1
|
Kumar N, Sardesai AA. Multiple Effects of L-Leucine in Escherichia coli Lead to L-Leucine-Sensitive Growth in the Absence of Unphosphorylated PtsN. Mol Microbiol 2024; 122:549-562. [PMID: 39275982 DOI: 10.1111/mmi.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024]
Abstract
In E. coli K-12, the absence of unphosphorylated PtsN (unphospho-PtsN) has been proposed to cause an L-leucine-sensitive growth phenotype (LeuS) by hyperactivated K+ uptake mediated impairment of the expression of the ilvBN operon, encoding subunits of the L-valine (Val)-sensitive acetohydroxyacid synthase I (AHAS I) that renders residual AHAS activity susceptible to inhibition by Leu and K+. This leads to AHAS insufficiency and a requirement for L-isoleucine (Ile). Herein, we provide an alternate mechanism for the LeuS of the ∆ptsN mutant. Genetic and physiological studies with suppressors of the LeuS indicate that impaired expression of the ilvBN operon jointly caused by the absence of unphospho-PtsN and the presence of Leu coupled to Leu-mediated repression of expression of AHAS III leads to AHAS insufficiency rendering residual AHAS activity susceptible to chronic Val stress that may be generated by exogenous Leu. Hyperactivated K+ uptake and an elevated α-ketobutyrate level mediate elevation of ilvBN expression and alleviate the LeuS. The requirement of unphospho-PtsN as a positive regulator of ilvBN expression may buffer Ile biosynthesis against Leu-mediated AHAS insufficiency and protect AHAS I function from chronic endogenous Val generated by Leu and could be realized in certain environments that impair AHAS function.
Collapse
Affiliation(s)
- Neeraj Kumar
- Laboratory of Molecular Microbiology and Genetics, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Abhijit A Sardesai
- Laboratory of Molecular Microbiology and Genetics, BRIC-Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
2
|
Laboratory evolution reveals general and specific tolerance mechanisms for commodity chemicals. Metab Eng 2023; 76:179-192. [PMID: 36738854 DOI: 10.1016/j.ymben.2023.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/06/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Although strain tolerance to high product concentrations is a barrier to the economically viable biomanufacturing of industrial chemicals, chemical tolerance mechanisms are often unknown. To reveal tolerance mechanisms, an automated platform was utilized to evolve Escherichia coli to grow optimally in the presence of 11 industrial chemicals (1,2-propanediol, 2,3-butanediol, glutarate, adipate, putrescine, hexamethylenediamine, butanol, isobutyrate, coumarate, octanoate, hexanoate), reaching tolerance at concentrations 60%-400% higher than initial toxic levels. Sequencing genomes of 223 isolates from 89 populations, reverse engineering, and cross-compound tolerance profiling were employed to uncover tolerance mechanisms. We show that: 1) cells are tolerized via frequent mutation of membrane transporters or cell wall-associated proteins (e.g., ProV, KgtP, SapB, NagA, NagC, MreB), transcription and translation machineries (e.g., RpoA, RpoB, RpoC, RpsA, RpsG, NusA, Rho), stress signaling proteins (e.g., RelA, SspA, SpoT, YobF), and for certain chemicals, regulators and enzymes in metabolism (e.g., MetJ, NadR, GudD, PurT); 2) osmotic stress plays a significant role in tolerance when chemical concentrations exceed a general threshold and mutated genes frequently overlap with those enabling chemical tolerance in membrane transporters and cell wall-associated proteins; 3) tolerization to a specific chemical generally improves tolerance to structurally similar compounds whereas a tradeoff can occur on dissimilar chemicals, and 4) using pre-tolerized starting isolates can hugely enhance the subsequent production of chemicals when a production pathway is inserted in many, but not all, evolved tolerized host strains, underpinning the need for evolving multiple parallel populations. Taken as a whole, this study provides a comprehensive genotype-phenotype map based on identified mutations and growth phenotypes for 223 chemical tolerant isolates.
Collapse
|
3
|
Avendaño-Herrera R, Saldivia P, Bethke J, Vargas C, Hernández M. Proteomic analysis reveals Renibacterium salmoninarum grown under iron-limited conditions induces iron uptake mechanisms and overproduction of the 57-kDa protein. JOURNAL OF FISH DISEASES 2022; 45:289-300. [PMID: 34791674 DOI: 10.1111/jfd.13554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Renibacterium salmoninarum, a slow-growing facultative intracellular pathogen, is the causative agent of bacterial kidney disease, a chronic, progressive and granulomatous infection that threatens farmed and wild salmonids worldwide. Pathogenic R. salmoninarum colonizes tissues and invades the host through cell surface-associated and secreted proteins. While correlations between iron acquisition genes and virulence have been demonstrated in vitro, these mechanisms have not undergone proteomic characterization. The present study applied a proteomic approach to elucidate the differences between the virulent Chilean R. salmoninarum H-2 strain and the type strain ATCC 33209T . Analyses were conducted under normal (control) and iron-limited conditions (DIP) emulating the host environment. Interestingly, strain H-2 apparently responded better to the iron-limited condition-for example, only this strain presented a significantly enriched iron ion homeostasis pathway. Furthermore, key virulence factors related to an iron-limited environment were more abundant in strain H-2. Importantly, the lack of iron favoured the expression of the 57-kDa protein in strain H-2, the principal virulence factor for R. salmoninarum. Our findings can be employed in the design and development of treatments targeted to iron uptake mechanisms (e.g. siderophore synthesis or haem uptake), which represents a promising therapeutic approach for treating this persistent fastidious bacterium.
Collapse
Affiliation(s)
- Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Pablo Saldivia
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Concepción, Chile
| | - Jorn Bethke
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), Viña del Mar, Chile
| | - Cristian Vargas
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Concepción, Chile
| | - Mauricio Hernández
- Division of Biotechnology, MELISA Institute, San Pedro de la Paz, Concepción, Chile
| |
Collapse
|
4
|
Xie Y, Zhang C, Wang Z, Wei C, Liao N, Wen X, Niu C, Yi L, Wang Z, Xi Z. Fluorogenic Assay for Acetohydroxyacid Synthase: Design and Applications. Anal Chem 2019; 91:13582-13590. [PMID: 31603309 DOI: 10.1021/acs.analchem.9b02739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acetohydroxyacid synthase (AHAS) exists in plants and many microorganisms (including gut flora) but not in mammals, making it an attractive drug target. Fluorescent-based methods should be practical for high-throughput screening of inhibitors. Herein, we describe the development of the first AHAS fluorogenic assay based on an intramolecular charge transfer (ICT)-based fluorescent probe. The assay is facile, sensitive, and continuous and can be applied toward various AHASs from different species, AHAS mutants, and crude cell lysates. The fluorogenic assay was successfully applied for (1) high-throughput screening of commerical herbicides toward different AHASs for choosing matching herbicides, (2) identification of a Soybean AHAS gene with broad-spectrum herbicide resistance, and (3) identification of selective inhibitors toward intestinal-bacterial AHASs. Among the AHAS inhibitors, an active agent was found for selective inhibition of obesity-associated Ruminococcus torques growth, implying the possibility of AHAS inhibitors for the ultimate goal toward antiobesity therapeutics. The fluorogenic assay opens the door for high-throughput programs in AHAS-related fields, and the design principle might be applied for development of fluorogenic assays of other synthases.
Collapse
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China
| | - Zhihua Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Chao Wei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ningjing Liao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
5
|
Bansal A, Karanth NM, Demeler B, Schindelin H, Sarma SP. Crystallographic Structures of IlvN·Val/Ile Complexes: Conformational Selectivity for Feedback Inhibition of Aceto Hydroxy Acid Synthases. Biochemistry 2019; 58:1992-2008. [PMID: 30887800 PMCID: PMC6668035 DOI: 10.1021/acs.biochem.9b00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Conformational factors that predicate selectivity for valine or isoleucine binding to IlvN leading to the regulation of aceto hydroxy acid synthase I (AHAS I) of Escherichia coli have been determined for the first time from high-resolution (1.9-2.43 Å) crystal structures of IlvN·Val and IlvN·Ile complexes. The valine and isoleucine ligand binding pockets are located at the dimer interface. In the IlvN·Ile complex, among residues in the binding pocket, the side chain of Cys43 is 2-fold disordered (χ1 angles of gauche- and trans). Only one conformation can be observed for the identical residue in the IlvN·Val complexes. In a reversal, the side chain of His53, located at the surface of the protein, exhibits two conformations in the IlvN·Val complex. The concerted conformational switch in the side chains of Cys43 and His53 may play an important role in the regulation of the AHAS I holoenzyme activity. A significant result is the establishment of the subunit composition in the AHAS I holoenzyme by analytical ultracentrifugation. Solution nuclear magnetic resonance and analytical ultracentrifugation experiments have also provided important insights into the hydrodynamic properties of IlvN in the ligand-free and -bound states. The structural and biophysical data unequivocally establish the molecular basis for differential binding of the ligands to IlvN and a rationale for the resistance of IlvM to feedback inhibition by the branched-chain amino acids.
Collapse
Affiliation(s)
- Akanksha Bansal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - N. Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, Mailcode 7760, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, United States
| | - Hermann Schindelin
- Rudolf Virchow Centre for Experimental Biomedicine, Institute of Structural Biology, University of Wuerzburg, Josef-Schneider-Strasse 2, D-97080 Wuerzburg, Germany
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
- NMR Research Center, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
6
|
Takpho N, Watanabe D, Takagi H. High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae. Metab Eng 2019; 46:60-67. [PMID: 29477860 DOI: 10.1016/j.ymben.2018.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 10/17/2022]
Abstract
Valine, which is one of the branched-chain amino acids (BCAAs) essential for humans, is widely used in animal feed, dietary supplements and pharmaceuticals. At the commercial level, valine is usually produced by bacterial fermentation from glucose. However, valine biosynthesis can also proceed in the yeast Saccharomyces cerevisiae, which is a useful microorganism in fermentation industry. In S. cerevisiae, valine biosynthesis is regulated by valine itself via the feedback inhibition of acetohydroxyacid synthase (AHAS), which consists of two subunits, the catalytic subunit Ilv2 and the regulatory subunit Ilv6. In this study, to improve the valine productivity of yeast cells, we constructed several variants of Ilv6 by introducing amino acid substitutions based on a protein sequence comparison with the AHAS regulatory subunit of E. coli. Among them, we found that the Asn86Ala, Gly89Asp and Asn104Ala variants resulted in approximately 4-fold higher intracellular valine contents compared with those in cells with the wild-type Ilv6. The computational analysis of Ilv6 predicted that Asn86, Gly89 and Asn104 are located in the vicinity of a valine-binding site, suggesting that amino acid substitutions at these positions induce conformational change of the valine-binding site. To test the effects of these variants on AHAS activity, both recombinant Ilv2 and Ilv6 were purified and reconstituted in vitro. The Ilv6 variants were much less sensitive to feedback inhibition by valine than the wild-type Ilv6. Only a portion of the amino acid changes identified in the E. coli AHAS regulatory subunit IlvH enhanced the valine synthesis, suggesting structural and/or functional differences between the S. cerevisiae and E. coli AHAS regulatory subunits. It should also be noted that these amino acid substitutions did not affect the intracellular pools of the other BCAAs, leucine and isoleucine. The approach described here could be a practical method for the development of industrial yeast strains with high-level production of valine or isobutanol.
Collapse
Affiliation(s)
- Natthaporn Takpho
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Daisuke Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
7
|
Xie Y, Wen X, Zhao D, Niu C, Zhao Y, Qi H, Xi Z. Interactions between the ACT Domains and Catalytic Subunits of Acetohydroxyacid Synthases (AHASs) from Different Species. Chembiochem 2018; 19:2387-2394. [DOI: 10.1002/cbic.201800367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Dongmei Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Yuefang Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Haoman Qi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
8
|
Westbrook AW, Ren X, Moo‐Young M, Chou CP. Metabolic engineering ofBacillus subtilisforl‐valine overproduction. Biotechnol Bioeng 2018; 115:2778-2792. [DOI: 10.1002/bit.26789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Adam W. Westbrook
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Xiang Ren
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - Murray Moo‐Young
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| | - C. Perry Chou
- Department of Chemical EngineeringUniversity of WaterlooWaterloo Ontario Canada
| |
Collapse
|
9
|
Liu Y, Li Y, Wang X. Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol 2016; 100:8633-49. [DOI: 10.1007/s00253-016-7809-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
10
|
Genome-based analysis and gene dosage studies provide new insight into 3-hydroxy-4-methylvalerate biosynthesis in Ralstonia eutropha. J Bacteriol 2015; 197:1350-9. [PMID: 25645560 DOI: 10.1128/jb.02474-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombinant Ralstonia eutropha strain PHB(-)4 expressing the broad-substrate-specificity polyhydroxyalkanoate (PHA) synthase 1 from Pseudomonas sp. strain 61-3 (PhaC1Ps) synthesizes a PHA copolymer containing the branched side-chain unit 3-hydroxy-4-methylvalerate (3H4MV), which has a carbon backbone identical to that of leucine. Mutant strain 1F2 was derived from R. eutropha strain PHB(-)4 by chemical mutagenesis and shows higher levels of 3H4MV production than does the parent strain. In this study, to understand the mechanisms underlying the enhanced production of 3H4MV, whole-genome sequencing of strain 1F2 was performed, and the draft genome sequence was compared to that of parent strain PHB(-)4. This analysis uncovered four point mutations in the 1F2 genome. One point mutation was found in the ilvH gene at amino acid position 36 (A36T) of IlvH. ilvH encodes a subunit protein that regulates acetohydroxy acid synthase III (AHAS III). AHAS catalyzes the conversion of pyruvate to 2-acetolactate, which is the first reaction in the biosynthesis of branched amino acids such as leucine and valine. Thus, the A36T IlvH mutation may show AHAS tolerance to feedback inhibition by branched amino acids, thereby increasing carbon flux toward branched amino acid and 3H4MV biosynthesis. Furthermore, a gene dosage study and an isotope tracer study were conducted to investigate the 3H4MV biosynthesis pathway. Based on the observations in these studies, we propose a 3H4MV biosynthesis pathway in R. eutropha that involves a condensation reaction between isobutyryl coenzyme A (isobutyryl-CoA) and acetyl-CoA to form the 3H4MV carbon backbone.
Collapse
|
11
|
Akasaka N, Ishii Y, Hidese R, Sakoda H, Fujiwara S. Enhanced production of branched-chain amino acids by Gluconacetobacter europaeus with a specific regional deletion in a leucine responsive regulator. J Biosci Bioeng 2014; 118:607-15. [DOI: 10.1016/j.jbiosc.2014.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/21/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
12
|
Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16. Appl Microbiol Biotechnol 2014; 99:761-74. [DOI: 10.1007/s00253-014-5965-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
|
13
|
Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. BIOTECHNOL BIOPROC E 2014. [DOI: 10.1007/s12257-013-0843-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Enhanced Valine Production inCorynebacterium glutamicumwith Defective H+-ATPase and C-Terminal Truncated Acetohydroxyacid Synthase. Biosci Biotechnol Biochem 2014; 72:2959-65. [DOI: 10.1271/bbb.80434] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 2013; 14:746-52. [PMID: 23512804 DOI: 10.1002/cbic.201200680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.
Collapse
Affiliation(s)
- Yuefang Zhao
- Department of Chemical Biology and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin 94, Tianjin 300071, China
| | | | | | | |
Collapse
|
16
|
Endo M, Shimizu T, Fujimori T, Yanagisawa S, Toki S. Herbicide-Resistant Mutations in Acetolactate Synthase Can Reduce Feedback Inhibition and Lead to Accumulation of Branched-Chain Amino Acids. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/fns.2013.45067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Karanth NM, Sarma SP. The Coil-to-Helix Transition in IlvN Regulates the Allosteric Control of Escherichia coli Acetohydroxyacid Synthase I. Biochemistry 2012. [DOI: 10.1021/bi301415m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- N. Megha Karanth
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| | - Siddhartha P. Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka,
India
| |
Collapse
|
18
|
Lu J, Brigham CJ, Gai CS, Sinskey AJ. Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol 2012; 96:283-97. [DOI: 10.1007/s00253-012-4320-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/16/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022]
|
19
|
Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I. FEBS J 2012; 279:1967-79. [DOI: 10.1111/j.1742-4658.2012.08577.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Barak Z, Chipman DM. Allosteric regulation in Acetohydroxyacid Synthases (AHASs) – Different structures and kinetic behavior in isozymes in the same organisms. Arch Biochem Biophys 2012; 519:167-74. [DOI: 10.1016/j.abb.2011.11.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
|
21
|
Gedi V, Yoon MY. Bacterial acetohydroxyacid synthase and its inhibitors - a summary of their structure, biological activity and current status. FEBS J 2012; 279:946-63. [DOI: 10.1111/j.1742-4658.2012.08505.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Sung TY, Chung TY, Hsu CP, Hsieh MH. The ACR11 encodes a novel type of chloroplastic ACT domain repeat protein that is coordinately expressed with GLN2 in Arabidopsis. BMC PLANT BIOLOGY 2011; 11:118. [PMID: 21861936 PMCID: PMC3173338 DOI: 10.1186/1471-2229-11-118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/24/2011] [Indexed: 05/08/2023]
Abstract
BACKGROUND The ACT domain, named after bacterial aspartate kinase, chorismate mutase and TyrA (prephenate dehydrogenase), is a regulatory domain that serves as an amino acid-binding site in feedback-regulated amino acid metabolic enzymes. We have previously identified a novel type of ACT domain-containing protein family, the ACT domain repeat (ACR) protein family, in Arabidopsis. Members of the ACR family, ACR1 to ACR8, contain four copies of the ACT domain that extend throughout the entire polypeptide. Here, we describe the identification of four novel ACT domain-containing proteins, namely ACR9 to ACR12, in Arabidopsis. The ACR9 and ACR10 proteins contain three copies of the ACT domain, whereas the ACR11 and ACR12 proteins have a putative transit peptide followed by two copies of the ACT domain. The functions of these plant ACR proteins are largely unknown. RESULTS The ACR11 and ACR12 proteins are predicted to target to chloroplasts. We used protoplast transient expression assay to demonstrate that the Arabidopsis ACR11- and ACR12-green fluorescent fusion proteins are localized to the chloroplast. Analysis of an ACR11 promoter-β-glucuronidase (GUS) fusion in transgenic Arabidopsis revealed that the GUS activity was mainly detected in mature leaves and sepals. Interestingly, coexpression analysis revealed that the GLN2, which encodes a chloroplastic glutamine synthetase, has the highest mutual rank in the coexpressed gene network connected to ACR11. We used RNA gel blot analysis to confirm that the expression pattern of ACR11 is similar to that of GLN2 in various organs from 6-week-old Arabidopsis. Moreover, the expression of ACR11 and GLN2 is highly co-regulated by sucrose and light/dark treatments in 2-week-old Arabidopsis seedlings. CONCLUSIONS This study reports the identification of four novel ACT domain repeat proteins, ACR9 to ACR12, in Arabidopsis. The ACR11 and ACR12 proteins are localized to the chloroplast, and the expression of ACR11 and GLN2 is highly coordinated. These results suggest that the ACR11 and GLN2 genes may belong to the same functional module. The Arabidopsis ACR11 protein may function as a regulatory protein that is related to glutamine metabolism or signaling in the chloroplast.
Collapse
Affiliation(s)
- Tzu-Ying Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chih-Ping Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
23
|
Slutzker A, Vyazmensky M, Chipman DM, Barak Z. Role of the C-terminal domain of the regulatory subunit of AHAS isozyme III: Use of random mutagenesis with in vivo reconstitution (REM-ivrs). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:449-55. [DOI: 10.1016/j.bbapap.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 12/06/2010] [Accepted: 01/04/2011] [Indexed: 11/28/2022]
|
24
|
Cao J, Shi F, Liu X, Huang G, Zhou M. Phylogenetic analysis and evolution of aromatic amino acid hydroxylase. FEBS Lett 2010; 584:4775-82. [PMID: 21073869 DOI: 10.1016/j.febslet.2010.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/26/2023]
Abstract
A study was performed to investigate the phylogenetic relationship among AAAH members and to statistically evaluate sequence conservation and functional divergence. In total, 161 genes were identified from 103 species. Phylogenetic analysis showed that well-conserved subfamilies exist. Exon-intron structure analysis showed that the gene structures of AAAH were highly conserved across some different lineage species, while some species-specific introns were also found. The dynamic distribution of ACT domain suggested one gene fusion event has occurred in eukaryota. Significant functional divergence was found between some subgroups. Analysis of the site-specific profiles revealed critical amino acid residues for functional divergence. This study highlights the molecular evolution of this family and may provide a starting point for further experimental verifications.
Collapse
Affiliation(s)
- Jun Cao
- Institute of Life Science, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| | | | | | | | | |
Collapse
|
25
|
Karanth NM, Sarma SP. 1H, 13C, 15N assignments of the dimeric regulatory subunit (ilvN) of the E. coli AHAS I. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:131-133. [PMID: 20383786 DOI: 10.1007/s12104-010-9225-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/30/2010] [Indexed: 05/29/2023]
Abstract
Acetohydroxyacid synthase (AHAS) is an enzyme involved in the biosynthesis of the branched chain amino acids viz, valine, leucine and isoleucine. The activity of this enzyme is regulated through feedback inhibition by the end products of the pathway. Here we report the backbone and side-chain assignments of ilvN, the 22 kDa dimeric regulatory subunit of E. coli AHAS isoenzyme I, in the valine bound form. Detailed analysis of the structure of ilvN and its interactions with the catalytic subunit of E. coli AHAS I will help in understanding the mechanism of activation and regulation of the branched chain amino acid biosynthesis.
Collapse
Affiliation(s)
- N Megha Karanth
- Lab No. 207, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
26
|
Chen Y, Hoehenwarter W, Weckwerth W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:573-83. [PMID: 20374526 DOI: 10.1111/j.1365-313x.2010.04261.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Protein phosphorylation/dephosphorylation is a central post-translational modification in plant hormone signaling, but little is known about its extent and function. Although pertinent protein kinases and phosphatases have been predicted and identified for a variety of hormone responses, classical biochemical approaches have so far revealed only a few candidate proteins and even fewer phosphorylation sites. Here we performed a global quantitative analysis of the Arabidopsis phosphoproteome in response to a time course of treatments with various plant hormones using phosphopeptide enrichment and subsequent mass accuracy precursor alignment (MAPA). The use of three time points, 1, 3 and 6 h, in combination with five phytohormone treatments, abscisic acid (ABA), indole-3-acetic acid (IAA), gibberellic acid (GA), jasmonic acid (JA) and kinetin, resulted in 324,000 precursor ions from 54 LC-Orbitrap-MS analyses quantified and aligned in a data matrix with the dimension of 6000 x 54 using the ProtMax algorithm. To dissect the phytohormone responses, multivariate principal/independent components analysis was performed. In total, 152 phosphopeptides were identified as differentially regulated; these phosphopeptides are involved in a wide variety of signaling pathways. New phosphorylation sites were identified for ABA response element binding factors that showed a specific increase in response to ABA. New phosphorylation sites were also found for RLKs and auxin transporters. We found that different hormones regulate distinct amino acid residues of members of the same protein families. In contrast, tyrosine phosphorylation of the G alpha subunit appeared to be a common response for multiple hormones, demonstrating global cross-talk among hormone signaling pathways.
Collapse
Affiliation(s)
- Yanmei Chen
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | |
Collapse
|
27
|
Kyselková M, Janata J, Ságová-Marecková M, Kopecký J. Subunit-subunit interactions are weakened in mutant forms of acetohydroxy acid synthase insensitive to valine inhibition. Arch Microbiol 2010; 192:195-200. [PMID: 20107768 DOI: 10.1007/s00203-010-0545-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 12/19/2009] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
Abstract
In acetohydroxy acid synthase from Streptomyces cinnamonensis mutants affected in valine regulation, the impact of mutations on interactions between the catalytic and the regulatory subunits was examined using yeast two-hybrid system. Mutations in the catalytic and the regulatory subunits were projected into homology models of the respective proteins. Two changes in the catalytic subunit, E139A (alpha domain) and DeltaQ217 (beta domain), both located on the surface of the catalytic subunit dimer, lowered the interaction with the regulatory subunit. Three consecutive changes in the N-terminal part of the regulatory subunit were examined. Changes G16D and V17D in a loop and adjacent alpha-helix of ACT domain affected the interaction considerably, indicating that this region might be in contact with the catalytic subunit during allosteric regulation. In contrast, the adjacent mutation L18F did not influence the interaction at all. Thus, L18 might participate in valine binding or conformational change transfer within the regulatory subunits. Shortening of the regulatory subunit to 107 residues reduced the interaction essentially, suggesting that the C-terminal part of the regulatory subunit is also important for the catalytic subunit binding.
Collapse
Affiliation(s)
- Martina Kyselková
- Laboratory for Biology of Secondary Metabolism, Institute of Microbiology of the ASCR, vvi Vídenská 1083, CZ-14220 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
28
|
Vyazmensky M, Zherdev Y, Slutzker A, Belenky I, Kryukov O, Barak Z, Chipman DM. Interactions between large and small subunits of different acetohydroxyacid synthase isozymes of Escherichia coli. Biochemistry 2009; 48:8731-7. [PMID: 19653643 DOI: 10.1021/bi9009488] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The large, catalytic subunits (LSUs; ilvB, ilvG and ilvI, respectively) of enterobacterial acetohydroxyacid synthases isozymes (AHAS I, II and III) have molecular weights approximately 60 kDa and are paralogous with a family of other thiamin diphosphate dependent enzymes. The small, regulatory subunits (SSUs) of AHAS I and AHAS III (ilvN and ilvH) are required for valine inhibition, but ilvN and ilvH can only confer valine sensitivity on their own LSUs. AHAS II is valine resistant. The LSUs have only approximately 15, <<1 and approximately 3%, respectively, of the activity of their respective holoenzymes, but the holoenzymes can be reconstituted with complete recovery of activity. We have examined the activation of each of the LSUs by SSUs from different isozymes and ask to what extent such activation is specific; that is, is effective nonspecific interaction possible between LSUs and SSUs of different isozymes? To our surprise, the AHAS II SSU ilvM is able to activate the LSUs of all three of the isozymes, and the truncated AHAS III SSUs ilvH-Delta80, ilvH-Delta86 and ilvH-Delta89 are able to activate the LSUs of both AHAS I and AHAS III. However, none of the heterologously activated enzymes have any feedback sensitivity. Our results imply the existence of a common region in all three LSUs to which regulatory subunits may bind, as well as a similarity between the surfaces of ilvM and the other SSUs. This surface must be included within the N-terminal betaalphabetabetaalphabeta-domain of the SSUs, probably on the helical face of this domain. We suggest hypotheses for the mechanism of valine inhibition, and reject one involving induced dissociation of subunits.
Collapse
Affiliation(s)
- Maria Vyazmensky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | |
Collapse
|
29
|
Homologous and heterologous interactions between catalytic and regulatory subunits of Escherichia coli acetohydroxyacid synthase I and III. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0213-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
de las Nieves Peltzer M, Roques N, Poinsot V, Aguilar OM, Batut J, Capela D. Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1232-1241. [PMID: 18700827 DOI: 10.1094/mpmi-21-9-1232] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Some Sinorhizobium meliloti mutants in genes involved in isoleucine, valine, and leucine biosynthesis were previously described as being unable to induce nodule formation on host plants. Here, we present a reappraisal of the interconnection between the branched-chain amino acid biosynthesis pathway and the nodulation process in S. meliloti. We characterized the symbiotic phenotype of seven mutants that are auxotrophic for isoleucine, valine, or leucine in two closely related S. meliloti strains, 1021 and 2011. We showed that all mutants were similarly impaired for nodulation and infection of the Medicago sativa host plant. In most cases, the nodulation phenotype was fully restored by the addition of the missing amino acids to the plant growth medium. This strongly suggests that auxotrophy is the cause of the nodulation defect of these mutants. However, we confirmed previous findings that ilvC and ilvD2 mutants in the S. meliloti 1021 genetic background could not be restored to nodulation by supplementation with exogenous amino acids even though their Nod factor production appeared to be normal.
Collapse
Affiliation(s)
- Maria de las Nieves Peltzer
- Instituto de Biotecnologia y Biologia Molecular, CCT-La Plata, Universidad Nacional de La Plata, Facultad de Ciencias Exactas, La Plata, Argentina
| | | | | | | | | | | |
Collapse
|
31
|
Duggleby RG, McCourt JA, Guddat LW. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:309-24. [PMID: 18234503 DOI: 10.1016/j.plaphy.2007.12.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Indexed: 05/04/2023]
Abstract
Plants and microorganisms synthesize valine, leucine and isoleucine via a common pathway in which the first reaction is catalysed by acetohydroxyacid synthase (AHAS, EC 2.2.1.6). This enzyme is of substantial importance because it is the target of several herbicides, including all members of the popular sulfonylurea and imidazolinone families. However, the emergence of resistant weeds due to mutations that interfere with the inhibition of AHAS is now a worldwide problem. Here we summarize recent ideas on the way in which these herbicides inhibit the enzyme, based on the 3D structure of Arabidopsis thaliana AHAS. This structure also reveals important clues for understanding how various mutations can lead to herbicide resistance.
Collapse
Affiliation(s)
- Ronald G Duggleby
- RDBiotech, 22 Parklands Boulevard, Little Mountain, Queensland 4551, Australia.
| | | | | |
Collapse
|
32
|
Mitra A, Sarma SP. Escherichia coli ilvN interacts with the FAD binding domain of ilvB and activates the AHAS I enzyme. Biochemistry 2008; 47:1518-31. [PMID: 18193896 DOI: 10.1021/bi701893b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique multidomain organization in the multimeric Escherichia coli AHAS I (ilvBN) enzyme has been exploited to generate polypeptide fragments which, when cloned and expressed, reassemble in the presence of cofactors to yield a catalytically competent enzyme. Multidimensional multinuclear NMR methods have been employed for obtaining near complete sequence specific NMR assignments for backbone HN, 15N, 13Calpha and 13Cbeta atoms of the FAD binding domain of ilvB on samples that were isotopically enriched in 2H, 13C and 15N. Unambiguous assignments were obtained for 169 of 177 backbone Calpha atoms and 127 of 164 side chain Cbeta atoms. The secondary structure determined on the basis of observed 13Calpha secondary chemical shifts and sequential NOEs agrees well with the structure of this domain in the catalytic subunit of yeast AHAS. Binding of ilvN to the ilvBalpha and ilvBbeta domains was studied by both circular dichroism and isotope edited solution nuclear magnetic resonance methods. Changes in CD spectra indicate that ilvN interacts with ilvBalpha and ilvBbeta domains of the catalytic subunit and not with the ilvBgamma domain. NMR chemical shift mapping methods show that ilvN binds close to the FAD binding site in ilvBbeta and proximal to the intrasubunit ilvBalpha/ilvBbeta domain interface. The implication of this interaction on the role of the regulatory subunit on the activity of the holoenzyme is discussed.
Collapse
Affiliation(s)
- Ashima Mitra
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
33
|
Petkowski JJ, Chruszcz M, Zimmerman MD, Zheng H, Skarina T, Onopriyenko O, Cymborowski MT, Koclega KD, Savchenko A, Edwards A, Minor W. Crystal structures of TM0549 and NE1324--two orthologs of E. coli AHAS isozyme III small regulatory subunit. Protein Sci 2007; 16:1360-7. [PMID: 17586771 PMCID: PMC2206681 DOI: 10.1110/ps.072793807] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/09/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Crystal structures of two orthologs of the regulatory subunit of acetohydroxyacid synthase III (AHAS, EC 2.2.1.6) from Thermotoga maritima (TM0549) and Nitrosomonas europea (NE1324) were determined by single-wavelength anomalous diffraction methods with the use of selenomethionine derivatives at 2.3 A and 2.5 A, respectively. TM0549 and NE1324 share the same fold, and in both proteins the polypeptide chain contains two separate domains of a similar size. Each protein contains a C-terminal domain with ferredoxin-type fold and an N-terminal ACT domain, of which the latter is characteristic for several proteins involved in amino acid metabolism. The ferredoxin domain is stabilized by a calcium ion in the crystal structure of NE1324 and by a Mg(H2O)(6)2+ ion in TM0549. Both TM0549 and NE1324 form dimeric assemblies in the crystal lattice.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nakano N, Okazaki N, Satoh S, Takio K, Kuramitsu S, Shinkai A, Yokoyama S. Structure of the stand-alone RAM-domain protein from Thermus thermophilus HB8. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:855-60. [PMID: 16946463 PMCID: PMC2242884 DOI: 10.1107/s1744309106031150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 08/08/2006] [Indexed: 11/11/2022]
Abstract
The stand-alone RAM (regulation of amino-acid metabolism) domain protein SraA from Thermus thermophilus HB8 (TTHA0845) was crystallized in the presence of zinc ions. The X-ray crystal structure was determined using a multiple-wavelength anomalous dispersion technique and was refined at 2.4 A resolution to a final R factor of 25.0%. The monomeric structure is a betaalphabetabetaalphabeta fold and it dimerizes mainly through interactions between the antiparallel beta-sheets. Furthermore, five SraA dimers form a ring with external and internal diameters of 70 and 20 A, respectively. This decameric structure is unique compared with the octameric and dodecameric structures found for other stand-alone RAM-domain proteins and the C-terminal RAM domains of Lrp/AsnC-family proteins.
Collapse
Affiliation(s)
- Noboru Nakano
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Nobuo Okazaki
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shinya Satoh
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Koji Takio
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Kuramitsu
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Shigeyuki Yokoyama
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence e-mail:
| |
Collapse
|
35
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
36
|
Lee YT, Duggleby R. Mutations in the regulatory subunit of yeast acetohydroxyacid synthase affect its activation by MgATP. Biochem J 2006; 395:331-6. [PMID: 16390333 PMCID: PMC1422763 DOI: 10.1042/bj20051793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Isoleucine, leucine and valine are synthesized via a common pathway in which the first reaction is catalysed by AHAS (acetohydroxyacid synthase; EC 2.2.1.6). This heterotetrameric enzyme is composed of a larger subunit that contains the catalytic machinery and a smaller subunit that plays a regulatory role. The RSU (regulatory subunit) enhances the activity of the CSU (catalytic subunit) and mediates end-product inhibition by one or more of the branched-chain amino acids, usually valine. Fungal AHAS differs from that in other organisms in that the inhibition by valine is reversed by MgATP. The fungal AHAS RSU also differs from that in other organisms in that it contains a sequence insert. We suggest that this insert may form the MgATP-binding site and we have tested this hypothesis by mutating ten highly conserved amino acid residues of the yeast AHAS RSU. The modified subunits were tested for their ability to activate the yeast AHAS CSU, to confer sensitivity to valine inhibition and to mediate reversal of the inhibition by MgATP. All but one of the mutations resulted in substantial changes in the properties of the RSU. Unexpectedly, four of them gave a protein that required MgATP in order for strong stimulation of the CSU and valine inhibition to be observed. A model to explain this result is proposed. Five of the mutations abolished MgATP activation and are suggested to constitute the binding site for this modulator.
Collapse
Affiliation(s)
- Yu-Ting Lee
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QL 4072, Australia
| | - Ronald G. Duggleby
- School of Molecular and Microbial Sciences, The University of Queensland, Brisbane, QL 4072, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
37
|
Kaplun A, Vyazmensky M, Zherdev Y, Belenky I, Slutzker A, Mendel S, Barak Z, Chipman DM, Shaanan B. Structure of the Regulatory Subunit of Acetohydroxyacid Synthase Isozyme III from Escherichia coli. J Mol Biol 2006; 357:951-63. [PMID: 16458324 DOI: 10.1016/j.jmb.2005.12.077] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 12/20/2005] [Accepted: 12/24/2005] [Indexed: 11/25/2022]
Abstract
The enzyme acetohydroxyacid synthase (AHAS) catalyses the first common step in the biosynthesis of the three branched-chain amino acids. Enzymes in the AHAS family generally consist of regulatory and catalytic subunits. Here, we describe the first crystal structure of an AHAS regulatory subunit, the ilvH polypeptide, determined at a resolution of 1.75 A. IlvH is the regulatory subunit of one of three AHAS isozymes expressed in Escherichia coli, AHAS III. The protein is a dimer, with two beta alpha beta beta alpha beta ferredoxin domains in each monomer. The two N-terminal domains assemble to form an ACT domain structure remarkably close to the one predicted by us on the basis of the regulatory domain of 3-phosphoglycerate dehydrogenase (3PGDH). The two C-terminal domains combine so that their beta-sheets are roughly positioned back-to-back and perpendicular to the extended beta-sheet of the N-terminal ACT domain. On the basis of the properties of mutants and a comparison with 3PGDH, the effector (valine) binding sites can be located tentatively in two symmetrically related positions in the interface between a pair of N-terminal domains. The properties of mutants of the ilvH polypeptide outside the putative effector-binding site provide further insight into the functioning of the holoenzyme. The results of this study open avenues for further studies aimed at understanding the mechanism of regulation of AHAS by small-molecule effectors.
Collapse
Affiliation(s)
- Alexander Kaplun
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vinogradov V, Vyazmensky M, Engel S, Belenky I, Kaplun A, Kryukov O, Barak Z, Chipman DM. Acetohydroxyacid synthase isozyme I from Escherichia coli has unique catalytic and regulatory properties. Biochim Biophys Acta Gen Subj 2006; 1760:356-63. [PMID: 16326011 DOI: 10.1016/j.bbagen.2005.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/27/2005] [Accepted: 10/20/2005] [Indexed: 11/30/2022]
Abstract
AHAS I is an isozyme of acetohydroxyacid synthase which is apparently unique to enterobacteria. It has been known for over 20 years that it has many properties which are quite different from those of the other two enterobacterial AHASs isozymes, as well as from those of "typical" AHASs which are single enzymes in a given organism. These include a unique mechanism for regulation of expression and the absence of a preference for forming acetohydroxybutyrate. We have cloned the two subunits, ilvB and ilvN, of this Escherichia coli isoenzyme and examined the enzymatic properties of the purified holoenzyme and the enzyme reconstituted from purified subunits. Unlike other AHASs, AHAS I demonstrates cooperative feedback inhibition by valine, and the kinetics fit closely to an exclusive binding model. The formation of acetolactate by AHAS I is readily reversible and acetolactate can act as substrate for alternative AHAS I-catalyzed reactions.
Collapse
Affiliation(s)
- Valerie Vinogradov
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 657, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chipman DM, Duggleby RG, Tittmann K. Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol 2006; 9:475-81. [PMID: 16055369 DOI: 10.1016/j.cbpa.2005.07.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 07/18/2005] [Indexed: 11/17/2022]
Abstract
Acetohydroxyacid synthases are thiamin diphosphate- (ThDP-) dependent biosynthetic enzymes found in all autotrophic organisms. Over the past 4-5 years, their mechanisms have been clarified and illuminated by protein crystallography, engineered mutagenesis and detailed single-step kinetic analysis. Pairs of catalytic subunits form an intimate dimer containing two active sites, each of which lies across a dimer interface and involves both monomers. The ThDP adducts of pyruvate, acetaldehyde and the product acetohydroxyacids can be detected quantitatively after rapid quenching. Determination of the distribution of intermediates by NMR then makes it possible to calculate individual forward unimolecular rate constants. The enzyme is the target of several herbicides and structures of inhibitor-enzyme complexes explain the herbicide-enzyme interaction.
Collapse
Affiliation(s)
- David M Chipman
- Department of Life Sciences, Ben-Gurion University POB 653, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
40
|
Vinogradov M, Kaplun A, Vyazmensky M, Engel S, Golbik R, Tittmann K, Uhlemann K, Meshalkina L, Barak Z, Hübner G, Chipman DM. Monitoring the acetohydroxy acid synthase reaction and related carboligations by circular dichroism spectroscopy. Anal Biochem 2005; 342:126-33. [PMID: 15958189 DOI: 10.1016/j.ab.2005.03.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/27/2005] [Accepted: 03/28/2005] [Indexed: 11/22/2022]
Abstract
Acetohydroxy acid synthase (AHAS) and related enzymes catalyze the production of chiral compounds [(S)-acetolactate, (S)-acetohydroxybutyrate, or (R)-phenylacetylcarbinol] from achiral substrates (pyruvate, 2-ketobutyrate, or benzaldehyde). The common methods for the determination of AHAS activity have shortcomings. The colorimetric method for detection of acyloins formed from the products is tedious and does not allow time-resolved measurements. The continuous assay for consumption of pyruvate based on its absorbance at 333 nm, though convenient, is limited by the extremely small extinction coefficient of pyruvate, which results in a low signal-to-noise ratio and sensitivity to interfering absorbing compounds. Here, we report the use of circular dichroism spectroscopy for monitoring AHAS activity. This method, which exploits the optical activity of reaction products, displays a high signal-to-noise ratio and is easy to perform both in time-resolved and in commercial modes. In addition to AHAS, we examined the determination of activity of glyoxylate carboligase. This enzyme catalyzes the condensation of two molecules of glyoxylate to chiral tartronic acid semialdehyde. The use of circular dichroism also identifies the product of glyoxylate carboligase as being in the (R) configuration.
Collapse
Affiliation(s)
- Michael Vinogradov
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, 84105, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Elisáková V, Pátek M, Holátko J, Nesvera J, Leyval D, Goergen JL, Delaunay S. Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. Appl Environ Microbiol 2005; 71:207-13. [PMID: 15640189 PMCID: PMC544200 DOI: 10.1128/aem.71.1.207-213.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.
Collapse
Affiliation(s)
- Veronika Elisáková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-14220 Prague 4, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
42
|
Porat I, Vinogradov M, Vyazmensky M, Lu CD, Chipman DM, Abdelal AT, Barak Z. Cloning and characterization of acetohydroxyacid synthase from Bacillus stearothermophilus. J Bacteriol 2004; 186:570-4. [PMID: 14702326 PMCID: PMC305746 DOI: 10.1128/jb.186.2.570-574.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five genes from the ilv-leu operon from Bacillus stearothermophilus have been sequenced. Acetohydroxyacid synthase (AHAS) and its subunits were separately cloned, purified, and characterized. This thermophilic enzyme resembles AHAS III of Escherichia coli, and regulatory subunits of AHAS III complement the catalytic subunit of the AHAS of B. stearothermophilus, suggesting that AHAS III is functionally and evolutionally related to the single AHAS of gram-positive bacteria.
Collapse
Affiliation(s)
- Iris Porat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105 Israel
| | | | | | | | | | | | | |
Collapse
|
43
|
Zohar Y, Einav M, Chipman DM, Barak Z. Acetohydroxyacid synthase from Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1649:97-105. [PMID: 12818195 DOI: 10.1016/s1570-9639(03)00160-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) remains one of the world's leading causes of death from infectious disease. It is caused by infection with Mycobacterium tuberculosis or sometimes, particularly in immune-compromised patients, Mycobacterium avium. The aim of this study was to create a tool that could be used in the search for new anti-TB drugs that inhibit branched-chain amino acid (BCAA) biosynthesis, as these are essential amino acids that are not available to a mycobacterium during growth in an infected organism. To this end, we cloned, overexpressed, purified and characterised for the first time an acetohydroxyacid synthase (AHAS), a key enzyme in the pathway to the biosynthesis of the BCAAs, from the genus Mycobacterium. Nine commercial herbicides of the sulfonylurea and imidazolinone classes were tested for their influence on this enzyme. Four of the sulfonylureas were potent inhibitors of the enzyme. The relative potency of the different inhibitors towards the M. avium enzyme was unlike their potency towards other AHASs whose inhibitor profile has been reported, emphasising the advantage of using a mycobacterial enzyme as a tool in the search for new anti-TB drugs.
Collapse
Affiliation(s)
- Yehudit Zohar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
44
|
Abstract
Genome analysis has revealed that members of the Lrp family of transcriptional regulators are widely distributed among prokaryotes, both bacteria and archaea. The archetype Leucine-responsive Regulatory Protein from Escherichia coli is a global regulator involved in modulating a variety of metabolic functions, including the catabolism and anabolism of amino acids as well as pili synthesis. Most Lrp homologues, however, appear to act as specific regulators of amino acid metabolism-related genes. Like most prokaryotic transcriptional regulators, Lrp-like regulators consist of a DNA-binding domain and a ligand-binding domain. The crystal structure of the Pyrococcus furiosus LrpA revealed an N-terminal domain with a common helix-turn-helix fold, and a C-terminal domain with a typical alphabeta-sandwich fold. The latter regulatory domain constitutes a novel ligand-binding site and has been designated RAM. Database analysis reveals that the RAM domain is present in many prokaryotic genomes, potentially encoding (1) Lrp-homologues, when fused to a DNA-binding domain (2) enzymes, when fused as a potential regulatory domain to a catalytic domain, and (3) stand-alone RAM modules with unknown function. The architecture of Lrp regulators with two distinct domains that harbour the regulatory (effector-binding) site and the active (DNA-binding) site, and their separation by a flexible hinge region, suggests a general allosteric switch of Lrp-like regulators.
Collapse
Affiliation(s)
- Arie B Brinkman
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6307 CT Wageningen, The Netherlands
| | | | | | | |
Collapse
|
45
|
Mendel S, Vinogradov M, Vyazmensky M, Chipman DM, Barak Z. The N-terminal domain of the regulatory subunit is sufficient for complete activation of acetohydroxyacid synthase III from Escherichia coli. J Mol Biol 2003; 325:275-84. [PMID: 12488095 DOI: 10.1016/s0022-2836(02)01142-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously proposed a model for the fold of the N-terminal domain of the small, regulatory subunit (SSU) of acetohydroxyacid synthase isozyme III. The fold is an alpha-beta sandwich with betaalphabetabetaalphabeta topology, structurally homologous to the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase. We suggested that the N-terminal domains of a pair of SSUs interact in the holoenzyme to form two binding sites for the feedback inhibitor valine in the interface between them. The model was supported by mutational analysis and other evidence. We have now examined the role of the C-terminal portion of the SSU by construction of truncated polypeptides (lacking 35, 48, 80, 95, or 112 amino acid residues from the C terminus) and examining the properties of holoenzymes reconstituted using these constructs. The Delta35, Delta48, and Delta80 constructs all lead to essentially complete activation of the catalytic subunits. The Delta80 construct, corresponding to the putative N-terminal domain, has the highest level of affinity for the catalytic subunits and leads to a reconstituted enzyme with k(cat)/K(M) about twice that of the wild-type enzyme. On the other hand, none of these constructs binds valine or leads to a valine-sensitive enzyme on reconstitution. The enzyme reconstituted with the Delta80 construct does not bind valine, either. The N-terminal portion (about 80 amino acid residues) of the SSU is thus necessary and sufficient for recognition and activation of the catalytic subunits, but the C-terminal half of the SSU is required for valine binding and response. We suggest that the C-terminal region of the SSU contributes to monomer-monomer interactions, and provide additional experimental evidence for this suggestion.
Collapse
Affiliation(s)
- Sharon Mendel
- Department of Life Science, Ben-Gurion University POB 653, 84105, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
46
|
Hsieh MH, Goodman HM. Molecular characterization of a novel gene family encoding ACT domain repeat proteins in Arabidopsis. PLANT PHYSIOLOGY 2002; 130:1797-806. [PMID: 12481063 PMCID: PMC166691 DOI: 10.1104/pp.007484] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2002] [Revised: 05/28/2002] [Accepted: 07/10/2002] [Indexed: 05/18/2023]
Abstract
In bacteria, the regulatory ACT domains serve as amino acid-binding sites in some feedback-regulated amino acid metabolic enzymes. We have identified a novel type of ACT domain-containing protein family in Arabidopsis whose members contain ACT domain repeats (the "ACR" protein family). There are at least eight ACR genes located on each of the five chromosomes in the Arabidopsis genome. Gene structure comparisons indicate that the ACR gene family may have arisen by gene duplications. Northern-blot analysis indicates that each member of the ACR gene family has a distinct expression pattern in various organs from 6-week-old Arabidopsis. Moreover, analyses of an ACR3 promoter-beta-glucuronidase (GUS) fusion in transgenic Arabidopsis revealed that the GUS activity formed a gradient in the developing leaves and sepals, whereas low or no GUS activity was detected in the basal regions. In 2-week-old Arabidopsis seedlings grown in tissue culture, the expression of the ACR gene family is differentially regulated by plant hormones, salt stress, cold stress, and light/dark treatment. The steady-state levels of ACR8 mRNA are dramatically increased by treatment with abscisic acid or salt. Levels of ACR3 and ACR4 mRNA are increased by treatment with benzyladenine. The amino acid sequences of Arabidopsis ACR proteins are most similar in the ACT domains to the bacterial sensor protein GlnD. The ACR proteins may function as novel regulatory or sensor proteins in plants.
Collapse
MESH Headings
- Adaptation, Physiological/drug effects
- Adaptation, Physiological/genetics
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosome Mapping
- Cold Temperature
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Darkness
- Gene Expression Regulation, Plant/drug effects
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Light
- Molecular Sequence Data
- Multigene Family/genetics
- Plant Growth Regulators/pharmacology
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Protein Serine-Threonine Kinases
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium Chloride/pharmacology
Collapse
Affiliation(s)
- Ming-Hsiun Hsieh
- Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
47
|
Ettema TJG, Brinkman AB, Tani TH, Rafferty JB, Van Der Oost J. A novel ligand-binding domain involved in regulation of amino acid metabolism in prokaryotes. J Biol Chem 2002; 277:37464-8. [PMID: 12138170 DOI: 10.1074/jbc.m206063200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A combination of sequence profile searching and structural protein analysis has revealed a novel type of small molecule binding domain that is involved in the allosteric regulation of prokaryotic amino acid metabolism. This domain, designated RAM, has been found to be fused to the DNA-binding domain of Lrp-like transcription regulators and to the catalytic domain of some metabolic enzymes, and has been found as a stand-alone module. Structural analysis of the RAM domain of Lrp reveals a betaalphabetabetaalphabeta-fold that is strikingly similar to that of the recently described ACT domain, a ubiquitous allosteric regulatory domain of many metabolic enzymes. However, structural alignment and re-evaluation of previous mutagenesis data suggest that the effector-binding sites of both modules are significantly different. By assuming that the RAM and ACT domains originated from a common ancestor, these observations suggest that their ligand-binding sites have evolved independently. Both domains appear to play analogous roles in controlling key steps in amino acid metabolism at the level of gene expression as well as enzyme activity.
Collapse
Affiliation(s)
- Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University, Hesselink van Suchtelenweg 4, NL-6307 CT Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Acetohydroxyacid synthase (AHAS; EC 4.1.3.18) contains catalytic and regulatory subunits, the latter being required for sensitivity to feedback regulation by leucine, valine and isoleucine. The regulatory subunit of Arabidopsis thaliana AHAS possesses a sequence repeat and we have suggested previously that one repeat binds leucine while the second binds valine or isoleucine, with synergy between the two sites. We have mutated four residues in each repeat, based on a model of the regulatory subunit. The data confirm that there are separate leucine and valine/isoleucine sites, and suggest a complex pathway for regulatory signal transmission to the catalytic subunit.
Collapse
Affiliation(s)
- Yu Ting Lee
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry and Molecular Biology, University of Queensland, 4072, Brisbane, Qld., Australia
| | | |
Collapse
|
49
|
Abstract
The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222--5231] that yeast AHAS can be reconstituted from its separately purified subunits. The reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5'-[beta,gamma-imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.
Collapse
Affiliation(s)
- S S Pang
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry and Molecular Biology, The University of Queensland, Brisbane QLD 4072, Australia
| | | |
Collapse
|
50
|
Lee YT, Duggleby RG. Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstitution with its catalytic subunit. Biochemistry 2001; 40:6836-44. [PMID: 11389597 DOI: 10.1021/bi002775q] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetohydroxyacid synthase (EC 4.1.3.18; AHAS) catalyzes the initial step in the formation of the branched-chain amino acids. The enzyme from most bacteria is composed of a catalytic subunit, and a smaller regulatory subunit that is required for full activity and for sensitivity to feedback regulation by valine. A similar arrangement was demonstrated recently for yeast AHAS, and a putative regulatory subunit of tobacco AHAS has also been reported. In this latter case, the enzyme reconstituted from its purified subunits remained insensitive to feedback inhibition, unlike the enzyme extracted from native plant sources. Here we have cloned, expressed in Escherichia coli, and purified the AHAS regulatory subunit of Arabidopsis thaliana. Combining the protein with the purified A. thaliana catalytic subunit results in an activity stimulation that is sensitive to inhibition by valine, leucine, and isoleucine. Moreover, there is a strong synergy between the effects of leucine and valine, which closely mimics the properties of the native enzyme. The regulatory subunit contains a sequence repeat of approximately 180 residues, and we suggest that one repeat binds leucine while the second binds valine or isoleucine. This proposal is supported by reconstitution studies of the individual repeats, which were also cloned, expressed, and purified. The structure and properties of the regulatory subunit are reminiscent of the regulatory domain of threonine deaminase (EC 4.2.1.16), and it is suggested that the two proteins are evolutionarily related.
Collapse
Affiliation(s)
- Y T Lee
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry and Molecular Biology, University of Queensland, Brisbane QLD Australia 4072
| | | |
Collapse
|