1
|
Li M, Chen Z, Zhang W, Wu T, Qi Q, Huo Y. Customization of Ethylene Glycol (EG)-Induced BmoR-Based Biosensor for the Directed Evolution of PET Degrading Enzymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413205. [PMID: 39927766 PMCID: PMC11967783 DOI: 10.1002/advs.202413205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/25/2025] [Indexed: 02/11/2025]
Abstract
The immense volume of plastic waste poses continuous threats to the ecosystem and human health. Despite substantial efforts to enhance the catalytic activity, robustness, expression, and tolerance of plastic-degrading enzymes, the lack of high-throughput screening (HTS) tools hinders efficient enzyme engineering for industrial applications. Herein, we develop a novel fluorescence-based HTS tool for evolving polyethylene terephthalate (PET) degrading enzymes by constructing an engineered BmoR-based biosensor targeting the PET breakdown product, ethylene glycol (EG). The EG-responsive biosensors, with notably enhanced dynamic range and operation range, are customized by fluorescence-activated cell sorting (FACS)-assisted transcription factor engineering. The ingeniously designed SUMO-MHETase-FastPETase (SMF) chimera successfully addresses the functional soluble expression of MHETase in Escherichia coli and mitigates the inhibitory effect of mono-(2-hydroxyethyl) terephthalic acid (MHET) intermediate commonly observed with PETase alone. The obtained SMM3F mutant demonstrates 1.59-fold higher terephthalic acid (TPA) production, with a 1.18-fold decrease in Km, a 1.29-fold increase in Vmax, and a 1.52-fold increase in kcat/Km, indicating stronger affinity and catalytic activity toward MHET. Furthermore, the SMM3F crude extract depolymerizes 5 g L-1 bis-(2-hydroxyethyl) terephthalic acid (BHET) into TPA completely at 37 °C within 10 h, which is then directedly converted into value-added protocatechuic acid (PCA) (997.16 mg L-1) and gallic acid (GA) (411.69 mg L-1) at 30 °C, establishing an eco-friendly 'PET-BHET-MHET-TPA-PCA-GA' upcycling route. This study provides a valuable HTS tool for screening large-scale PET and MHET hydrolases candidates or metagenomic libraries, and propels the complete biodegradation and upcycling of PET waste.
Collapse
Affiliation(s)
- Min Li
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Zhenya Chen
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
- Tangshan Research InstituteBeijing Institute of TechnologyNo. 57, South Jianshe Road, Lubei DistrictTangshanHebei063000China
- Center for Future FoodsMuyuan LaboratoryZhengzhouHenan450016China
| | - Wuyuan Zhang
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Tong Wu
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoShandong266237China
| | - Yi‐Xin Huo
- Department of GastroenterologyAerospace Center HospitalCollege of Life ScienceBeijing Institute of TechnologyNo. 5 South Zhongguancun Street, Haidian DistrictBeijing100081China
- Tangshan Research InstituteBeijing Institute of TechnologyNo. 57, South Jianshe Road, Lubei DistrictTangshanHebei063000China
- Center for Future FoodsMuyuan LaboratoryZhengzhouHenan450016China
| |
Collapse
|
2
|
Hwang Y, Na JG, Lee SJ. Transcriptional regulation of soluble methane monooxygenase via enhancer-binding protein derived from Methylosinus sporium 5. Appl Environ Microbiol 2023; 89:e0210422. [PMID: 37668365 PMCID: PMC10537576 DOI: 10.1128/aem.02104-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/07/2023] [Indexed: 09/06/2023] Open
Abstract
Methane is a major greenhouse gas, and methanotrophs regulate the methane level in the carbon cycle. Soluble methane monooxygenase (sMMO) is expressed in various methanotroph genera, including Alphaproteobacteria and Gammaproteobacteria, and catalyzes the hydroxylation of methane to methanol. It has been proposed that MmoR regulates the expression of sMMO as an enhancer-binding protein under copper-limited conditions; however, details on this transcriptional regulation remain limited. Herein, we elucidate the transcriptional pathway of sMMO depending on copper ion concentration, which affects the interaction of MmoR and sigma factor. MmoR and sigma-54 (σ54) from Methylosinus sporium 5 were successfully overexpressed in Escherichia coli and purified to investigate sMMO transcription in methanotrophs. The results indicated that σ54 binds to a promoter positioned -24 (GG) and -12 (TGC) upstream between mmoG and mmoX1. The binding affinity and selectivity are lower (Kd = 184.6 ± 6.2 nM) than those of MmoR. MmoR interacts with the upstream activator sequence (UAS) with a strong binding affinity (Kd = 12.5 ± 0.5 nM). Mutational studies demonstrated that MmoR has high selectivity to its binding partner (ACA-xx-TGT). Titration assays have demonstrated that MmoR does not coordinate with copper ions directly; however, its binding affinity to UAS decreases in a low-copper-containing medium. MmoR strongly interacts with adenosine triphosphate (Kd = 62.8 ± 0.5 nM) to generate RNA polymerase complex. This study demonstrated that the binding events of both MmoR and σ54 that regulate transcription in M. sporium 5 depend on the copper ion concentration. IMPORTANCE This study provides biochemical evidence of transcriptional regulation of soluble methane monooxygenase (sMMO) in methanotrophs that control methane levels in ecological systems. Previous studies have proposed transcriptional regulation of MMOs, including sMMO and pMMO, while we provide further evidence to elucidate its mechanism using a purified enhancer-binding protein (MmoR) and transcription factor (σ54). The characterization studies of σ54 and MmoR identified the promoter binding sites and enhancer-binding sequences essential for sMMO expression. Our findings also demonstrate that MmoR functions as a trigger for sMMO expression due to the high specificity and selectivity for enhancer-binding sequences. The UV-visible spectrum of purified MmoR suggested an iron coordination like other GAF domain, and that ATP is essential for the initiation of enhancer elements. Binding assays indicated that these interactions are blocked by the copper ion. These results provide novel insights into gene regulation of methanotrophs.
Collapse
Affiliation(s)
- Yunha Hwang
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
| | - Jeong-Geol Na
- Department of Chemical Engineering, Sogang University , Seoul, South Korea
| | - Seung Jae Lee
- Department of Chemistry, Jeonbuk National University , Jeonju, South Korea
- Institute of Molecular Biology and Genetics, Jeonbuk National University , Jeonju, South Korea
| |
Collapse
|
3
|
Shimada T, Furuhata S, Ishihama A. Whole set of constitutive promoters for RpoN sigma factor and the regulatory role of its enhancer protein NtrC in Escherichia coli K-12. Microb Genom 2021; 7. [PMID: 34787538 PMCID: PMC8743547 DOI: 10.1099/mgen.0.000653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The promoter selectivity of Escherichia coli RNA polymerase (RNAP) is determined by its promoter-recognition sigma subunit. The model prokaryote E. coli K-12 contains seven species of the sigma subunit, each recognizing a specific set of promoters. Using genomic SELEX (gSELEX) screening in vitro, we identified the whole set of ‘constitutive’ promoters recognized by the reconstituted RNAP holoenzyme alone, containing RpoD (σ70), RpoS (σ38), RpoH (σ32), RpoF (σ28) or RpoE (σ24), in the absence of other supporting regulatory factors. In contrast, RpoN sigma (σ54), involved in expression of nitrogen-related genes and also other cellular functions, requires an enhancer (or activator) protein, such as NtrC, for transcription initiation. In this study, a series of gSELEX screenings were performed to search for promoters recognized by the RpoN RNAP holoenzyme in the presence and absence of the major nitrogen response enhancer NtrC, the best-characterized enhancer. Based on the RpoN holoenzyme-binding sites, a total of 44 to 61 putative promoters were identified, which were recognized by the RpoN holoenzyme alone. In the presence of the enhancer NtrC, the recognition target increased to 61–81 promoters. Consensus sequences of promoters recognized by RpoN holoenzyme in the absence and presence of NtrC were determined. The promoter activity of a set of NtrC-dependent and -independent RpoN promoters was verified in vivo under nitrogen starvation, in the presence and absence of RpoN and/or NtrC. The promoter activity of some RpoN-recognized promoters increased in the absence of RpoN or NtrC, supporting the concept that the promoter-bound NtrC-enhanced RpoN holoenzyme functions as a repressor against RpoD holoenzyme. Based on our findings, we propose a model in which the RpoN holoenzyme fulfils the dual role of repressor and transcriptase for the same set of genes. We also propose that the promoter recognized by RpoN holoenzyme in the absence of enhancers is the ‘repressive’ promoter. The presence of high-level RpoN sigma in growing E. coli K-12 in rich medium may be related to the repression role of a set of genes needed for the utilization of ammonia as a nitrogen source in poor media. The list of newly identified regulatory targets of RpoN provides insight into E. coli survival under nitrogen-depleted conditions in nature.
Collapse
Affiliation(s)
- Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Shun Furuhata
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| |
Collapse
|
4
|
Sharma A, Leach RN, Gell C, Zhang N, Burrows PC, Shepherd DA, Wigneshweraraj S, Smith DA, Zhang X, Buck M, Stockley PG, Tuma R. Domain movements of the enhancer-dependent sigma factor drive DNA delivery into the RNA polymerase active site: insights from single molecule studies. Nucleic Acids Res 2014; 42:5177-90. [PMID: 24553251 PMCID: PMC4005640 DOI: 10.1093/nar/gku146] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recognition of bacterial promoters is regulated by two distinct classes of sequence-specific sigma factors, σ70 or σ54, that differ both in their primary sequence and in the requirement of the latter for activation via enhancer-bound upstream activators. The σ54 version controls gene expression in response to stress, often mediating pathogenicity. Its activator proteins are members of the AAA+ superfamily and use adenosine triphosphate (ATP) hydrolysis to remodel initially auto-inhibited holoenzyme promoter complexes. We have mapped this remodeling using single-molecule fluorescence spectroscopy. Initial remodeling is nucleotide-independent and driven by binding both ssDNA during promoter melting and activator. However, DNA loading into the RNA polymerase active site depends on co-operative ATP hydrolysis by the activator. Although the coupled promoter recognition and melting steps may be conserved between σ70 and σ54, the domain movements of the latter have evolved to require an activator ATPase.
Collapse
Affiliation(s)
- Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Robert N. Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher Gell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Nan Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Patricia C. Burrows
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Dale A. Shepherd
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Sivaramesh Wigneshweraraj
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - David Alastair Smith
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Xiaodong Zhang
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Martin Buck
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Peter G. Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- *To whom correspondence should be addressed. Tel: +44 1133 433092; Fax: +44 1133 437897;
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK, Department of Life Sciences, Sir Alexander Fleming Building, Imperial College, London SW72AZ, UK and School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
- Correspondence may also be addressed to Roman Tuma. Tel: +44 1133 433080; Fax: +44 1133 437897;
| |
Collapse
|
5
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
6
|
Xiao Y, Wigneshweraraj SR, Weinzierl R, Wang YP, Buck M. Construction and functional analyses of a comprehensive sigma54 site-directed mutant library using alanine-cysteine mutagenesis. Nucleic Acids Res 2009; 37:4482-97. [PMID: 19474350 PMCID: PMC2715252 DOI: 10.1093/nar/gkp419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sigma(54) factor associates with core RNA polymerase (RNAP) to form a holoenzyme that is unable to initiate transcription unless acted on by an activator protein. sigma(54) is closely involved in many steps of activator-dependent transcription, such as core RNAP binding, promoter recognition, activator interaction and open complex formation. To systematically define sigma(54) residues that contribute to each of these functions and to generate a resource for site specific protein labeling, a complete mutant library of sigma(54) was constructed by alanine-cysteine scanning mutagenesis. Amino acid residues from 3 to 476 of Cys(-)sigma(54) were systematically mutated to alanine and cysteine in groups of two adjacent residues at a time. The influences of each substitution pair upon the functions of sigma(54) were analyzed in vivo and in vitro and the functions of many residues were revealed for the first time. Increased sigma(54) isomerization activity seldom corresponded with an increased transcription activity of the holoenzyme, suggesting the steps after sigma(54) isomerization, likely to be changes in core RNAP structure, are also strictly regulated or rate limiting to open complex formation. A linkage between core RNAP-binding activity and activator responsiveness indicates that the sigma(54)-core RNAP interface changes upon activation.
Collapse
Affiliation(s)
- Yan Xiao
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
7
|
Organization of an activator-bound RNA polymerase holoenzyme. Mol Cell 2008; 32:337-46. [PMID: 18995832 PMCID: PMC2680985 DOI: 10.1016/j.molcel.2008.09.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/30/2008] [Accepted: 09/05/2008] [Indexed: 12/31/2022]
Abstract
Transcription initiation involves the conversion from closed promoter complexes, comprising RNA polymerase (RNAP) and double-stranded promoter DNA, to open complexes, in which the enzyme is able to access the DNA template in a single-stranded form. The complex between bacterial RNAP and its major variant sigma factor σ54 remains as a closed complex until ATP hydrolysis-dependent remodeling by activator proteins occurs. This remodeling facilitates DNA melting and allows the transition to the open complex. Here we present cryoelectron microscopy reconstructions of bacterial RNAP in complex with σ54 alone, and of RNAP-σ54 with an AAA+ activator. Together with photo-crosslinking data that establish the location of promoter DNA within the complexes, we explain why the RNAP-σ54 closed complex is unable to access the DNA template and propose how the structural changes induced by activator binding can initiate conformational changes that ultimately result in formation of the open complex.
Collapse
|
8
|
Visualizing the organization and reorganization of transcription complexes for gene expression. Biochem Soc Trans 2008; 36:776-9. [PMID: 18631157 DOI: 10.1042/bst0360776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Regulated gene expression requires control of the transcription machinery, frequently through the establishment of different functional states of the transcribing enzyme RNA polymerase and its attendant activator proteins. In bacteria, major adaptive responses use an enhancer-dependent RNA polymerase, activated for transcription by a class of ATPases that remodel initial promoter complexes to form transcriptionally proficient open promoter complexes. In the present article, we summarize the integrated use of site-specific protein cleavage and DNA cross-linking methods, as well as FRET (fluorescence resonance energy transfer) in combination with X-ray crystallography and cryo-electron microscopy to gain insight into the organization of the enhancer-dependent sigma 54-RNA polymerase and the ATPase-driven activation mechanism.
Collapse
|
9
|
Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K, Buck M. Modus operandi of the bacterial RNA polymerase containing the sigma54 promoter-specificity factor. Mol Microbiol 2008; 68:538-46. [PMID: 18331472 DOI: 10.1111/j.1365-2958.2008.06181.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial sigma (sigma) factors confer gene specificity upon the RNA polymerase, the central enzyme that catalyses gene transcription. The binding of the alternative sigma factor sigma(54) confers upon the RNA polymerase special functional and regulatory properties, making it suited for control of several major adaptive responses. Here, we summarize our current understanding of the interactions the sigma(54) factor makes with the bacterial transcription machinery.
Collapse
Affiliation(s)
- Sivaramesh Wigneshweraraj
- Department of Microbiology, Division of Investigative Sciences, Faculty of Medicine and Centre for Molecular Microbiology and Infection, Imperial College London, SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Protein-DNA interactions that govern AAA+ activator-dependent bacterial transcription initiation. J Mol Biol 2007; 375:43-58. [PMID: 18005983 DOI: 10.1016/j.jmb.2007.10.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 10/04/2007] [Accepted: 10/04/2007] [Indexed: 11/24/2022]
Abstract
Transcriptional control at the promoter melting step is not yet well understood. In this study, a site-directed photo-cross-linking method was used to systematically analyse component protein-DNA interactions that govern promoter melting by the enhancer-dependent Escherichia coli RNA polymerase (RNAP) containing the sigma(54) promoter specificity factor (E sigma(54)) at a single base pair resolution in three functional states. The sigma(54)-factor imposes tight control upon the RNAP by creating a regulatory switch where promoter melting nucleates, approximately 12 bp upstream of the transcription start site. Promoter melting by E sigma(54) is only triggered upon remodelling of this regulatory switch by a specialised activator protein in an ATP-hydrolysing reaction. We demonstrate that prior to DNA melting, only the sigma(54)-factor directly interacts with the promoter in the regulatory switch within the initial closed E sigma(54)-promoter complex and one intermediate E sigma(54)-promoter complex. We establish that activator-induced conformational rearrangements in the regulatory switch are a prerequisite to allow the promoter to enter the catalytic cleft of the RNAP and hence establish the transcriptionally competent open complex, where full promoter melting occurs. These results significantly advance our current understanding of the structural transitions occurring at bacterial promoters, where regulation occurs at the DNA melting step.
Collapse
|
11
|
Buck M, Bose D, Burrows P, Cannon W, Joly N, Pape T, Rappas M, Schumacher J, Wigneshweraraj S, Zhang X. A second paradigm for gene activation in bacteria. Biochem Soc Trans 2007; 34:1067-71. [PMID: 17073752 DOI: 10.1042/bst0341067] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Control of gene expression is key to development and adaptation. Using purified transcription components from bacteria, we employ structural and functional studies in an integrative manner to elaborate a detailed description of an obligatory step, the accessing of the DNA template, in gene expression. Our work focuses on a specialized molecular machinery that utilizes ATP hydrolysis to initiate DNA opening and permits a description of how the events triggered by ATP hydrolysis within a transcriptional activator can lead to DNA opening and transcription. The bacterial EBPs (enhancer binding proteins) that belong to the AAA(+) (ATPases associated with various cellular activities) protein family remodel the RNAP (RNA polymerase) holoenzyme containing the sigma(54) factor and convert the initial, transcriptionally silent promoter complex into a transcriptionally proficient open complex using transactions that reflect the use of ATP hydrolysis to establish different functional states of the EBP. A molecular switch within the model EBP we study [called PspF (phage shock protein F)] is evident, and functions to control the exposure of a solvent-accessible flexible loop that engages directly with the initial RNAP promoter complex. The sigma(54) factor then controls the conformational changes in the RNAP required to form the open promoter complex.
Collapse
Affiliation(s)
- M Buck
- Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Schumacher J, Joly N, Rappas M, Bradley D, Wigneshweraraj SR, Zhang X, Buck M. Sensor I threonine of the AAA+ ATPase transcriptional activator PspF is involved in coupling nucleotide triphosphate hydrolysis to the restructuring of sigma 54-RNA polymerase. J Biol Chem 2007; 282:9825-9833. [PMID: 17242399 DOI: 10.1074/jbc.m611532200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional initiation invariably involves the transition from a closed RNA polymerase (RNAP) promoter complex to a transcriptional competent open complex. Activators of the bacterial sigma(54)-RNAP are AAA+ proteins that couple ATP hydrolysis to restructure the sigma(54)-RNAP promoter complex. Structures of the sigma(54) activator PspF AAA+ domain (PspF(1-275)) bound to sigma(54) show two loop structures proximal to sigma(54) as follows: the sigma(54) contacting the GAFTGA loop 1 structure and loop 2 that classifies sigma(54) activators as pre-sensor 1 beta-hairpin AAA+ proteins. We report activities for PspF(1-275) mutated in the AAA+ conserved sensor I threonine/asparagine motif (PspF(1-275)(T148A), PspF(1-275)(N149A), and PspF(1-275)(N149S)) within the second region of homology. We show that sensor I asparagine plays a direct role in ATP hydrolysis. However, low hydrolysis rates are sufficient for functional output in vitro. In contrast, PspF(1-275)(T148A) has severe defects at the distinct step of sigma(54) promoter restructuring. This defect is not because of the failure of PspF(1-275)(T148A) to stably engage with the closed sigma(54) promoter, indicating (i) an important role in ATP hydrolysis-associated motions during energy coupling for remodeling and (ii) distinguishing PspF(1-275)(T148A) from PspF(1-275) variants involved in signaling to the GAFTGA loop 1, which fail to stably engage with the promoter. Activities of loop 2 PspF(1-275) variants are similar to those of PspF(1-275)(T148A) suggesting a functional signaling link between Thr(148) and loop 2. In PspF(1-275) this link relies on the conserved nucleotide state-dependent interaction between the Walker B residue Glu(108) and Thr(148). We propose that hydrolysis is relayed via Thr(148) to loop 2 creating motions that provide mechanical force to the GAFTGA loop 1 that contacts sigma(54).
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Nicolas Joly
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mathieu Rappas
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Dominic Bradley
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Xiaodong Zhang
- Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Martin Buck
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
13
|
Dago AE, Wigneshweraraj SR, Buck M, Morett E. A role for the conserved GAFTGA motif of AAA+ transcription activators in sensing promoter DNA conformation. J Biol Chem 2006; 282:1087-97. [PMID: 17090527 DOI: 10.1074/jbc.m608715200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription from sigma54-dependent bacterial promoters can be regarded as a second paradigm for bacterial gene transcription. The initial sigma54-RNA polymerase (RNAP).promoter complex, the closed complex, is transcriptionally silent. The transcriptionally proficient sigma54-RNAP.promoter complex, the open complex, is formed upon remodeling of the closed complex by actions of a specialized activator protein that belongs to the AAA (ATPases associated with various cellular activities) protein family in an ATP hydrolysis-dependent reaction. The integrity of a highly conserved signature motif in the AAA activator (known as the GAFTGA motif) is important for the remodeling activity of the AAA activator and for open complex formation. We now provide evidence that the invariant threo-nine residue of the GAFTGA motif plays a role in sensing the DNA downstream of the sigma54-RNAP-binding site and in coupling this information to sigma54-RNAP via the conserved regulatory Region I domain of sigma54 during open complex formation.
Collapse
Affiliation(s)
- Angel Ernesto Dago
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos 62210, México
| | | | | | | |
Collapse
|
14
|
Leach RN, Gell C, Wigneshweraraj S, Buck M, Smith A, Stockley PG. Mapping ATP-dependent activation at a sigma54 promoter. J Biol Chem 2006; 281:33717-26. [PMID: 16926155 DOI: 10.1074/jbc.m605731200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma(54) promoter specificity factor is distinct from other bacterial RNA polymerase (RNAP) sigma factors in that it forms a transcriptionally silent closed complex upon promoter binding. Transcriptional activation occurs through a nucleotide-dependent isomerization of sigma(54), mediated via its interactions with an enhancer-binding activator protein that utilizes the energy released in ATP hydrolysis to effect structural changes in sigma(54) and core RNA polymerase. The organization of sigma(54)-promoter and sigma(54)-RNAP-promoter complexes was investigated by fluorescence resonance energy transfer assays using sigma(54) single cysteine-mutants labeled with an acceptor fluorophore and donor fluorophore-labeled DNA sequences containing mismatches that mimic nifH early- and late-melted promoters. The results show that sigma(54) undergoes spatial rearrangements of functionally important domains upon closed complex formation. sigma(54) and sigma(54)-RNAP promoter complexes reconstituted with the different mismatched DNA constructs were assayed by the addition of the activator phage shock protein F in the presence or absence of ATP and of non-hydrolysable analogues. Nucleotide-dependent alterations in fluorescence resonance energy transfer efficiencies identify different functional states of the activator-sigma(54)-RNAP-promoter complex that exist throughout the mechano-chemical transduction pathway of transcriptional activation, i.e. from closed to open promoter complexes. The results suggest that open complex formation only occurs efficiently on replacement of a repressive fork junction with down-stream melted DNA.
Collapse
Affiliation(s)
- Robert N Leach
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|
15
|
Parker D, Kennan RM, Myers GS, Paulsen IT, Songer JG, Rood JI. Regulation of type IV fimbrial biogenesis in Dichelobacter nodosus. J Bacteriol 2006; 188:4801-11. [PMID: 16788189 PMCID: PMC1483018 DOI: 10.1128/jb.00255-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV fimbriae are expressed by several bacterial pathogens and are essential for virulence in Dichelobacter nodosus, which causes ovine footrot. We have identified a two-component signal transduction system (PilR/S) and an alternative sigma factor (sigma 54) that were shown by insertional inactivation to be required for the regulation of fimbrial biogenesis in D. nodosus. Western blots showed that in both pilR and rpoN mutants, fimbrial subunit production was significantly reduced by a process that was shown to occur at a PilR- and sigma 54-dependent promoter. The mutants lacked surface fimbriae, which were shown to be required for the adherence of D. nodosus cells to tissue culture monolayers. The reduction in fimbrial subunit production in these mutants also resulted in a concomitant loss of the ability to secrete extracellular proteases. A maltose binding protein-PilR fusion protein was purified and was shown to bind specifically to a region located 234 to 594 bp upstream of the fimA transcriptional start point. To determine additional targets of PilR and sigma 54, genome-wide transcriptional profiling was performed using a whole-genome oligonucleotide microarray. The results indicated that PilR and sigma 54 regulated genes other than fimA; these genes appear to encode surface-exposed proteins whose role in virulence is unknown. In conclusion, this study represents a significant advancement in our understanding of how the ability of D. nodosus to cause ovine footrot is regulated, as we have shown that the biogenesis of type IV fimbriae in D. nodosus is regulated by a sigma 54-dependent PilR/S system that also indirectly controls protease secretion.
Collapse
Affiliation(s)
- Dane Parker
- Australian Research Council Centre of Excellence for Structrral and Functional Microbial Genomics and Victorian Bioinformatics Consortium, Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | |
Collapse
|
16
|
Poggio S, Osorio A, Dreyfus G, Camarena L. Transcriptional specificity of RpoN1 and RpoN2 involves differential recognition of the promoter sequences and specific interaction with the cognate activator proteins. J Biol Chem 2006; 281:27205-15. [PMID: 16854992 DOI: 10.1074/jbc.m601735200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The four RpoN factors of Rhodobacter sphaeroides are functionally specialized. In this bacterium, RpoN1 and RpoN2 are specifically required for the transcription of the nitrogen fixation and flagellar genes, respectively. Analysis of the promoter sequences recognized by each of these RpoN proteins revealed some significant differences. To investigate the functional relevance of these differences, the flagellar promoter fliOp was sequentially mutagenized to resemble the nitrogen fixation promoter nifUp. Our results indicate that the promoter sequences recognized by these sigma factors have diverged enough so that particular positions of the promoter sequence are differentially recognized. In this regard, we demonstrate that the identity of the -11-position is critical for promoter discrimination by RpoN1 and RpoN2. Accordingly, purified RpoN proteins with a deletion of Region I, which has been involved in the recognition of the -11-position, did not show differential binding of fliOp and nifUp promoters. Substitution of the flagellar enhancer region located upstream fliOp by the enhancer region of nifUp allowed us to demonstrate that RpoN1 and RpoN2 interact specifically with their respective activator protein. In conclusion, two different molecular mechanisms underlie the transcriptional specialization of these sigma factors.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México D. F., México
| | | | | | | |
Collapse
|
17
|
Wigneshweraraj SR, Burrows PC, Severinov K, Buck M. Stable DNA opening within open promoter complexes is mediated by the RNA polymerase beta'-jaw domain. J Biol Chem 2005; 280:36176-84. [PMID: 16123036 DOI: 10.1074/jbc.m506416200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA opening for transcription-competent open promoter complex (OC) formation by the bacterial RNA polymerase (RNAP) relies upon a complex network of interactions between the structurally conserved and flexible modules of the catalytic beta and beta'-subunits, RNAP-associated sigma-subunit, and the DNA. Here, we show that one such module, the beta'-jaw, functions to stabilize the OC. In OCs formed by the major sigma70-RNAP, the stabilizing role of the beta'-jaw is not restricted to any particular melted DNA segment. In contrast, in OCs formed by the major variant sigma54-RNAP, the beta'-jaw and a conserved sigma54 regulatory domain co-operate to stabilize the melted DNA segment immediately upstream of the transcription start site. Clearly, regulated communication between the mobile modules of the RNAP and the functional domain(s) of the sigma subunit is required for stable DNA opening.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Division of Biology, Faculty of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
18
|
Bordes P, Wigneshweraraj SR, Chaney M, Dago AE, Morett E, Buck M. Communication between Esigma(54) , promoter DNA and the conserved threonine residue in the GAFTGA motif of the PspF sigma-dependent activator during transcription activation. Mol Microbiol 2005; 54:489-506. [PMID: 15469519 DOI: 10.1111/j.1365-2958.2004.04280.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conversion of Esigma(54) closed promoter complexes to open promoter complexes requires specialized activators which are members of the AAA (ATPases Associated with various cellular Activities) protein family. The ATP binding and hydrolysis activity of Esigma(54) activators is used in an energy coupling reaction to remodel the Esigma(54) closed promoter complex and to overcome the sigma(54)-imposed block on open complex formation. The remodelling target for the AAA activator within the Esigma(54) closed complex includes a complex interface contributed to by Region I of sigma(54), core RNA polymerase and a promoter DNA fork junction structure, comprising the Esigma(54) regulatory centre. One sigma(54) binding surface on Esigma(54) activators is a conserved sequence known as the GAFTGA motif. Here, we present a detailed characterization of the interaction between Region I of sigma(54) and the Escherichia coli AAA sigma(54) activator Phage shock protein F. Using Esigma(54) promoter complexes that mimic different conformations adopted by the DNA during open complex formation, we investigated the contribution of the conserved threonine residue in the GAFTGA motif to transcription activation. Our results suggest that the organization of the Esigma(54) regulatory centre, and in particular the conformation adopted by the sigma(54) Region I and the DNA fork junction structure during open complex formation, is communicated to the AAA activator via the conserved T residue of the GAFTGA motif.
Collapse
Affiliation(s)
- Patricia Bordes
- Imperial College London, Department of Biological Sciences, Sir Alexander Fleming Building, South Kensington Campus, London, SW72AZ, UK
| | | | | | | | | | | |
Collapse
|
19
|
Wigneshweraraj SR, Burrows PC, Bordes P, Schumacher J, Rappas M, Finn RD, Cannon WV, Zhang X, Buck M. The second paradigm for activation of transcription. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:339-69. [PMID: 16096032 DOI: 10.1016/s0079-6603(04)79007-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S R Wigneshweraraj
- Department of Biological Sciences and Centre for Structural Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Burrows PC, Severinov K, Buck M, Wigneshweraraj SR. Reorganisation of an RNA polymerase-promoter DNA complex for DNA melting. EMBO J 2004; 23:4253-63. [PMID: 15470504 PMCID: PMC524386 DOI: 10.1038/sj.emboj.7600406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022] Open
Abstract
Sigma factors, the key regulatory components of the bacterial RNA polymerase (RNAP), direct promoter DNA binding and DNA melting. The sigma(54)-RNAP forms promoter complexes in which DNA melting is only triggered by an activator and ATP hydrolysis-driven reorganisation of an initial sigma(54)-RNAP-promoter complex. We report that an initial bacterial RNAP-DNA complex can be reorganised by an activator to form an intermediate transcription initiation complex where full DNA melting has not yet occurred. Using sigma(54) as a chemical nuclease we now show that the reorganisation of the initial sigma(54)-RNAP-promoter complex occurs upon interaction with the activator at the transition point of ATP hydrolysis. We demonstrate that this reorganisation event is an early step in the transcription initiation pathway that occurs independently of RNAP parts normally associated with stable DNA melting and open complex formation. Using photoreactive DNA probes, we provide evidence that within this reorganised sigma(54)-RNAP-promoter complex, DNA contacts across the 'to be melted' sequences are made by the sigma(54) subunit. Strikingly, the activator protein, but not core RNAP subunits, is close to these DNA sequences.
Collapse
Affiliation(s)
| | - Konstantin Severinov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5442; Fax: +44 207 594 5419; E-mail:
| | - Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5366; Fax: +44 207 594 5419; E-mail:
| |
Collapse
|
21
|
Wigneshweraraj SR, Burrows PC, Nechaev S, Zenkin N, Severinov K, Buck M. Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain. EMBO J 2004; 23:4264-74. [PMID: 15470503 PMCID: PMC524387 DOI: 10.1038/sj.emboj.7600407] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 08/17/2004] [Indexed: 11/09/2022] Open
Abstract
We used bacteriophage T7-encoded transcription inhibitor gene protein 2 (gp2) as a probe to study the contribution of the Escherichia coli RNA polymerase (RNAP) beta' subunit jaw domain--the site of gp2 binding--to activator and ATP hydrolysis-dependent open complex formation by the sigma(54)-RNAP. We show that, unlike sigma(70)-dependent transcription, activated transcription by sigma(54)-RNAP is resistant to gp2. In contrast, activator and ATP hydrolysis-independent transcription by sigma(54)-RNAP is highly sensitive to gp2. We provide evidence that an activator- and ATP hydrolysis-dependent conformational change involving the beta' jaw domain and promoter DNA is the basis for gp2-resistant transcription by sigma(54)-RNAP. Our results establish that accessory factors bound to the upstream face of the RNAP, communicate with the beta' jaw domain, and that such communication is subjected to regulation.
Collapse
Affiliation(s)
| | | | | | - Nikolay Zenkin
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
| | - Konstantin Severinov
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ, USA
- Waksman Institute and Department of Genetics, Rutgers, The State University, Piscataway, NJ 08904, USA. Tel.: +1 732 445 6095; Fax: +1 732 445 573; E-mail:
| | - Martin Buck
- Department of Biological Sciences, Imperial College London, London, UK
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Tel.: +44 207 594 5442; Fax: +44 207 594 5419; E-mail:
| |
Collapse
|
22
|
Cannon WV, Schumacher J, Buck M. Nucleotide-dependent interactions between a fork junction-RNA polymerase complex and an AAA+ transcriptional activator protein. Nucleic Acids Res 2004; 32:4596-608. [PMID: 15333692 PMCID: PMC516047 DOI: 10.1093/nar/gkh755] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 07/14/2004] [Accepted: 07/21/2004] [Indexed: 11/12/2022] Open
Abstract
Enhancer-dependent transcriptional activators that act upon the sigma54 bacterial RNA polymerase holoenzyme belong to the extensive AAA+ superfamily of mechanochemical ATPases. Formation and collapse of the transition state for ATP hydrolysis engenders direct interactions between AAA+ activators and the sigma54 factor, required for RNA polymerase isomerization. A DNA fork junction structure present within closed complexes serves as a nucleation point for the DNA melting seen in open promoter complexes and restricts spontaneous activator-independent RNA polymerase isomerization. We now provide physical evidence showing that the ADP.AlF(x) bound form of the AAA+ domain of the transcriptional activator protein PspF changes interactions between sigma54-RNA polymerase and a DNA fork junction structure present in the closed promoter complex. The results suggest that one functional state of the nucleotide-bound activator serves to alter DNA binding by sigma54 and sigma54-RNA polymerase and appears to drive events that precede DNA opening. Clear evidence for a DNA-interacting activity in the AAA+ domain of PspF was obtained, suggesting that PspF may make a direct contact to the DNA component of a basal promoter complex to promote changes in sigma54-RNA polymerase-DNA interactions that favour open complex formation. We also provide evidence for two distinct closed promoter complexes with differing stabilities.
Collapse
Affiliation(s)
- W V Cannon
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | |
Collapse
|
23
|
Bordes P, Wigneshweraraj SR, Zhang X, Buck M. Sigma54-dependent transcription activator phage shock protein F of Escherichia coli: a fragmentation approach to identify sequences that contribute to self-association. Biochem J 2004; 378:735-44. [PMID: 14659000 PMCID: PMC1224020 DOI: 10.1042/bj20031464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 12/03/2003] [Accepted: 12/05/2003] [Indexed: 11/17/2022]
Abstract
Proteins that belong to the AAA (ATPases associated with various cellular activities) superfamily of mechanochemical enzymes are versatile and control a wide array of cellular functions. Many AAA proteins share the common property of self-association into oligomeric structures and use nucleotide binding and hydrolysis to regulate their biological output. The Escherichia coli transcription activator PspF (phage shock protein F) is a member of the sigma54-dependent transcriptional activators that belong to the AAA protein family. Nucleotide interactions condition the functional state of PspF, enabling it to self-associate and interact with its target, the sigma54-RNAP (RNA polymerase) closed complex. The self-association determinants within the AAA domain of sigma54-dependent activators remain poorly characterized. In the present study, we have used a fragment of the AAA domain of PspF as a probe to study the nucleotide-conditioned self-association of PspF. Results show that the PspF fragment acts in trans to inhibit specifically self-association of PspF. The PspF fragment prevented efficient binding of nucleotides to PspF, consistent with the observation that the site for nucleotide interactions within an oligomer of AAA proteins is created between two protomers. Using proximity-based footprinting and cross-linking techniques, we demonstrate that the sequences represented in this fragment are close to one protomer-protomer interface within a PspF oligomer. As the sequences represented in this PspF fragment also contain a highly conserved motif that interacts with the sigma54-RNAP closed complex, we suggest that PspF may be organized to link nucleotide interactions and self-association to sigma54-RNAP binding and transcription activation.
Collapse
Affiliation(s)
- Patricia Bordes
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
24
|
Schumacher J, Zhang X, Jones S, Bordes P, Buck M. ATP-dependent transcriptional activation by bacterial PspF AAA+protein. J Mol Biol 2004; 338:863-75. [PMID: 15111053 DOI: 10.1016/j.jmb.2004.02.071] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
Transcription activation by bacterial sigma(54)-dependent enhancer-binding proteins (EBPs) requires their tri-nucleotide hydrolysis to restructure the sigma(54) RNA polymerase (RNAP). EBPs share sequence similarity with guanine nucleotide binding-proteins and ATPases associated with various cellular activities (AAA) proteins, especially in the mononucleotide binding P-loop fold. Using the phage shock protein F (PspF) EBP, we identify P-loop residues responsible for nucleotide binding and hydrolysis, consistent with their roles in other P-loop NTPases. We show the refined low-resolution structure of an EBP, PspF, revealing a hexameric ring organisation characteristic of AAA proteins. Functioning of EBPs involves ATP binding, higher oligomer formation and ATP hydrolysis coupled to the restructuring of the RNAP. This is thought to be a highly coordinated multi-step process, but the nucleotide-driven mechanism of oligomerisation and ATP hydrolysis is little understood. Our kinetic and structural data strongly suggest that three PspF dimers assemble to form a hexamer upon nucleotide binding. During the ATP hydrolysis cycle, both ATP and ADP are bound to oligomeric PspF, in line with a sequential hydrolysis cycle. We identify a putative R-finger, and show its involvement in ATP hydrolysis. Substitution of this arginine residue results in nucleotide-independent formation of hexameric rings, structurally linking the putative R-finger and, by inference, a specific nucleotide interaction to the control of PspF oligomerisation.
Collapse
Affiliation(s)
- Jörg Schumacher
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
25
|
Burrows PC, Severinov K, Ishihama A, Buck M, Wigneshweraraj SR. Mapping sigma 54-RNA polymerase interactions at the -24 consensus promoter element. J Biol Chem 2003; 278:29728-43. [PMID: 12750380 DOI: 10.1074/jbc.m303596200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma 54 promoter specificity factor is distinct from sigma 70-type factors. The sigma 54-RNA polymerase binds to promoters with conserved sequence elements at -24 and -12 and utilizes specialized enhancer-binding activators to convert, through an ATP-dependent process, closed promoter complexes to open promoter complexes. The interface between sigma 54-RNA polymerase and promoter DNA is poorly characterized, contrasting with sigma 70. Here, sigma 54 was modified with strategically positioned cleavage reagents to provide physical evidence that the highly conserved RpoN box motif of sigma 54 is close to and may therefore interact with the consensus -24 promoter element. We show that the spatial relationship between the sigma 54-RNA polymerase and the -24 promoter element remains unchanged during closed to open complex conversion and transcription initiation but changes during the early elongation phase. In contrast, the spatial relationship between sigma 54-RNA polymerase and the consensus -12 promoter element changes upon conversion of the closed promoter complex to an open one. We provide evidence that some -12 promoter region-sigma 54 interactions are dependent upon either the core RNA polymerase or a fork junction DNA structure at the -12-position, indicating that DNA fork junctions can substitute for core RNAP. We also show the beta-subunit flap domain contributes to different sets of sigma-promoter DNA interactions at sigma 54- and sigma 70-dependent promoters.
Collapse
Affiliation(s)
- Patricia C Burrows
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Cannon W, Bordes P, Wigneshweraraj SR, Buck M. Nucleotide-dependent triggering of RNA polymerase-DNA interactions by an AAA regulator of transcription. J Biol Chem 2003; 278:19815-25. [PMID: 12649285 DOI: 10.1074/jbc.m301296200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enhancer-dependent activator proteins, which act upon the bacterial RNA polymerase containing the sigma54 promoter specificity factor, belong to the AAA superfamily of ATPases. Activator-sigma54 contact is required for the sigma54-RNAP to isomerize and engage the DNA template for transcription. How ATP hydrolysis is used to trigger changes in sigma54-RNA polymerase and promoter DNA that lead to DNA opening is poorly understood. Here, band shift and footprinting assays were used to investigate the DNA binding activities of sigma54 and sigma54-RNA polymerase in the presence of the activator protein PspF bound to poorly hydrolysable analogues of ATP and the ATP hydrolysis transition-state analogue ADP.AlFx. Results show that different nucleotide-bound forms of PspF can change the interactions between sigma54, sigma54-RNA polymerase, and a DNA fork junction structure present within closed promoter complexes. This provides evidence that in the activation transduction pathway, several functional states of the activator, prior to ATP hydrolysis, can serve to alter the fork junction binding activity of sigma54 and sigma54-RNA polymerase that precede full DNA opening. A sequential set of nucleotide-dependent transitions in sigma54-RNA polymerase promoter complexes needed for productive open complex formation may therefore depend upon different nucleotide-bound forms of the activator.
Collapse
Affiliation(s)
- Wendy Cannon
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, United Kingdom
| | | | | | | |
Collapse
|
27
|
Bordes P, Wigneshweraraj SR, Schumacher J, Zhang X, Chaney M, Buck M. The ATP hydrolyzing transcription activator phage shock protein F of Escherichia coli: identifying a surface that binds sigma 54. Proc Natl Acad Sci U S A 2003; 100:2278-83. [PMID: 12601152 PMCID: PMC151331 DOI: 10.1073/pnas.0537525100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Members of the protein family called ATPases associated with various cellular activities (AAA(+)) play a crucial role in transforming chemical energy into biological events. AAA(+) proteins are complex molecular machines and typically form ring-shaped oligomeric complexes that are crucial for ATPase activity and mechanism of action. The Escherichia coli transcription activator phage shock protein F (PspF) is an AAA(+) mechanochemical enzyme that functions to sense and relay the energy derived from nucleoside triphosphate hydrolysis to catalyze transcription by the sigma(54)-RNA polymerase. Closed promoter complexes formed by the sigma(54)-RNA polymerase are substrates for the action of PspF. By using a protein fragmentation approach, we identify here at least one sigma(54)-binding surface in the PspF AAA(+) domain. Results suggest that ATP hydrolysis by PspF is coupled to the exposure of at least one sigma(54)-binding surface. This nucleotide hydrolysis-dependent presentation of a substrate binding surface can explain why complexes that form between sigma(54) and PspF are transient and could be part of a mechanism used generally by other AAA(+) proteins to regulate activity.
Collapse
Affiliation(s)
- Patricia Bordes
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Wigneshweraraj SR, Kuznedelov K, Severinov K, Buck M. Multiple roles of the RNA polymerase beta subunit flap domain in sigma 54-dependent transcription. J Biol Chem 2003; 278:3455-65. [PMID: 12424241 DOI: 10.1074/jbc.m209442200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent determinations of the structures of the bacterial RNA polymerase (RNAP) and promoter complex thereof establish that RNAP functions as a complex molecular machine that contains distinct structural modules that undergo major conformational changes during transcription. However, the contribution of the RNAP structural modules to transcription remains poorly understood. The bacterial core RNAP (alpha(2)beta beta'omega; E) associates with a sigma (sigma) subunit to form the holoenzyme (E sigma). A mutation removing the beta subunit flap domain renders the Escherichia coli sigma(70) RNAP holoenzyme unable to recognize promoters. sigma(54) is the major variant sigma subunit that utilizes enhancer-dependent promoters. Here, we determined the effects of beta flap removal on sigma(54)-dependent transcription. Our analysis shows that the role of the beta flap in sigma(54)-dependent and sigma(70)-dependent transcription is different. Removal of the beta flap does not prevent the recognition of sigma(54)-dependent promoters, but causes multiple defects in sigma(54)-dependent transcription. Most importantly, the beta flap appears to orchestrate the proper formation of the E sigma(54) regulatory center at the start site proximal promoter element where activator binds and DNA melting originates.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
29
|
Cannon W, Wigneshweraraj SR, Buck M. Interactions of regulated and deregulated forms of the sigma54 holoenzyme with heteroduplex promoter DNA. Nucleic Acids Res 2002; 30:886-93. [PMID: 11842099 PMCID: PMC100350 DOI: 10.1093/nar/30.4.886] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The bacterial sigma54 RNA polymerase holoenzyme binds to promoters as a stable closed complex that is silent for transcription unless acted upon by an enhancer-bound activator protein. Using DNA binding and transcription assays the ability of the enhancer-dependent sigma54 holoenzyme to interact with promoter DNA containing various regions of heteroduplex from -12 to -1 was assessed. Different DNA regions important for stabilising sigma54 holoenzyme-promoter interactions, destabilizing binding, limiting template utilisation in activator-dependent transcription and for stable binding of a deregulated form of the holoenzyme lacking sigma54 Region I were identified. It appears that homoduplex structures are required for early events in sigma54 holoenzyme promoter binding and that disruption of a repressive fork junction structure only modestly deregulates transcription. DNA opening from -5 to -1 appears important for stable engagement of the holoenzyme following activation. The regulatory Region I of sigma54 was shown to be involved in interactions with the sequences in the -5 to -1 area.
Collapse
Affiliation(s)
- Wendy Cannon
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
30
|
Wigneshweraraj SR, Casaz P, Buck M. Correlating protein footprinting with mutational analysis in the bacterial transcription factor sigma54 (sigmaN). Nucleic Acids Res 2002; 30:1016-28. [PMID: 11842114 PMCID: PMC100328 DOI: 10.1093/nar/30.4.1016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein footprints of the enhancer-dependent sigma54 protein, upon binding the Escherichia coli RNA polymerase core enzyme or upon forming closed promoter complexes, identified surface-exposed residues in sigma54 of potential functional importance at the interface between sigma54 and core RNA polymerases (RNAP) or DNA. We have now characterised alanine and glycine substitution mutants at several of these positions. Properties of the mutant sigma54s correlate protein footprints to activity. Some mutants show elevated DNA binding suggesting that promoter binding by holoenzyme may be limited to enable normal functioning. One such mutant (F318A) within the DNA binding domain of sigma54 shows a changed interaction with the promoter regulatory region implicated in transcription silencing and fails to silence transcription in vitro. It appears specifically defective in preferentially binding to a repressive DNA structure believed to restrict RNA polymerase isomerisation and is largely intact for activator responsiveness. Two mutants, one in the regulatory region I and the other within core interacting sequences of sigma54, failed to stably bind the activator in the presence of ADP-aluminium fluoride, an analogue of ATP in the transition state for hydrolysis. Overall, the data presented describe a collection sigma54 mutants that have escaped previous analysis and display an array of properties which allows the role of surface-exposed residues in the regulation of open complex formation and promoter DNA binding to be better understood. Their properties support the view that the interface between sigma54 and core RNAP is functionally specialised.
Collapse
Affiliation(s)
- Siva R Wigneshweraraj
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
31
|
Hübner A, Yang X, Nolen DM, Popova TG, Cabello FC, Norgard MV. Expression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway. Proc Natl Acad Sci U S A 2001; 98:12724-9. [PMID: 11675503 PMCID: PMC60121 DOI: 10.1073/pnas.231442498] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2001] [Indexed: 11/18/2022] Open
Abstract
RpoS and RpoN are two alternative sigma factors typically associated with general stress responses in bacteria. To date, there has been no experimental evidence that RpoS and RpoN can directly control the expression of one another. Herein, using a combined strategy of gene disruption and genetic complementation targeting rpoN and rpoS in Borrelia burgdorferi strain 297, we describe a regulatory network for B. burgdorferi. In this network, RpoN controls the expression of RpoS, which, in turn, governs the expression of two important membrane lipoproteins, outer surface protein C and decorin-binding protein A, and likely other proteins of B. burgdorferi. Our findings provide a foundation for elucidating further key regulatory networks that potentially impact many aspects of B. burgdorferi's parasitic strategy, host range, and virulence expression.
Collapse
Affiliation(s)
- A Hübner
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
32
|
Chaney M, Grande R, Wigneshweraraj SR, Cannon W, Casaz P, Gallegos MT, Schumacher J, Jones S, Elderkin S, Dago AE, Morett E, Buck M. Binding of transcriptional activators to sigma 54 in the presence of the transition state analog ADP-aluminum fluoride: insights into activator mechanochemical action. Genes Dev 2001; 15:2282-94. [PMID: 11544185 PMCID: PMC312774 DOI: 10.1101/gad.205501] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Conformational changes in sigma 54 (sigma(54)) and sigma(54)-holoenzyme depend on nucleotide hydrolysis by an activator. We now show that sigma(54) and its holoenzyme bind to the central ATP-hydrolyzing domains of the transcriptional activators PspF and NifA in the presence of ADP-aluminum fluoride, an analog of ATP in the transition state for hydrolysis. Direct binding of sigma(54) Region I to activator in the presence of ADP-aluminum fluoride was shown and inferred from in vivo suppression genetics. Energy transduction appears to occur through activator contacts to sigma(54) Region I. ADP-aluminum fluoride-dependent interactions and consideration of other AAA+ proteins provide insight into activator mechanochemical action.
Collapse
Affiliation(s)
- M Chaney
- Department of Biology and Biochemistry, Faculty of Life Sciences, Sir Alexander Fleming Building, Imperial College of Science Technology and Medicine, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wigneshweraraj SR, Ishihama A, Buck M. In vitro roles of invariant helix-turn-helix motif residue R383 in sigma(54) (sigma(N)). Nucleic Acids Res 2001; 29:1163-74. [PMID: 11222766 PMCID: PMC29711 DOI: 10.1093/nar/29.5.1163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vitro DNA-binding and transcription properties of sigma(54) proteins with the invariant Arg383 in the putative helix-turn-helix motif of the DNA-binding domain substituted by lysine or alanine are described. We show that R383 contributes to maintaining stable holoenzyme-promoter complexes in which limited DNA opening downstream of the -12 GC element has occurred. Unlike wild-type sigma(54), holoenzymes assembled with the R383A or R383K mutants could not form activator-independent, heparin-stable complexes on heteroduplex Sinorhizobium meliloti nifH DNA mismatched next to the GC. Using longer sequences of heteroduplex DNA, heparin-stable complexes formed with the R383K and, to a lesser extent, R383A mutant holoenzymes, but only when the activator and a hydrolysable nucleotide was added and the DNA was opened to include the -1 site. Although R383 appears inessential for polymerase isomerisation, it makes a significant contribution to maintaining the holoenzyme in a stable complex when melting is initiating next to the GC element. Strikingly, Cys383-tethered FeBABE footprinting of promoter DNA strongly suggests that R383 is not proximal to promoter DNA in the closed complex. This indicates that R383 is not part of the regulatory centre in the sigma(54) holoenzyme, which includes the -12 promoter region elements. R383 contributes to several properties, including core RNA polymerase binding and to the in vivo stability of sigma(54).
Collapse
Affiliation(s)
- S R Wigneshweraraj
- Department of Biology, Imperial College of Science, Technology and Medicine, Sir Alexander Fleming Building, Imperial College Road, London SW7 2AZ, UK
| | | | | |
Collapse
|
34
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|