine-binding specificity. The Dun1-FHA has >100-fold increased affinity for diphosphorylated relative to monophosphorylated Rad53-SCD1 due to the presence of two separate phosphothreonine-binding pockets. In vivo, any single threonine of Rad53-SCD1 is sufficient for Rad53 activation and RAD53-dependent survival of DNA damage, but two adjacent phosphothreonines in the Rad53-SCD1 and two phosphothreonine-binding sites in the Dun1-FHA are necessary for Dun1 activation and DUN1-dependent transcriptional responses to DNA damage. The results uncover a phospho-counting mechanism that regulates the specificity of SCD, and provide mechanistic insight into a role of multisite phosphorylation in DNA-damage signaling.
Collapse
|
10
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
11
|
Tanaka Y, Kuroda M, Yasutake Y, Yao M, Tsumoto K, Watanabe N, Ohta T, Tanaka I. Crystal structure analysis reveals a novel forkhead-associated domain of ESAT-6 secretion system C protein in Staphylococcus aureus. Proteins 2007; 69:659-64. [PMID: 17680693 DOI: 10.1002/prot.21302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshikazu Tanaka
- Faculty of Advanced Life Sciences, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Pei D, Wavreille AS. Reverse interactomics: decoding protein–protein interactions with combinatorial peptide libraries. ACTA ACUST UNITED AC 2007; 3:536-41. [PMID: 17639128 DOI: 10.1039/b706041f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Identification of binding partners is the crucial first step towards understanding the biological function of a protein. Many protein-protein interactions occur via modular domains that recognize short peptide motifs in their target proteins. Here we describe a chemical/bioinformatics approach for predicting the binding partners of modular domains. The optimal binding motif(s) of a protein domain is identified by screening a combinatorial peptide library. The resulting consensus sequence is used to search protein and genomic databases for potential binding proteins, which are subsequently confirmed (or disproved) by conventional protein binding assays (e.g. pull-down and co-immunoprecipitation).
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry, Ohio State University, Columbus, OH 43210, USA.
| | | |
Collapse
|
13
|
Byeon IJL, Li H, Song H, Gronenborn AM, Tsai MD. Sequential phosphorylation and multisite interactions characterize specific target recognition by the FHA domain of Ki67. Nat Struct Mol Biol 2006; 12:987-93. [PMID: 16244663 DOI: 10.1038/nsmb1008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 09/22/2005] [Indexed: 11/09/2022]
Abstract
The forkhead-associated (FHA) domain of human Ki67 interacts with the human nucleolar protein hNIFK, recognizing a 44-residue fragment, hNIFK226-269, phosphorylated at Thr234. Here we show that high-affinity binding requires sequential phosphorylation by two kinases, CDK1 and GSK3, yielding pThr238, pThr234 and pSer230. We have determined the solution structure of Ki67FHA in complex with the triply phosphorylated peptide hNIFK226-269(3P), revealing not only local recognition of pThr234 but also the extension of the beta-sheet of the FHA domain by the addition of a beta-strand of hNIFK. The structure of an FHA domain in complex with a biologically relevant binding partner provides insights into ligand specificity and potentially links the cancer marker protein Ki67 to a signaling pathway associated with cell fate specification.
Collapse
Affiliation(s)
- In-Ja L Byeon
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
14
|
Mahajan A, Yuan C, Pike BL, Heierhorst J, Chang CF, Tsai MD. FHA domain-ligand interactions: importance of integrating chemical and biological approaches. J Am Chem Soc 2006; 127:14572-3. [PMID: 16231900 DOI: 10.1021/ja054538m] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Combinatorial library screens based on binding affinity may preferentially select ligands with ability for ionic interactions and miss the biologically relevant ligands that bind more weakly with predominantly hydrophobic interactions.
Collapse
Affiliation(s)
- Anjali Mahajan
- Biophysics Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Ding Z, Lee GI, Liang X, Gallazzi F, Arunima A, Van Doren SR. PhosphoThr peptide binding globally rigidifies much of the FHA domain from Arabidopsis receptor kinase-associated protein phosphatase. Biochemistry 2005; 44:10119-34. [PMID: 16042389 PMCID: PMC2813517 DOI: 10.1021/bi050414a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A net increase in the backbone rigidity of the kinase-interacting FHA domain (KI-FHA) from the Arabidopsis receptor kinase-associated protein phosphatase (KAPP) accompanies the binding of a phosphoThr peptide from its CLV1 receptor-like kinase partner, according to (15)N NMR relaxation at 11.7 and 14.1 T. All of the loops of free KI-FHA display evidence of nanosecond-scale motions. Many of these same residues have residual dipolar couplings that deviate from structural predictions. Binding of the CLV1 pT868 peptide seems to reduce nanosecond-scale fluctuations of all loops, including half of the residues of recognition loops. Residues important for affinity are found to be rigid, i.e., conserved residues and residues of the subsite for the key pT+3 peptide position. This behavior parallels SH2 and PTB domain recognition of pTyr peptides. PhosphoThr peptide binding increases KI-FHA backbone rigidity (S(2)) of three recognition loops, a loop nearby, seven strands from the beta-sandwich, and a distal loop. Compensating the trend of increased rigidity, binding enhances fast mobility at a few sites in four loops on the periphery of the recognition surface and in two loops on the far side of the beta-sandwich. Line broadening evidence of microsecond- to millisecond-scale fluctuations occurs across the six-stranded beta-sheet and nearby edges of the beta-sandwich; this forms a network connected by packing of interior side chains and H-bonding. A patch of the slowly fluctuating residues coincides with the site of segment-swapped dimerization in crystals of the FHA domain of human Chfr. Phosphopeptide binding introduces microsecond- to millisecond-scale fluctuations to more residues of the long 8/9 recognition loop of KI-FHA. The rigidity of this FHA domain appears to couple as a whole to pThr peptide binding.
Collapse
Affiliation(s)
| | | | - Xiangyang Liang
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Fabio Gallazzi
- Molecular Biology Program, 125 Chemistry, 601 S. College Ave., University of Missouri, Columbia, Missouri, 65211 USA
| | - A. Arunima
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri, 65211
| | - Steven R. Van Doren
- To whom correspondence should be addressed, E-mail: , Phone: 1 (573) 882-5113, FAX: 1 (573) 884-4812
| |
Collapse
|
16
|
Abstract
Checkpoint kinase 2 (Chk2) is a multifunctional enzyme whose functions are central to the induction of cell cycle arrest and apoptosis by DNA damage. Insight into Chk2 has derived from multiple approaches. Biochemical studies have addressed Chk2 structure, domain organization and regulation by phosphorylation. Extensive work has been done to identify factors that recognize and respond to DNA damage in order to activate Chk2. In turn a number of substrates and targets of Chk2 have been identified that play roles in the checkpoint response. The roles and regulation of Chk2 have been elucidated by studies in model genetic systems extending from worms and flies to mice and humans. The relationship of Chk2 to human cancer studies is developing rapidly with increasing evidence that Chk2 plays a role in tumor suppression.
Collapse
Affiliation(s)
- Jinwoo Ahn
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
17
|
Yongkiettrakul S, Byeon IJL, Tsai MD. The ligand specificity of yeast Rad53 FHA domains at the +3 position is determined by nonconserved residues. Biochemistry 2004; 43:3862-9. [PMID: 15049693 DOI: 10.1021/bi036195f] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of the results from our laboratory and others, we recently suggested that the ligand specificity of forkhead-associated (FHA) domains is controlled by variations in three major factors: (i) residues interacting with pThr, (ii) residues recognizing the +1 to +3 residues from pThr, and (iii) an extended binding surface. While the first factor has been well established by several solution and crystal structures of FHA-phosphopeptide complexes, the structural bases of the second and third factors are not well understood and are likely to vary greatly between different FHA domains. In this work, we proposed and tested the hypothesis that nonconserved residues G133 and G135 of FHA1 and I681 and D683 of FHA2, located outside of the core FHA region of yeast Rad53 FHA domains, contribute to the specific recognition of the +3 position of different phosphopeptides. By rational mutagenesis of these residues, the specificity of FHA1 has been changed from predominantly pTXXD to be equally acceptable for pTXXD, pTXXL, and pYXL, which are similar to the specificities of the FHA2 domain of Rad53. Conversely, the +3 position specificity of FHA2 has been engineered to be more like FHA1 with the I681A mutation. These results were based on library screening as well as binding analyses of specific phosphopeptides. Furthermore, results of structural analyses by NMR indicate that some of these residues are also important for the structural integrity of the loops.
Collapse
|
18
|
Yaffe MB, Smerdon SJ. The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function. ACTA ACUST UNITED AC 2004; 33:225-44. [PMID: 15139812 DOI: 10.1146/annurev.biophys.33.110502.133346] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphoserine/threonine-binding domains integrate intracellular signal transduction events by forming multiprotein complexes with substrates of protein serine/threonine kinases. These phosphorylation-dependent molecular recognition events are responsible for coordinating the precise temporal and spatial response of cells to a wide range of stimuli, particularly those involved in cell cycle control and the response to DNA damage. The known families of phosphoserine/threonine-binding modules include 14-3-3 proteins, WW domains, FHA domains, WD40 repeats, and the Polo-box domains of Polo-like kinases. Peptide-library experiments reveal the optimal sequence motifs recognized by these domains, and facilitate high-resolution structural studies elucidating the mechanisms of phospho-dependent binding and the molecular basis for domain function within intricate signaling networks. Information emerging from these studies is critical for the design of novel experimental and therapeutic tools aimed at altering signal transduction cascades in normal and diseased cells.
Collapse
Affiliation(s)
- Michael B Yaffe
- Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
19
|
Li H, Byeon IJL, Ju Y, Tsai MD. Structure of Human Ki67 FHA Domain and its Binding to a Phosphoprotein Fragment from hNIFK Reveal Unique Recognition Sites and New Views to the Structural Basis of FHA Domain Functions. J Mol Biol 2004; 335:371-81. [PMID: 14659764 DOI: 10.1016/j.jmb.2003.10.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies by use of short phosphopeptides showed that forkhead-associated (FHA) domains recognize pTXX(D/I/L) motifs. Solution structures and crystal structures of several different FHA domains and their complexes with short phosphopeptides have been reported by several groups. We now report the solution structure of the FHA domain of human Ki67, a large nuclear protein associated with the cell-cycle. Using fragments of its binding partner hNIFK, we show that Ki67-hNIFK binding involves ca 44 residues without a pTXX(D/I/L) motif. The pThr site of hNIFK recognized by Ki67 FHA is pThr234-Pro235, a motif also recognized by the proline isomerase Pin1. Heteronuclear single quantum coherence (HSQC) NMR was then used to map out the binding surface, and structural analyses were used to identify key binding residues of Ki67 FHA. The results represent the first structural characterization of the complex of an FHA domain with a biologically relevant target protein fragment. Detailed analyses of the results led us to propose that three major factors control the interaction of FHA with its target protein: the pT residue, +1 to +3 residues, and an extended binding surface, and that variation in the three factors is the likely cause of the great diversity in the function and specificity of FHA domains from different sources.
Collapse
Affiliation(s)
- Hongyuan Li
- Department of Biochemistry and Chemistry, Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
20
|
Bothos J, Summers MK, Venere M, Scolnick DM, Halazonetis TD. The Chfr mitotic checkpoint protein functions with Ubc13-Mms2 to form Lys63-linked polyubiquitin chains. Oncogene 2003; 22:7101-7. [PMID: 14562038 DOI: 10.1038/sj.onc.1206831] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We recently described a novel checkpoint pathway that functions early in mitosis to delay chromosome condensation in response to microtubule poisons. The only gene implicated so far in this checkpoint pathway is chfr, whose protein product contains a RING domain and has ubiquitin ligase activity in vitro. The significance of this activity in vivo is unclear. A recent report suggested that the Chfr protein targets itself for proteasome-dependent degradation in mitotic cells through autoubiquitination. However, we observe that in mitosis Chfr exhibits a phosphorylation-dependent electrophoretic mobility shift with no change in overall protein levels. Further analysis of its ubiquitin ligase activity revealed that Chfr can catalyse the formation of noncanonical Lys63-linked polyubiquitin chains with Ubc13-Mms2 acting as the ubiquitin-conjugating enzyme. Ubc13-Mms2 and Lys63-polyubiquitin chains are not associated with targeting proteins to the proteasome, but rather with signaling cellular stress. We propose that Chfr may have a role in signaling the presence of mitotic stress induced by microtubule poisons.
Collapse
Affiliation(s)
- John Bothos
- The Wistar Institute, Philadelphia, PA 19104-4268, USA
| | | | | | | | | |
Collapse
|
21
|
Qin D, Lee H, Yuan C, Ju Y, Tsai MD. Identification of potential binding sites for the FHA domain of human Chk2 by in vitro binding studies. Biochem Biophys Res Commun 2003; 311:803-8. [PMID: 14623252 DOI: 10.1016/j.bbrc.2003.10.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Human Chk2 is a newly identified tumor suppressor protein involved in signaling pathways in response to DNA damage. The protein consists of a forkhead-associated (FHA) domain and a kinase domain. Identification of binding partners of the Chk2FHA domain is important in understanding the roles of Chk2 in signaling. We report development of an approach involving the use of combinatorial libraries, pull-down assays, surface plasmon resonance (SPR), and nuclear magnetic resonance (NMR) methods to identify possible candidates for the binding sites of Chk2FHA. The approach has been used to identify Thr329 of p53 and Thr1852 of breast cancer type 1 susceptibility protein (BRCA1) as very likely biological binding sites of Chk2FHA. The results provide useful leads for further biological analyses of cell signaling involving the FHA domain of Chk2 protein.
Collapse
Affiliation(s)
- Dongyan Qin
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43220, USA
| | | | | | | | | |
Collapse
|
22
|
Lee SJ, Schwartz MF, Duong JK, Stern DF. Rad53 phosphorylation site clusters are important for Rad53 regulation and signaling. Mol Cell Biol 2003; 23:6300-14. [PMID: 12917350 PMCID: PMC180918 DOI: 10.1128/mcb.23.17.6300-6314.2003] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2003] [Revised: 05/07/2003] [Accepted: 06/03/2003] [Indexed: 11/20/2022] Open
Abstract
Budding yeast Rad53 is an essential protein kinase that is phosphorylated and activated in a MEC1- and TEL1-dependent manner in response to DNA damage. We studied the role of Rad53 phosphorylation through mutation of consensus phosphorylation sites for upstream kinases Mec1 and Tel1. Alanine substitution of the Rad53 amino-terminal TQ cluster region reduced viability and impaired checkpoint functions. These substitution mutations spared the basal interaction with Asf1 and the DNA damage-induced interactions with Rad9. However, they caused a decrease in DNA damage-induced Rad53 kinase activity and an impaired interaction with the protein kinase Dun1. The Dun1 FHA (Forkhead-associated) domain recognized the amino-terminal TQ cluster of Rad53 after DNA damage or replication blockade. Thus, the phosphorylation of Rad53 by upstream kinases is important not only for Rad53 activation but also for creation of an interface between Rad53 and Dun1.
Collapse
Affiliation(s)
- Soo-Jung Lee
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510,USA
| | | | | | | |
Collapse
|
23
|
Lou Z, Minter-Dykhouse K, Wu X, Chen J. MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 2003; 421:957-61. [PMID: 12607004 DOI: 10.1038/nature01447] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 01/27/2003] [Indexed: 11/09/2022]
Abstract
Forkhead-homology-associated (FHA) domains function as protein-protein modules that recognize phosphorylated serine/threonine motifs. Interactions between FHA domains and phosphorylated proteins are thought to have essential roles in the transduction of DNA damage signals; however, it is unclear how FHA-domain-containing proteins participate in mammalian DNA damage responses. Here we report that a FHA-domain-containing protein-mediator of DNA damage checkpoint protein 1 (MDC1; previously known as KIAA0170)--is involved in DNA damage responses. MDC1 localizes to sites of DNA breaks and associates with CHK2 after DNA damage. This association is mediated by the MDC1 FHA domain and the phosphorylated Thr 68 of CHK2. Furthermore, MDC1 is phosphorylated in an ATM/CHK2-dependent manner after DNA damage, suggesting that MDC1 may function in the ATM-CHK2 pathway. Consistent with this hypothesis, suppression of MDC1 expression results in defective S-phase checkpoint and reduced apoptosis in response to DNA damage, which can be restored by the expression of wild-type MDC1 but not MDC1 with a deleted FHA domain. Suppression of MDC1 expression results in decreased p53 stabilization in response to DNA damage. These results suggest that MDC1 is recruited through its FHA domain to the activated CHK2, and has a critical role in CHK2-mediated DNA damage responses.
Collapse
Affiliation(s)
- Zhenkun Lou
- Department of Oncology, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
24
|
Bashkirov VI, Bashkirova EV, Haghnazari E, Heyer WD. Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase. Mol Cell Biol 2003; 23:1441-52. [PMID: 12556502 PMCID: PMC141154 DOI: 10.1128/mcb.23.4.1441-1452.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2002] [Accepted: 10/31/2002] [Indexed: 11/20/2022] Open
Abstract
The serine-threonine kinase Dun1 contains a forkhead-associated (FHA) domain and functions in the DNA damage checkpoint pathway of Saccharomyces cerevisiae. It belongs to the Chk2 family of checkpoint kinases, which includes S. cerevisiae Rad53 and Mek1, Schizosaccharomyces pombe Cds1, and human Chk2. Dun1 is required for DNA damage-induced transcription of certain target genes, transient G(2)/M arrest after DNA damage, and DNA damage-induced phosphorylation of the DNA repair protein Rad55. Here we report that the FHA phosphoprotein recognition domain of Dun1 is required for direct phosphorylation of Dun1 by Rad53 kinase in vitro and in vivo. trans phosphorylation by Rad53 does not require the Dun1 kinase activity and is likely to involve only a transient interaction between the two kinases. The checkpoint functions of Dun1 kinase in DNA damage-induced transcription, G(2)/M cell cycle arrest, and Rad55 phosphorylation are severely compromised in an FHA domain mutant of Dun1. As a consequence, the Dun1 FHA domain mutant displays enhanced sensitivity to genotoxic stress induced by UV, methyl methanesulfonate, and the replication inhibitor hydroxyurea. We show that the Dun1 FHA domain is critical for direct kinase-to-kinase signaling from Rad53 to Dun1 in the DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- Vladimir I Bashkirov
- Section of Microbiology and Center for Genetics and Development, Division of Biological Sciences, University of California, Davis, Davis, California 95616-8665, USA
| | | | | | | |
Collapse
|
25
|
Boudrez A, Beullens M, Waelkens E, Stalmans W, Bollen M. Phosphorylation-dependent interaction between the splicing factors SAP155 and NIPP1. J Biol Chem 2002; 277:31834-41. [PMID: 12105215 DOI: 10.1074/jbc.m204427200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NIPP1 is a ubiquitously expressed nuclear protein that functions both as a regulator of protein Ser/Thr phosphatase-1 and as a splicing factor. The N-terminal part of NIPP1 consists of a phosphothreonine-interacting Forkhead-associated (FHA) domain. We show here that the FHA domain of NIPP1 interacts in vitro and in vivo with a TP dipeptide-rich fragment of the splicing factor SAP155/SF3b(155), a component of the U2 small nuclear ribonucleoprotein particle. The NIPP1-SAP155 interaction was entirely dependent on the phosphorylation of specific TP motifs in SAP155. Mutagenesis and competition studies revealed that various phosphorylated TP motifs competed for binding to the same site in the FHA domain. The SAP155 kinases in cell lysates were blocked by the Ca(2+) chelator EGTA and by the cyclin-dependent protein kinase inhibitor roscovitine. The phosphorylation level of SAP155 was dramatically increased during mitosis, and accordingly the activity of SAP155 kinases was augmented in mitotic lysates. We discuss how the interaction between NIPP1 and SAP155 could contribute to spliceosome (dis)assembly and the catalytic steps of splicing.
Collapse
Affiliation(s)
- An Boudrez
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
26
|
Stavridi ES, Huyen Y, Loreto IR, Scolnick DM, Halazonetis TD, Pavletich NP, Jeffrey PD. Crystal structure of the FHA domain of the Chfr mitotic checkpoint protein and its complex with tungstate. Structure 2002; 10:891-9. [PMID: 12121644 DOI: 10.1016/s0969-2126(02)00776-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Chfr mitotic checkpoint protein is frequently inactivated in human cancer. We determined the three-dimensional structure of its FHA domain in its native form and in complex with tungstate, an analog of phosphate. The structures revealed a beta sandwich fold similar to the previously determined folds of the Rad53 N- and C-terminal FHA domains, except that the Rad53 domains were monomeric, whereas the Chfr FHA domain crystallized as a segment-swapped dimer. The ability of the Chfr FHA domain to recognize tungstate suggests that it shares the ability with other FHA domains to bind phosphoproteins. Nevertheless, differences in the sequence and structure of the Chfr and Rad53 FHA domains suggest that FHA domains can be divided into families with distinct binding properties.
Collapse
Affiliation(s)
- Elena S Stavridi
- Molecular Genetics Program, Structural Biology Program, Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Li J, Williams BL, Haire LF, Goldberg M, Wilker E, Durocher D, Yaffe MB, Jackson SP, Smerdon SJ. Structural and functional versatility of the FHA domain in DNA-damage signaling by the tumor suppressor kinase Chk2. Mol Cell 2002; 9:1045-54. [PMID: 12049740 DOI: 10.1016/s1097-2765(02)00527-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Chk2 Ser/Thr kinase plays crucial, evolutionarily conserved roles in cellular responses to DNA damage. Identification of two pro-oncogenic mutations within the Chk2 FHA domain has highlighted its importance for Chk2 function in checkpoint activation. The X-ray structure of the Chk2 FHA domain in complex with an in vitro selected phosphopeptide motif reveals the determinants of binding specificity and shows that both mutations are remote from the peptide binding site. We show that the Chk2 FHA domain mediates ATM-dependent Chk2 phosphorylation and targeting of Chk2 to in vivo binding partners such as BRCA1 through either or both of two structurally distinct mechanisms. Although phospho-dependent binding is important for Chk2 activity, previously uncharacterized phospho-independent FHA domain interactions appear to be the primary target of oncogenic lesions.
Collapse
Affiliation(s)
- Jiejin Li
- Division of Protein Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Schwartz MF, Duong JK, Sun Z, Morrow JS, Pradhan D, Stern DF. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol Cell 2002; 9:1055-65. [PMID: 12049741 DOI: 10.1016/s1097-2765(02)00532-4] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rad9 is required for the MEC1/TEL1-dependent activation of Saccharomyces cerevisiae DNA damage checkpoint pathways mediated by Rad53 and Chk1. DNA damage induces Rad9 phosphorylation, and Rad53 specifically associates with phosphorylated Rad9. We report here that multiple Mec1/Tel1 consensus [S/T]Q sites within Rad9 are phosphorylated in response to DNA damage. These Rad9 phosphorylation sites are selectively required for activation of the Rad53 branch of the checkpoint pathway. Consistent with the in vivo function in recruiting Rad53, Rad9 phosphopeptides are bound by Rad53 forkhead-associated (FHA) domains in vitro. These data suggest that functionally independent domains within Rad9 regulate Rad53 and Chk1, and support the model that FHA domain-mediated recognition of Rad9 phosphopeptides couples Rad53 to the DNA damage checkpoint pathway.
Collapse
Affiliation(s)
- Marc F Schwartz
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The forkhead-associated (FHA) domain is a small protein module recently shown to recognize phosphothreonine epitopes on proteins. It is present in a diverse range of proteins in eukaryotic cells, such as kinases, phosphatases, kinesins, transcription factors, RNA-binding proteins, and metabolic enzymes. It is also found in a number of bacterial proteins. This suggests that FHA domain-mediated phospho-dependent assembly of protein complexes is an ancient and widespread regulatory mechanism.
Collapse
Affiliation(s)
- Daniel Durocher
- Samuel Lumenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1 X5.
| | | |
Collapse
|
30
|
Yuan C, Yongkiettrakul S, Byeon IJ, Zhou S, Tsai MD. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. J Mol Biol 2001; 314:563-75. [PMID: 11846567 DOI: 10.1006/jmbi.2001.5140] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rad53, a yeast checkpoint protein involved in regulating the repair of DNA damage, contains two forkhead-associated domains, FHA1 and FHA2. Previous combinatorial library screening has shown that FHA1 strongly selects peptides containing a pTXXD motif. Subsequent location of this motif within the sequence of Rad9, the target protein, coupled with spectroscopic analysis has led to identification of a tight binding sequence that is likely the binding site of FHA1: (188)SLEV(pT)EADATFVQ(200). We present solution structures of FHA1 in complex with this pT-peptide and with another Rad9-derived pT-peptide that has ca 30-fold lower affinity, (148)KKMTFQ(pT)PTDPLE(160). Both complexes showed intermolecular NOEs predominantly between three peptide residues (pT, +1, and +2 residues) and five FHA1 residues (S82, R83, S85, T106, and N107). Furthermore, the following interactions were implicated on the basis of chemical shift perturbations and structural analysis: the phosphate group of the pT residue with the side-chain amide group of N86 and the guanidino group of R70, and the carboxylate group of Asp (at the +3 position) with the guanidino group of R83. The generated structures revealed a similar binding mode adopted by these two peptides, suggesting that pT and the +3 residue Asp are the major contributors to binding affinity and specificity, while +1 and +2 residues could provide additional fine-tuning. It was also shown that FHA1 does not bind to the corresponding pS-peptides or a related pY-peptide. We suggest that differentiation between pT and pS-peptides by FHA1 can be attributed to hydrophobic interactions between the methyl group of the pT residue and the aliphatic protons of R83, S85, and T106 from FHA1.
Collapse
Affiliation(s)
- C Yuan
- Department of Chemistry, The Ohio State University, Columbus OH 43210, USA
| | | | | | | | | |
Collapse
|
31
|
Byeon IJ, Yongkiettrakul S, Tsai MD. Solution structure of the yeast Rad53 FHA2 complexed with a phosphothreonine peptide pTXXL: comparison with the structures of FHA2-pYXL and FHA1-pTXXD complexes. J Mol Biol 2001; 314:577-88. [PMID: 11846568 DOI: 10.1006/jmbi.2001.5141] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It was proposed previously that the FHA2 domain of the yeast protein kinase Rad53 has dual specificity toward pY and pT peptides. The consensus sequences of pY peptides for binding to FHA2, as well as the solution structures of free FHA2 and FHA2 complex with a pY peptide derived from Rad9, have been obtained previously. We now report the use of a pT library to screen for binding of pT peptides with the FHA2 domain. The results show that FHA2 binds favorably to pT peptides with Ile at the +3 position. We then searched the Rad9 sequences with a pTXXI/L motif, and tested the binding affinity of FHA2 toward ten pT peptides derived from Rad9. One of the peptides, (599)EVEL(pT)QELP(607), displayed the best binding affinity (K(d)=12.9 microM) and the greatest chemical shift changes. The structure of the FHA2 complex with this peptide was then determined by solution NMR and the structure of the complex between FHA2 and the pY peptide (826)EDI(pY)YLD(832) was further refined. Structural comparison of these two complexes indicates that the Leu residue at the +3 position in the pT peptide and that at the +2 position in the pY peptide occupy a very similar position relative to the binding site residues from FHA2. This can explain why FHA2 is able to bind both pT and pY peptides. This position change from +3 to +2 could be the consequence of the size difference between Thr and Tyr. Further insight into the structural basis of ligand specificity of FHA domains was obtained by comparing the structures of the FHA2-pTXXL complex obtained in this work and the FHA1-pTXXD complex reported in the accompanying paper.
Collapse
Affiliation(s)
- I J Byeon
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
32
|
Bader AG, Schneider ML, Bister K, Hartl M. TOJ3, a target of the v-Jun transcription factor, encodes a protein with transforming activity related to human microspherule protein 1 (MCRS1). Oncogene 2001; 20:7524-35. [PMID: 11709724 DOI: 10.1038/sj.onc.1204938] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 08/20/2001] [Accepted: 08/22/2001] [Indexed: 11/09/2022]
Abstract
Using the established quail cell line Q/d3 conditionally transformed by the v-jun oncogene, cDNA clones (TOJ2, TOJ3, TOJ5, TOJ6) were isolated by representational difference analysis (RDA) that correspond to genes which were induced immediately upon conditional activation of v-jun. One of these genes, TOJ3, is immediately and specifically activated after doxycycline-mediated v-jun induction, with kinetics similar to the induction of well characterized direct AP-1 target genes. TOJ3 is neither activated upon conditional activation of v-myc, nor in cells or cell lines non-conditionally transformed by oncogenes other than v-jun. Sequence analysis revealed that the TOJ3-specific cDNA encodes a 530-amino acid protein with significant sequence similarities to the murine or human microspherule protein 1 (MCRS1, MSP58), a nucleolar protein that directly interacts with the ICP22 regulatory protein from herpes simplex virus 1 or with p120, a proliferation-related protein expressed at high levels in most human malignant tumor cells. Similar to its mammalian counterparts, the TOJ3 protein contains a bipartite nuclear localization motif and a forkhead associated domain (FHA). Using polyclonal antibodies directed against a recombinant amino-terminal TOJ3 protein segment, the activation of TOJ3 in jun-transformed fibroblasts was also demonstrated at the protein level by specific detection of a polypeptide with an apparent M(r) of 65 000. Retroviral expression of the TOJ3 gene in quail or chicken embryo fibroblasts induces anchorage-independent growth, indicating that the immediate activation of TOJ3 in fibroblasts transformed by the v-jun oncogene contributes to cell transformation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies/metabolism
- Avian Proteins
- Base Sequence
- Blotting, Northern
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Cell Nucleolus/metabolism
- Cell Transformation, Neoplastic
- Chick Embryo
- Chromatography
- Cloning, Molecular
- Coturnix
- DNA/metabolism
- DNA, Complementary/metabolism
- Doxycycline/pharmacology
- Enzyme Activation
- Fibroblasts/metabolism
- Humans
- Kinetics
- Mice
- Models, Genetic
- Molecular Sequence Data
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/chemistry
- Nuclear Proteins/metabolism
- Oncogene Protein p65(gag-jun)/metabolism
- Precipitin Tests
- Protein Binding
- Protein Biosynthesis
- Protein Structure, Tertiary
- Proteins/metabolism
- RNA/metabolism
- Recombinant Proteins/metabolism
- Retroviridae/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Time Factors
- Transcription, Genetic
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A G Bader
- Institute of Biochemistry, University of Innsbruck, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
33
|
Takagi M, Sueishi M, Saiwaki T, Kametaka A, Yoneda Y. A novel nucleolar protein, NIFK, interacts with the forkhead associated domain of Ki-67 antigen in mitosis. J Biol Chem 2001; 276:25386-91. [PMID: 11342549 DOI: 10.1074/jbc.m102227200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study, we demonstrated that the forkhead associated (FHA) domain of pKi-67 interacts with the novel kinesin-like protein, Hklp2 (Sueishi, M., Takagi, M., and Yoneda, Y. (2000) J. Biol. Chem. 275, 28888-28892). In this study, we report on the identification of a putative RNA-binding protein of 293 residues as another binding partner of the FHA domain of pKi-67 (referred to as NIFK for nucleolar protein interacting with the FHA domain of pKi-67). Human NIFK (hNIFK) interacted with the FHA domain of pKi-67 (Ki-FHA) efficiently in vitro when hNIFK was derived from mitotically arrested cells. In addition, a moiety of hNIFK was co-localized with pKi-67 at the peripheral region of mitotic chromosomes. The hNIFK domain that interacts with Ki-FHA was mapped in the yeast two-hybrid system to a portion encompassed by residues 226-269. In a binding assay utilizing Xenopus egg extracts, it was found that the mitosis-specific environment and two threonine residues within this portion of hNIFK (Thr-234 and Thr-238) were crucial for the efficient interaction of hNIFK and Ki-FHA, suggesting that hNIFK interacts with Ki-FHA in a mitosis-specific and phosphorylation-dependent manner. These findings provide a new clue to our understanding of the cellular function of pKi-67.
Collapse
Affiliation(s)
- M Takagi
- Department of Cell Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
34
|
Abstract
Phosphorylation of proteins on serine and threonine residues has traditionally been viewed as a means to allosterically regulate catalytic activity. Research within the past five years, however, has revealed that serine/threonine phosphorylation can also directly result in the formation of multimolecular signaling complexes through specific interactions between phosphoserine/threonine (pSer/Thr)-binding modules and phosphorylated sequence motifs. pSer/Thr-binding proteins and domains currently include 14-3-3, WW domains, forkhead-associated domains, and, tentatively, WD40 repeats and leucine-rich regions. It seems likely that additional modules will be found in the future. The amino acid sequences recognized by these pSer/Thr-binding modules show partial overlap with the optimal phosphorylation motifs for different protein kinase subfamilies, allowing the formation of specific signaling complexes to be controlled through combinatorial interactions between particular upstream kinases and a particular binding module. The structural basis for pSer/Thr binding differs dramatically between 14-3-3 proteins, WW domains and forkhead-associated domains, suggesting that their pSer/Thr binding function was acquired through convergent evolution.
Collapse
Affiliation(s)
- M B Yaffe
- Center for Cancer Research E18-580, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | |
Collapse
|
35
|
Abstract
Smad proteins are eukarytic transcription regulators in the TGF-beta signaling cascade. Using a combination of sequence and structure-based analyses, we argue that MH1 domain of Smad is homologous to the diverse His-Me finger endonuclease family enzymes. The similarity is particularly extensive with the I-PpoI endonuclease. In addition to the global fold similarities, both proteins possess a conserved motif of three cysteine residues and one histidine residue which form a zinc-binding site in I-PpoI. Sequence and structure conservation in the motif region strongly suggest that MH1 domain may also incorporate a metal ion in its structural core. MH1 of Smad3 and I-PpoI exhibit similar nucleic acid binding mode and interact with DNA major groove through an antiparallel beta-sheet. MH1 is an example of transcription regulator derived from the ancient enzymatic domain that lost its catalytic activity but retained DNA-binding sites.
Collapse
Affiliation(s)
- N V Grishin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390-9050, USA.
| |
Collapse
|
36
|
Abstract
The fundamental biological importance of protein phosphorylation is underlined by the existence of more than 500 protein kinase genes within the human genome. In many cases, phosphorylation on serine, threonine, and tyrosine residues creates binding surfaces for a variety of phospho-amino acid binding proteins/modules. Here, we review the insights into serine/threonine phosphorylation-dependent signal transduction processes provided by structures of several of these proteins and their complexes.
Collapse
Affiliation(s)
- M B Yaffe
- Center for Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E18-580, Cambridge, MA 02139, USA.
| | | |
Collapse
|
37
|
Westerholm-Parvinen A, Vernos I, Serrano L. Kinesin subfamily UNC104 contains a FHA domain: boundaries and physicochemical characterization. FEBS Lett 2000; 486:285-90. [PMID: 11119720 DOI: 10.1016/s0014-5793(00)02310-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
By sequence analysis we show that the U104 domain found in the UNC104 subfamily of kinesins is a forkhead homology-associated domain (FHA). A combination of limited proteolysis, mass spectroscopy, and physicochemical analysis define this domain as a genuine autonomously folding domain. Our data show that the FHA domain is shorter than previously reported since the C-terminal alpha-helix is not part of its minimum core. Key amino acids postulated to recognize phosphorylated residues are conserved. These data suggest that the kinesin FHA domains are functional domains involved in protein-protein interactions regulated by phosphorylation.
Collapse
Affiliation(s)
- A Westerholm-Parvinen
- Cell Biology and Cell Biophysics Program, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | | | |
Collapse
|
38
|
Liao H, Yuan C, Su MI, Yongkiettrakul S, Qin D, Li H, Byeon IJ, Pei D, Tsai MD. Structure of the FHA1 domain of yeast Rad53 and identification of binding sites for both FHA1 and its target protein Rad9. J Mol Biol 2000; 304:941-51. [PMID: 11124038 DOI: 10.1006/jmbi.2000.4291] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Forkhead-associated (FHA) domains have been shown to recognize both pThr and pTyr-peptides. The solution structures of the FHA2 domain of Rad53 from Saccharomyces cerevisiae, and its complex with a pTyr peptide, have been reported recently. We now report the solution structure of the other FHA domain of Rad53, FHA1 (residues 14-164), and identification of binding sites of FHA1 and its target protein Rad9. The FHA1 structure consists of 11 beta-strands, which form two large twisted anti-parallel beta-sheets folding into a beta-sandwich. Three short alpha-helices were also identified. The beta-strands are linked by several loops and turns. These structural features of free FHA1 are similar to those of free FHA2, but there are significant differences in the loops. Screening of a peptide library [XXX(pT)XXX] against FHA1 revealed an absolute requirement for Asp at the +3 position and a preference for Ala at the +2 position. These two criteria are met by a pThr motif (192)TEAD(195) in Rad9. Surface plasmon resonance analysis showed that a pThr peptide containing this motif, (188)SLEV(pT)EADATFVQ(200) from Rad9, binds to FHA1 with a K(d) value of 0.36 microM. Other peptides containing pTXXD sequences also bound to FHA1, but less tightly (K(d)=4-70 microM). These results suggest that Thr192 of Rad9 is the likely phosphorylation site recognized by the FHA1 domain of Rad53. The tight-binding peptide was then used to identify residues of FHA1 involved in the interaction with the pThr peptide. The results are compared with the interactions between the FHA2 domain and a pTyr peptide derived from Rad9 reported previously.
Collapse
Affiliation(s)
- H Liao
- Departments of Chemistry and Biochemistry, The Ohio State Biochemistry Program, and Campus Chemical Instrument Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li J, Lee GI, Van Doren SR, Walker JC. The FHA domain mediates phosphoprotein interactions. J Cell Sci 2000; 113 Pt 23:4143-9. [PMID: 11069759 DOI: 10.1242/jcs.113.23.4143] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The forkhead-associated (FHA) domain is a phosphopeptide-binding domain first identified in a group of forkhead transcription factors but is present in a wide variety of proteins from both prokaryotes and eukaryotes. In yeast and human, many proteins containing an FHA domain are found in the nucleus and involved in DNA repair, cell cycle arrest, or pre-mRNA processing. In plants, the FHA domain is part of a protein that is localized to the plasma membrane and participates in the regulation of receptor-like protein kinase signaling pathways. Recent studies show that a functional FHA domain consists of 120–140 amino acid residues, which is significantly larger than the sequence motif first described. Although FHA domains do not exhibit extensive sequence similarity, they share similar secondary and tertiary structures, featuring a sandwich of two anti-parallel (beta)-sheets. One intriguing finding is that FHA domains may bind phosphothreonine, phosphoserine and sometimes phosphotyrosine, distinguishing them from other well-studied phosphoprotein-binding domains. The diversity of proteins containing FHA domains and potential differences in binding specificities suggest the FHA domain is involved in coordinating diverse cellular processes.
Collapse
Affiliation(s)
- J Li
- Division of Biological Sciences and Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|