1
|
Mascolo E, Adhikari S, Caruso SM, deCarvalho T, Folch Salvador A, Serra-Sagristà J, Young R, Erill I, Curtis PD. The transcriptional regulator CtrA controls gene expression in Alphaproteobacteria phages: Evidence for a lytic deferment pathway. Front Microbiol 2022; 13:918015. [PMID: 36060776 PMCID: PMC9437464 DOI: 10.3389/fmicb.2022.918015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Pilitropic and flagellotropic phages adsorb to bacterial pili and flagella. These phages have long been used to investigate multiple aspects of bacterial physiology, such as the cell cycle control in the Caulobacterales. Targeting cellular appendages for adsorption effectively constrains the population of infectable hosts, suggesting that phages may have developed strategies to maximize their infective yield. Brevundimonas phage vB_BsubS-Delta is a recently characterized pilitropic phage infecting the Alphaproteobacterium Brevundimonas subvibrioides. Like other Caulobacterales, B. subvibrioides divides asymmetrically and its cell cycle is governed by multiple transcriptional regulators, including the master regulator CtrA. Genomic characterization of phage vB_BsubS-Delta identified the presence of a large intergenic region with an unusually high density of putative CtrA-binding sites. A systematic analysis of the positional distribution of predicted CtrA-binding sites in complete phage genomes reveals that the highly skewed distribution of CtrA-binding sites observed in vB_BsubS-Delta is an unequivocal genomic signature that extends to other pilli- and flagellotropic phages infecting the Alphaproteobacteria. Moreover, putative CtrA-binding sites in these phage genomes localize preferentially to promoter regions and have higher scores than those detected in other phage genomes. Phylogenetic and comparative genomics analyses show that this genomic signature has evolved independently in several phage lineages, suggesting that it provides an adaptive advantage to pili/flagellotropic phages infecting the Alphaproteobacteria. Experimental results demonstrate that CtrA binds to predicted CtrA-binding sites in promoter regions and that it regulates transcription of phage genes in unrelated Alphaproteobacteria-infecting phages. We propose that this focused distribution of CtrA-binding sites reflects a fundamental new aspect of phage infection, which we term lytic deferment. Under this novel paradigm, pili- and flagellotropic phages exploit the CtrA transduction pathway to monitor the host cell cycle state and synchronize lysis with the presence of infectable cells.
Collapse
Affiliation(s)
- Elia Mascolo
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Satish Adhikari
- Department of Biology, University of Mississippi, Oxford, MS, United States
| | - Steven M. Caruso
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Tagide deCarvalho
- Keith R. Porter Imaging Facility, College of Natural and Mathematical Sciences, University of Maryland Baltimore County (UMBC), Baltimore, MD, United States
| | | | | | - Ry Young
- Center for Phage Technology, Texas A&M University, College Station, TX, United States
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Patrick D. Curtis
- Department of Biology, University of Mississippi, Oxford, MS, United States
| |
Collapse
|
2
|
The Histidine Kinase CckA Is Directly Inhibited by a Response Regulator-like Protein in a Negative Feedback Loop. mBio 2022; 13:e0148122. [PMID: 35876508 PMCID: PMC9430884 DOI: 10.1128/mbio.01481-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In alphaproteobacteria, the two-component system (TCS) formed by the hybrid histidine kinase CckA, the phosphotransfer protein ChpT, and the response regulator CtrA is widely distributed. In these microorganisms, this system controls diverse functions such as motility, DNA repair, and cell division. In Caulobacterales and Rhizobiales, CckA is regulated by the pseudo- histidine kinase DivL, and the response regulator DivK. However, this regulatory circuit differs for other bacterial groups. For instance, in Rhodobacterales, DivK is absent and DivL consists of only the regulatory PAS domain. In this study, we report that, in Rhodobacter sphaeroides, the kinase activity of CckA is inhibited by Osp, a single domain response regulator (SDRR) protein that directly interacts with the transmitter domain of CckA. In vitro, the kinase activity of CckA was severely inhibited with an equimolar amount of Osp, whereas the phosphatase activity of CckA was not affected. We also found that the expression of osp is activated by CtrA creating a negative feedback loop. However, under growth conditions known to activate the TCS, the increased expression of osp does not parallel Osp accumulation, indicating a complex regulation. Phylogenetic analysis of selected species of Rhodobacterales revealed that Osp is widely distributed in several genera. For most of these species, we found a sequence highly similar to the CtrA-binding site in the control region of osp, suggesting that the TCS CckA/ChpT/CtrA is controlled by a novel regulatory circuit that includes Osp in these bacteria. IMPORTANCE The two-component systems (TCS) in bacteria in its simplest architecture consist of a histidine kinase (HK) and a response regulator (RR). In response to a specific stimulus, the HK is activated and drives phosphorylation of the RR, which is responsible of generating an adaptive response. These systems are ubiquitous among bacteria and are frequently controlled by accessory proteins. In alphaproteobacteria, the TCS formed by the HK CckA, the phosphotransferase ChpT, and the RR CtrA is widely distributed. Currently, most of the information of this system and its regulatory proteins comes from findings carried out in microorganisms where it is essential. However, this is not the case in many species, and studies of this TCS and its regulatory proteins are lacking. In this study, we found that Osp, a RR-like protein, inhibits the kinase activity of CckA in a negative feedback loop since osp expression is activated by CtrA. The inhibitory role of Osp and the similar action of the previously reported FixT protein, suggests the existence of a new group of RR-like proteins whose main function is to interact with the HK and prevent its phosphorylation.
Collapse
|
3
|
Rivera-Osorio A, Osorio A, Poggio S, Dreyfus G, Camarena L. Architecture of divergent flagellar promoters controlled by CtrA in Rhodobacter sphaeroides. BMC Microbiol 2018; 18:129. [PMID: 30305031 PMCID: PMC6180460 DOI: 10.1186/s12866-018-1264-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/26/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rhodobacter sphaeroides has two sets of flagellar genes, fla1 and fla2, that are responsible for the synthesis of two different flagellar structures. The expression of the fla2 genes is under control of CtrA. In several α-proteobacteria CtrA is also required for the expression of the flagellar genes, but the architecture of CtrA-dependent promoters has only been studied in detail in Caulobacter crescentus. In many cases the expression of fla genes originates from divergent promoters located a few base pairs apart, suggesting a particular arrangement of the cis-acting sites. RESULTS Here we characterized several control regions of the R. sphaeroides fla2 genes and analyzed in detail two regions containing the divergent promoters flgB2p-fliI2p, and fliL2p-fliF2p. Binding sites for CtrA of these promoters were identified in silico and tested by site directed mutagenesis. We conclude that each one of these promoter regions has a particular arrangement, either a single CtrA binding site for activation of fliL2p and fliF2p, or two independent sites for activation of flgB2p and fliI2p. ChIP experiments confirmed that CtrA binds to the control region containing the flgB2 and fliI2 promoters, supporting the notion that CtrA directly controls the expression of the fla2 genes. The flgB and fliI genes are syntenic and show a short intercistronic region in closely related bacterial species. We analyzed these regions and found that the arrangement of the CtrA binding sites varies considerably. CONCLUSIONS The results in this work reveal the arrangement of the fla2 divergent promoters showing that CtrA promotes transcriptional activation using more than a single architecture.
Collapse
Affiliation(s)
- Anet Rivera-Osorio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Aurora Osorio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México.
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México.
| |
Collapse
|
4
|
Beroual W, Brilli M, Biondi EG. Non-coding RNAs Potentially Controlling Cell Cycle in the Model Caulobacter crescentus: A Bioinformatic Approach. Front Genet 2018; 9:164. [PMID: 29899753 PMCID: PMC5988900 DOI: 10.3389/fgene.2018.00164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Caulobacter crescentus represents a remarkable model system to investigate global regulatory programs in bacteria. In particular, several decades of intensive study have revealed that its cell cycle is controlled by a cascade of master regulators, such as DnaA, GcrA, CcrM, and CtrA, that are responsible for the activation of functions required to progress through DNA replication, cell division and morphogenesis of polar structures (flagellum and stalk). In order to accomplish this task, several post-translational (phosphorylation and proteolysis) and transcriptional mechanisms are involved. Surprisingly, the role of non-coding RNAs (ncRNAs) in regulating the cell cycle has not been investigated. Here we describe a bioinformatic analysis that revealed that ncRNAs may well play a crucial role regulating cell cycle in C. crescentus. We used available prediction tools to understand which target genes may be regulated by ncRNAs in this bacterium. Furthermore, we predicted whether ncRNAs with a cell cycle regulated expression profile may be directly regulated by DnaA, GcrA, and CtrA, at the onset, during or end of the S-phase/swarmer cell, or if any of them has CcrM methylation sites in the promoter region. Our analysis suggests the existence of a potentially very important network of ncRNAs regulated by or regulating well-known cell cycle genes in C. crescentus. Our hypothesis is that ncRNAs are intimately connected to the known regulatory network, playing a crucial modulatory role in cell cycle progression.
Collapse
Affiliation(s)
- Wanassa Beroual
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Aix Marseille University, Marseille, France
| | - Matteo Brilli
- Department of Biosciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi, " University of Milan, Milan, Italy
| | - Emanuele G Biondi
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Aix Marseille University, Marseille, France
| |
Collapse
|
5
|
The Master Regulators of the Fla1 and Fla2 Flagella of Rhodobacter sphaeroides Control the Expression of Their Cognate CheY Proteins. J Bacteriol 2017; 199:JB.00670-16. [PMID: 27956523 DOI: 10.1128/jb.00670-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides is an alphaproteobacterium that has two complete sets of flagellar genes. The fla1 set was acquired by horizontal transfer from an ancestral gammaproteobacterium and is the only set of flagellar genes that is expressed during growth under standard laboratory conditions. The products of these genes assemble a single, subpolar flagellum. In the absence of the Fla1 flagellum, a gain-of-function mutation in the histidine kinase CckA turns on the expression of the fla2 flagellar genes through the response regulator CtrA. The rotation of the Fla1 and Fla2 flagella is controlled by different sets of chemotaxis proteins. Here, we show that the expression of the chemotaxis proteins that control Fla2, along with the expression of the fla2 genes, is coordinated by CtrA, whereas the expression of the chemotaxis genes that control Fla1 is mediated by the master regulators of the Fla1 system. The coordinated expression of the chemosensory proteins with their cognate flagellar genes highlights the relevance of integrating the expression of the horizontally acquired fla1 genes with a chemosensory system independently of the regulatory proteins responsible for the expression of fla2 and its cognate chemosensory system. IMPORTANCE Gene acquisition via horizontal transfer represents a challenge to the recipient organism to adjust its metabolic and genetic networks to incorporate the new material in a way that represents an adaptive advantage. In the case of Rhodobacter sphaeroides, a complete set of flagellar genes was acquired and successfully coordinated with the native flagellar system. Here we show that the expression of the chemosensory proteins that control flagellar rotation is dependent on the master regulators of their corresponding flagellar system, minimizing the use of transcription factors required to express the native and horizontally acquired genes along with their chemotaxis proteins.
Collapse
|
6
|
Curtis PD, Klein D, Brun YV. Effect of a ctrA promoter mutation, causing a reduction in CtrA abundance, on the cell cycle and development of Caulobacter crescentus. BMC Microbiol 2013; 13:166. [PMID: 23865946 PMCID: PMC3751295 DOI: 10.1186/1471-2180-13-166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 07/12/2013] [Indexed: 11/10/2022] Open
Abstract
Background Polar development during the alphaproteobacterium Caulobacter crescentus cell cycle is integrated to the point that individual mutations can have pleiotropic effects on the synthesis of polar organelles. Disruption of the genes encoding the histidine kinase PleC, or its localization factor PodJ, disrupts synthesis or functionality of pili, flagella and adhesive holdfast. However, the mechanism by which these mutations affect polar development is not well understood. The aim of this study was to identify new regulators that control multiple aspects of polar organelle development. Results To identify mutants with pleiotropic polar organelle synthesis defects, transposon mutagenesis was performed and mutants were selected based resistance to the pili-tropic bacteriophage ΦCbK. Mutants were then screened for defects in motility and holdfast production. Only a single podJ/pleC-independent mutant was isolated which had defects in all three phenotypes. Directed phage assays confirmed the phage resistance phenotype, while the strain demonstrated a similar dispersal radius as a podJ mutant in swarm agar, and treatment with a fluorescent lectin that labels the holdfast showed no staining for this mutant. The transposon had inserted into the promoter region of ctrA, a gene encoding a master transcriptional regulator of the cell cycle, disrupting native transcription but still allowing reduced transcriptional activity and protein production of this essential protein. Transcriptional fusions showed that essential genes controlled by CtrA exhibited minor to moderate changes in expression in the ctrA promoter mutant, while the pilA gene, encoding the subunit of the pilus filament, had a drastic decrease in gene expression. Introduction of a plasmid-born copy of ctrA under its native promoter complemented the phage resistance and holdfast defects, as well as a moderate cell morphology defect, but not the swarming defect. Conclusions A mutation was identified that caused pleiotropic defects in polar organelle synthesis, and revealed the surprising result that some CtrA-dependent promoters are more sensitive to changes in CtrA concentration than others. However, the fact that no pleiotropic mutations were found in new regulators suggests that downstream signaling of PleC/PodJ is either essential, redundant, or branching such that all three phenotypes were not simultaneously affected.
Collapse
Affiliation(s)
- Patrick D Curtis
- Department of Biology, University of Mississippi, 402 Shoemaker, University, MS 38677, USA.
| | | | | |
Collapse
|
7
|
CtrA, a global response regulator, uses a distinct second category of weak DNA binding sites for cell cycle transcription control in Caulobacter crescentus. J Bacteriol 2009; 191:5458-70. [PMID: 19542275 DOI: 10.1128/jb.00355-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CtrA controls cell cycle programs of chromosome replication and genetic transcription. Phosphorylated CtrA approximately P exhibits high affinity (dissociation constant [K(d)], <10 nM) for consensus TTAA-N7-TTAA binding sites with "typical" (N = 7) spacing. We show here that ctrA promoters P1 and P2 use low-affinity (K(d), >500 nM) CtrA binding sites with "atypical" (N not equal 7) spacing. Footprints demonstrated that phosphorylated CtrA approximately P does not exhibit increased affinity for "atypical" sites, as it does for sites in the replication origin. Instead, high levels of CtrA (>10 microM) accumulate, which can drive CtrA binding to "atypical" sites. In vivo cross-linking showed that when the stable CtrADelta3 protein persists during the cell cycle, the "atypical" sites at ctrA and motB are persistently bound. Interestingly, the cell cycle timing of ctrA P1 and P2 transcription is not altered by persistent CtrADelta3 binding. Therefore, operator DNA occupancy is not sufficient for regulation, and it is the cell cycle variation of CtrA approximately P phosphorylation that provides the dominant "activation" signal. Protein dimerization is one potential means of "activation." The glutathione S-transferase (GST) protein dimerizes, and fusion with CtrA (GST-CtrA) creates a stable dimer with enhanced affinity for TTAA motifs. Electrophoretic mobility shift assays with GST-CtrA revealed cooperative modes of binding that further distinguish the "atypical" sites. GST-CtrA also binds a single TTAA motif in ctrA P1 aided by DNA in the extended TTAACCAT motif. We discuss how "atypical" sites are a common yet distinct category of CtrA regulatory sites and new implications for the working and evolution of cell cycle control networks.
Collapse
|
8
|
Shaheen SM, Ouimet MC, Marczynski GT. Comparative analysis of Caulobacter chromosome replication origins. MICROBIOLOGY-SGM 2009; 155:1215-1225. [PMID: 19332823 DOI: 10.1099/mic.0.025528-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Caulobacter crescentus (CB15) initiates chromosome replication only in stalked cells and not in swarmers. To better understand this dimorphic control of chromosome replication, we isolated replication origins (oris) from freshwater Caulobacter (FWC) and marine Caulobacter (MCS) species. Previous studies implicated integration host factor (IHF) and CcrM DNA methylation sites in replication control. However, ori IHF and CcrM sites identified in the model FWC CB15 were only conserved among closely related FWCs. DnaA boxes and CtrA binding sites are established CB15 ori components. CtrA is a two-component regulator that blocks chromosome replication selectively in CB15 swarmers. DnaA boxes and CtrA sites were found in five FWC and three MCS oris. Usually, a DnaA box and a CtrA site were paired, suggesting that CtrA binding regulates DnaA activity. We tested this hypothesis by site-directed mutagenesis of an MCS10 ori which contains only one CtrA binding site overlapping a critical DnaA box. This overlapping site is unique in the whole MCS10 genome. Selective DnaA box mutations decreased replication, while selective CtrA binding site mutations increased replication of MCS10 ori plasmids. Therefore, both FWC and MCS oris use CtrA to repress replication. Despite this similarity, phylogenetic analysis unexpectedly shows that CtrA usage evolved separately among these Caulobacter oris. We discuss consensus oris and convergent ori evolution in differentiating bacteria.
Collapse
Affiliation(s)
- S M Shaheen
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| | - Marie-Claude Ouimet
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| | - Gregory T Marczynski
- McGill University, Department of Microbiology and Immunology, 3775 University Street, Room 506, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
9
|
Smith TG, Hoover TR. Deciphering bacterial flagellar gene regulatory networks in the genomic era. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:257-95. [PMID: 19245942 DOI: 10.1016/s0065-2164(08)01008-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Synthesis of the bacterial flagellum is a complex process involving dozens of structural and regulatory genes. Assembly of the flagellum is a highly-ordered process, and in most flagellated bacteria the structural genes are expressed in a transcriptional hierarchy that results in the products of these genes being made as they are needed for assembly. Temporal regulation of the flagellar genes is achieved through sophisticated regulatory networks that utilize checkpoints in the flagellar assembly pathway to coordinate expression of flagellar genes. Traditionally, flagellar transcriptional hierarchies are divided into various classes. Class I genes, which are the first genes expressed, encode a master regulator that initiates the transcriptional hierarchy. The master regulator activates transcription a set of structural and regulatory genes referred to as class II genes, which in turn affect expression of subsequent classes of flagellar genes. We review here the literature on the expression and activity of several known master regulators, including FlhDC, CtrA, VisNR, FleQ, FlrA, FlaK, LafK, SwrA, and MogR. We also examine the Department of Energy Joint Genomes Institute database to make predictions about the distribution of these regulators. Many bacteria employ the alternative sigma factors sigma(54) and/or sigma(28) to regulate transcription of later classes of flagellar genes. Transcription by sigma(54)-RNA polymerase holoenzyme requires an activator, and we review the literature on the sigma(54)-dependent activators that control flagellar gene expression in several bacterial systems, as well as make predictions about other systems that may utilize sigma(54) for flagellar gene regulation. Finally, we review the prominent systems that utilize sigma(28) and its antagonist, the anti-sigma(28) factor FlgM, along with some systems that utilize alternative mechanisms for regulating flagellar gene expression.
Collapse
Affiliation(s)
- Todd G Smith
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
10
|
Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 2008; 54:1-101. [PMID: 18929067 DOI: 10.1016/s0065-2911(08)00001-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell-cycle progression. Stage-specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell-cycle progression.
Collapse
|
11
|
Chen JC, Hottes AK, McAdams HH, McGrath PT, Viollier PH, Shapiro L. Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease. EMBO J 2006; 25:377-86. [PMID: 16395329 PMCID: PMC1383518 DOI: 10.1038/sj.emboj.7600935] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 12/02/2005] [Indexed: 11/08/2022] Open
Abstract
We demonstrate that successive cleavage events involving regulated intramembrane proteolysis (Rip) occur as a function of time during the Caulobacter cell cycle. The proteolytic substrate PodJ(L) is a polar factor that recruits proteins required for polar organelle biogenesis to the correct cell pole at a defined time in the cell cycle. We have identified a periplasmic protease (PerP) that initiates the proteolytic sequence by truncating PodJ(L) to a form with altered activity (PodJ(S)). Expression of perP is regulated by a signal transduction system that activates cell type-specific transcription programs and conversion of PodJ(L) to PodJ(S) in response to the completion of cytokinesis. PodJ(S), sequestered to the progeny swarmer cell, is subsequently released from the polar membrane by the membrane metalloprotease MmpA for degradation during the swarmer-to-stalked cell transition. This sequence of proteolytic events contributes to the asymmetric localization of PodJ isoforms to the appropriate cell pole. Thus, temporal activation of the PerP protease and spatial restriction of the polar PodJ(L) substrate cooperatively control the cell cycle-dependent onset of Rip.
Collapse
Affiliation(s)
- Joseph C Chen
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Alison K Hottes
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Harley H McAdams
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Patrick T McGrath
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Patrick H Viollier
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Lucy Shapiro
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Beckman Center B300, Stanford, CA 94305, USA. Tel.: +1 650 725 7678; Fax: +1 650 725 7739; E-mail:
| |
Collapse
|
12
|
Collier J, Murray SR, Shapiro L. DnaA couples DNA replication and the expression of two cell cycle master regulators. EMBO J 2006; 25:346-56. [PMID: 16395331 PMCID: PMC1383511 DOI: 10.1038/sj.emboj.7600927] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Accepted: 11/28/2005] [Indexed: 11/09/2022] Open
Abstract
Cell cycle progression in Caulobacter is driven by the master transcriptional regulators CtrA and GcrA. The cellular levels of CtrA and GcrA are temporally and spatially out-of-phase during the cell cycle, with CtrA repressing gcrA transcription and GcrA activating ctrA transcription. Here, we show that DnaA, a protein required for the initiation of DNA replication, also functions as a transcriptional activator of gcrA, which in turn activates multiple genes, notably those involved in chromosome replication and segregation. The cellular concentration of DnaA is cell cycle-controlled, peaking at the time of replication initiation and gcrA induction. Regulated proteolysis of GcrA contributes to the cell cycle variations in GcrA abundance. We propose that DnaA couples DNA replication initiation with the expression of the two oscillating regulators GcrA and CtrA and that the DnaA/GcrA/CtrA regulatory cascade drives the forward progression of the Caulobacter cell cycle.
Collapse
Affiliation(s)
- Justine Collier
- Department of Developmental Biology, School of Medicine, Stanford University Medical Center, Beckman Center, Stanford, CA, USA
| | - Sean Richard Murray
- Department of Developmental Biology, School of Medicine, Stanford University Medical Center, Beckman Center, Stanford, CA, USA
| | - Lucy Shapiro
- Department of Developmental Biology, School of Medicine, Stanford University Medical Center, Beckman Center, Stanford, CA, USA
- Department of Developmental Biology, School of Medicine, Stanford University Medical Center, Beckman Center, Stanford B351, CA 94305, USA. Tel.: +1 650 725 7678; Fax: +1 650 725 7739; E-mail:
| |
Collapse
|
13
|
Ausmees N, Jacobs-Wagner C. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu Rev Microbiol 2004; 57:225-47. [PMID: 14527278 DOI: 10.1146/annurev.micro.57.030502.091006] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The dimorphic and intrinsically asymmetric bacterium Caulobacter crescentus has become an important model organism to study the bacterial cell cycle, cell polarity, and polar differentiation. A multifaceted regulatory network orchestrates the precise coordination between the development of polar organelles and the cell cycle. One master response regulator, CtrA, directly controls the initiation of chromosome replication as well as several aspects of polar morphogenesis and cell division. CtrA activity is temporally and spatially regulated by multiple partially redundant control mechanisms, such as transcription, phosphorylation, and targeted proteolysis. A multicomponent signal transduction network upstream CtrA, containing histidine kinases CckA, PleC, DivJ, and DivL and the essential response regulator DivK, contributes to the control of CtrA activity in response to cell cycle and developmental cues. An intriguing feature of this signaling network is the dynamic cell cycle-dependent polar localization of its components, which is believed to have a novel regulatory function.
Collapse
Affiliation(s)
- Nora Ausmees
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA.
| | | |
Collapse
|
14
|
Siam R, Brassinga AKC, Marczynski GT. A dual binding site for integration host factor and the response regulator CtrA inside the Caulobacter crescentus replication origin. J Bacteriol 2003; 185:5563-72. [PMID: 12949109 PMCID: PMC193745 DOI: 10.1128/jb.185.18.5563-5572.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator CtrA controls chromosome replication by binding to five sites, a, b, c, d, and e, inside the Caulobacter crescentus replication origin (Cori). In this study, we demonstrate that integration host factor (IHF) binds Cori over the central CtrA binding site c. Surprisingly, IHF and CtrA share DNA recognition sequences. Rather than promoting cooperative binding, IHF binding hinders CtrA binding to site c and nearby site d. Unlike other CtrA binding sites, DNA mutations in the CtrA c/IHF site uniquely impair autonomous Cori plasmid replication. These mutations also alter transcription from distant promoters more than 100 bp away. When the CtrA c/IHF site was deleted from the chromosome, these cells grew slowly and became selectively intolerant to a CtrA phosphor-mimic allele (D51E). Since CtrA protein concentration decreases during the cell cycle as IHF protein concentration increases, we propose a model in which IHF displaces CtrA in order to bend Cori and promote efficient chromosome replication.
Collapse
Affiliation(s)
- Rania Siam
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4
| | | | | |
Collapse
|
15
|
Abstract
Caulobacter crescentus permits detailed analysis of chromosome replication control during a developmental cell cycle. Its chromosome replication origin (Cori) may be prototypical of the large and diverse class of alpha-proteobacteria. Cori has features that both affiliate and distinguish it from the Escherichia coli chromosome replication origin. For example, requirements for DnaA protein and RNA transcription affiliate both origins. However, Cori is distinguished by several features, and especially by five binding sites for the CtrA response regulator protein. To selectively repress and limit chromosome replication, CtrA receives both protein degradation and protein phosphorylation signals. The signal mediators, proteases, response regulators, and kinases, as well as Cori DNA and the replisome, all show distinct patterns of temporal and spatial organization during cell cycle progression. Future studies should integrate our knowledge of biochemical activities at Cori with our emerging understanding of cytological dynamics in C. crescentus and other bacteria.
Collapse
Affiliation(s)
- Gregory T Marczynski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3A 2B4.
| | | |
Collapse
|
16
|
Delany I, Spohn G, Rappuoli R, Scarlato V. Growth phase-dependent regulation of target gene promoters for binding of the essential orphan response regulator HP1043 of Helicobacter pylori. J Bacteriol 2002; 184:4800-10. [PMID: 12169605 PMCID: PMC135297 DOI: 10.1128/jb.184.17.4800-4810.2002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori encodes three two-component systems and two orphan response regulators (RRs) that are predicted to be involved in transcriptional regulation. The HP1043 gene encodes an essential OmpR-like RR, 1043RR, for which no histidine kinase has been identified. Gel filtration and cross-linking experiments on the purified 1043RR protein reveals that this protein is a dimer and in vivo dimerization assays localize the dimerization to the N-terminal regulatory domain. DNA-binding studies have revealed two targets for specific binding of the 1043RR protein and moreover, phosphorylation of the protein was not needed for the activation of binding. Footprinting analysis demonstrated that the 1043RR protein binds to its own promoter, P(1043), overlapping the -35 promoter element from positions -17 to -45, suggesting that this protein is autoregulatory. In addition, it binds at a similar location, spanning nucleotides from positions -22 to -51 at the promoter of the methyl-accepting chemotaxis tlpB gene, P(tlpB). A possible inverted repeat was identified in the binding sites of both promoters. In an attempt to overexpress 1043RR in H. pylori, the 10-fold induction in transcription of a second copy of HP1043 with use of an inducible promoter failed to increase cellular levels of the RR protein, suggesting that 1043RR is tightly regulated at a posttranscriptional level. The P(1043) and P(tlpB) promoters were demonstrated to be coordinately regulated in response to growth phase in H. pylori. The essential role of HP1043 in encoding a cell cycle regulator is discussed.
Collapse
Affiliation(s)
- Isabel Delany
- Department of Molecular Biology, IRIS, Chiron SpA, Via Fiorentina 1, 53100 Siena, Italy
| | | | | | | |
Collapse
|
17
|
Bellefontaine AF, Pierreux CE, Mertens P, Vandenhaute J, Letesson JJ, De Bolle X. Plasticity of a transcriptional regulation network among alpha-proteobacteria is supported by the identification of CtrA targets in Brucella abortus. Mol Microbiol 2002; 43:945-60. [PMID: 11929544 DOI: 10.1046/j.1365-2958.2002.02777.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CtrA is a master response regulator found in many alpha-proteobacteria. In Caulobacter crescentus and Sinorhizobium meliloti, this regulator is essential for viability and is transcriptionally autoregulated. In C. crescentus, it is required for the regulation of multiple cell cycle events, such as DNA methylation, DNA replication, flagella and pili biogenesis and septation. Here, we report the characterization of the ctrA gene homologue in the alpha2-proteobacteria Brucella abortus, a facultative intracellular pathogen responsible for brucellosis. We detected CtrA expression in the main Brucella species, and its overproduction led to a phenotype typical of cell division defect, consistent with its expected role. A purified B. abortus CtrA recombinant protein (His6-CtrA) was shown to protect the B. abortus ctrA promoter from DNase I digestion, suggesting transcriptional autoregulation, and this protection was enhanced under CtrA phosphorylation on a conserved Asp residue. Despite the similarities shared by B. abortus and C. crescentus ctrA, the pathway downstream from CtrA may be distinct, at least partially, in both bacteria. Indeed, beside ctrA itself, only one (the ccrM gene) out of four B. abortus homologues of known C. crescentus CtrA targets is bound in vitro by phosphorylated B. abortus CtrA. Moreover, further footprinting experiments support the hypothesis that, in B. abortus, CtrA might directly regulate the expression of the rpoD, pleC, minC and ftsE homologues. Taken together, these results suggest that, in B. abortus and C. crescentus, similar cellular processes are regulated by CtrA through the control of distinct target genes. The plasticity of the regulation network involving CtrA in these two bacteria may be related to their distinct lifestyles.
Collapse
Affiliation(s)
- Anne-Flore Bellefontaine
- Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires Notre Dame de la Paix, 61, rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Kahng LS, Shapiro L. The CcrM DNA methyltransferase of Agrobacterium tumefaciens is essential, and its activity is cell cycle regulated. J Bacteriol 2001; 183:3065-75. [PMID: 11325934 PMCID: PMC95206 DOI: 10.1128/jb.183.10.3065-3075.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA methylation is now recognized as a regulator of multiple bacterial cellular processes. CcrM is a DNA adenine methyltransferase found in the alpha subdivision of the proteobacteria. Like the Dam enzyme, which is found primarily in Escherichia coli and other gamma proteobacteria, it does not appear to be part of a DNA restriction-modification system. The CcrM homolog of Agrobacterium tumefaciens was found to be essential for viability. Overexpression of CcrM is associated with significant abnormalities of cell morphology and DNA ploidy. Mapping of the transcriptional start site revealed a conserved binding motif for the global response regulator CtrA at the -35 position; this motif was footprinted by purified Caulobacter crescentus CtrA protein in its phosphorylated state. We have succeeded in isolating synchronized populations of Agrobacterium cells and analyzing their progression through the cell cycle. We demonstrate that DNA replication and cell division can be followed in an orderly manner and that flagellin expression is cyclic, consistent with our observation that motility varies during the cell cycle. Using these synchronized populations, we show that CcrM methylation of the chromosome is restricted to the late S phase of the cell cycle. Thus, within the alpha subdivision, there is a conserved cell cycle dependence and regulatory mechanism controlling ccrM expression.
Collapse
Affiliation(s)
- L S Kahng
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
19
|
Metzler DE, Metzler CM, Sauke DJ. Growth and Development. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Abstract
During the Caulobacter life cycle, the timing of DNA replication, cell division and development is precisely coordinated. Recent work has begun to unravel the complex regulatory networks that couple these processes. A key aspect of these regulatory networks is the dynamic localization of multiple histidine protein kinases that control a master response regulator, thus driving downstream pathways.
Collapse
Affiliation(s)
- M E Martin
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IA 47405-3700, USA
| | | |
Collapse
|