1
|
Wu T, Chen Z, Guo S, Zhang C, Huo YX. Engineering Transcription Factor BmoR Mutants for Constructing Multifunctional Alcohol Biosensors. ACS Synth Biol 2022; 11:1251-1260. [PMID: 35175734 DOI: 10.1021/acssynbio.1c00549] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Native transcription factor-based biosensors (TFBs) have the potential for the in situ detection of value-added chemicals or byproducts. However, their industrial application is limited by their ligand promiscuity, low sensitivity, and narrow detection range. Alcohols exhibit similar structures, and no reported TFB can distinguish a specific alcohol from its analogues. Here, we engineered an alcohol-regulated transcription factor, BmoR, and obtained various mutants with remarkable properties. For example, the generated signal-molecule-specific BmoRs could distinguish the constitutional isomers n-butanol and isobutanol, with insensitivity up to an ethanol concentration of 800 mM (36.9 g/L). Linear detection of 0-60 mM of a specific higher alcohol could be achieved in the presence of up to 500 mM (23.0 g/L) ethanol as background noise. Furthermore, we obtained two mutants with raised outputs and over 107-fold higher sensitivity and one mutant with an increased upper detection limit (14.8 g/L n-butanol or isobutanol). Using BmoR as an example, this study systematically explored the ultimate detection limit of a TFB toward its small-molecule ligands, paving the way for in situ detection in biofuel and wine industries.
Collapse
Affiliation(s)
- Tong Wu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, No. 9 13th Street, Tianjin Economic and Technological Development Zone, 300457 Tianjin, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081 Beijing, China
| |
Collapse
|
2
|
Park KH, Kim S, Lee SJ, Cho JE, Patil VV, Dumbrepatil AB, Song HN, Ahn WC, Joo C, Lee SG, Shingler V, Woo EJ. Tetrameric architecture of an active phenol-bound form of the AAA + transcriptional regulator DmpR. Nat Commun 2020; 11:2728. [PMID: 32483114 PMCID: PMC7264223 DOI: 10.1038/s41467-020-16562-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
The Pseudomonas putida phenol-responsive regulator DmpR is a bacterial enhancer binding protein (bEBP) from the AAA+ ATPase family. Even though it was discovered more than two decades ago and has been widely used for aromatic hydrocarbon sensing, the activation mechanism of DmpR has remained elusive. Here, we show that phenol-bound DmpR forms a tetramer composed of two head-to-head dimers in a head-to-tail arrangement. The DmpR-phenol complex exhibits altered conformations within the C-termini of the sensory domains and shows an asymmetric orientation and angle in its coiled-coil linkers. The structural changes within the phenol binding sites and the downstream ATPase domains suggest that the effector binding signal is propagated through the coiled-coil helixes. The tetrameric DmpR-phenol complex interacts with the σ54 subunit of RNA polymerase in presence of an ATP analogue, indicating that DmpR-like bEBPs tetramers utilize a mechanistic mode distinct from that of hexameric AAA+ ATPases to activate σ54-dependent transcription.
Collapse
Affiliation(s)
- Kwang-Hyun Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Sungchul Kim
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Su-Jin Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea.,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea
| | - Jee-Eun Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Vinod Vikas Patil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea.,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea
| | - Arti Baban Dumbrepatil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Hyung-Nam Song
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Woo-Chan Ahn
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands.
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, 90187, Umeå, SE, Sweden
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea. .,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
3
|
Acclimation of bacterial cell state for high-throughput enzyme engineering using a DmpR-dependent transcriptional activation system. Sci Rep 2020; 10:6091. [PMID: 32269250 PMCID: PMC7142073 DOI: 10.1038/s41598-020-62892-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic circuit-based biosensors have emerged as an effective analytical tool in synthetic biology; these biosensors can be applied to high-throughput screening of new biocatalysts and metabolic pathways. Sigma 54 (σ54)-dependent transcription factor (TF) can be a valuable component of these biosensors owing to its intrinsic silent property compared to most of the housekeeping sigma 70 (σ70) TFs. Here, we show that these unique characteristics of σ54-dependent TFs can be used to control the host cell state to be more appropriate for high-throughput screening. The acclimation of cell state was achieved by using guanosine (penta)tetraphosphate ((p)ppGpp)-related genes (relA, spoT) and nutrient conditions, to link the σ54 TF-based reporter expression with the target enzyme activity. By controlling stringent programmed responses and optimizing assay conditions, catalytically improved tyrosine phenol lyase (TPL) enzymes were successfully obtained using a σ54-dependent DmpR as the TF component, demonstrating the practical feasibility of this biosensor. This combinatorial strategy of biosensors using σ factor-dependent TFs will allow for more effective high-throughput enzyme engineering with broad applicability.
Collapse
|
4
|
Yu H, Chen Z, Wang N, Yu S, Yan Y, Huo YX. Engineering transcription factor BmoR for screening butanol overproducers. Metab Eng 2019; 56:28-38. [PMID: 31449878 DOI: 10.1016/j.ymben.2019.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/09/2019] [Accepted: 08/22/2019] [Indexed: 01/15/2023]
Abstract
The wild-type transcription factors are sensitive to their corresponding signal molecules. Using wild-type transcription factors as biosensors to screen industrial overproducers are generally impractical because of their narrow detection ranges. This study took transcription factor BmoR as an example and aimed to expand the detection range of BmoR for screening alcohols overproducers. Firstly, a BmoR mutation library was established, and the mutations distributed randomly in all predicted functional domains of BmoR. Structure of BmoR-isobutanol complex were modelled, and isobutanol binding sites were confirmed by site-directed mutagenesis. Subsequently, the effects of the mutations on the detection range or output were confirmed in the BmoR mutants. Four combinatorial mutants containing one increased-detection-range mutation and one enhanced-output mutation were constructed. Compared with wild-type BmoR, F276A/E627N BmoR and D333N/E627N BmoR have wider detection ranges (0-100 mM) and relatively high outputs to the isobutanol added quantitatively or produced intracellularly, demonstrating they have potential for screening isobutanol overproduction strains. This work presented an example of engineering the wild-type transcription factors with physiological significance for industrial utilization.
Collapse
Affiliation(s)
- Huan Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China; UCLA Institute for Technology Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, 215123, Suzhou, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, 30602, GA, USA
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, 100081, Beijing, China; UCLA Institute for Technology Advancement (Suzhou), 10 Yueliangwan Road, Suzhou Industrial Park, 215123, Suzhou, China.
| |
Collapse
|
5
|
Seibt H, Sauer UH, Shingler V. The Y233 gatekeeper of DmpR modulates effector-responsive transcriptional control of σ 54 -RNA polymerase. Environ Microbiol 2019; 21:1321-1330. [PMID: 30773776 DOI: 10.1111/1462-2920.14567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 11/28/2022]
Abstract
DmpR is the obligate transcriptional activator of genes involved in (methyl)phenol catabolism by Pseudomonas putida. DmpR belongs to the AAA+ class of mechano-transcriptional regulators that employ ATP-hydrolysis to engage and remodel σ54 -RNA polymerase to allow transcriptional initiation. Previous work has established that binding of phenolic effectors by DmpR is a prerequisite to relieve interdomain repression and allow ATP-binding to trigger transition to its active multimeric conformation, and further that a structured interdomain linker between the effector- and ATP-binding domains is involved in coupling these processes. Here, we present evidence from ATPase and in vivo and in vitro transcription assays that a tyrosine residue of the interdomain linker (Y233) serves as a gatekeeper to constrain ATP-hydrolysis and aromatic effector-responsive transcriptional activation by DmpR. An alanine substitution of Y233A results in both increased ATPase activity and enhanced sensitivity to aromatic effectors. We propose a model in which effector-binding relocates Y233 to synchronize signal-reception with multimerisation to provide physiologically appropriate sensitivity of the transcriptional response. Given that Y233 counterparts are present in many ligand-responsive mechano-transcriptional regulators, the model is likely to be pertinent for numerous members of this family and has implications for development of enhanced sensitivity of biosensor used to detect pollutants.
Collapse
Affiliation(s)
- Henrik Seibt
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Uwe H Sauer
- Deparment of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| |
Collapse
|
6
|
Ray S, Panjikar S, Anand R. Design of Protein-Based Biosensors for Selective Detection of Benzene Groups of Pollutants. ACS Sens 2018; 3:1632-1638. [PMID: 30084640 DOI: 10.1021/acssensors.8b00190] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzene and its derivatives form a class of priority pollutants whose exposure poses grave risk to human health. Since benzene lacks active functional groups, devising specific sensors for its direct detection from a milieu of aromatics has remained a daunting task. Here, we report three engineered protein-based biosensors that exclusively and specifically detect benzene and its derivatives up to a detection limit of 0.3 ppm. Further, the biosensor design has been engineered to create templates that possess the ability to specifically discriminate between alkyl substituted benzene derivatives; such as toluene, m-xylene, and mesitylene. Interference tests with simulated wastewater samples reveal that the engineered biosensors can selectively detect a specific benzene compound in water samples containing a milieu of high concentrations of commonly occurring pollutants. This work demonstrates the potential of structure guided protein engineering as a competent strategy toward design of selective biosensors for direct detection of benzene group of pollutants from real time environmental samples.
Collapse
Affiliation(s)
- Shamayeeta Ray
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra India
| | - Santosh Panjikar
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
- Australian Synchrotron, Victoria 3168, Australia
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra India
- Wadhwani Research Center for Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
7
|
Wirebrand L, Madhushani AWK, Irie Y, Shingler V. Multiple Hfq-Crc target sites are required to impose catabolite repression on (methyl)phenol metabolism in Pseudomonas putida CF600. Environ Microbiol 2017; 20:186-199. [PMID: 29076626 DOI: 10.1111/1462-2920.13966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/17/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022]
Abstract
The dmp-system encoded on the IncP-2 pVI150 plasmid of Pseudomonas putida CF600 confers the ability to assimilate (methyl)phenols. Regulation of the dmp-genes is subject to sophisticated control, which includes global regulatory input to subvert expression of the pathway in the presence of preferred carbon sources. Previously we have shown that in P. putida, translational inhibition exerted by the carbon repression control protein Crc operates hand-in-hand with the RNA chaperon protein Hfq to reduce translation of the DmpR regulator of the Dmp-pathway. Here, we show that Crc and Hfq co-target four additional sites to form riboprotein complexes within the proximity of the translational initiation sites of genes encoding the first two steps of the Dmp-pathway to mediate two-layered control in the face of selection of preferred substrates. Furthermore, we present evidence that Crc plays a hitherto unsuspected role in maintaining the pVI150 plasmid within a bacterial population, which has implications for (methyl)phenol degradation and a wide variety of other physiological processes encoded by the IncP-2 group of Pseudomonas-specific mega-plasmids.
Collapse
Affiliation(s)
- Lisa Wirebrand
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| | | | - Yasuhiko Irie
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| |
Collapse
|
8
|
Del Peso Santos T, Shingler V. Inter-sigmulon communication through topological promoter coupling. Nucleic Acids Res 2016; 44:9638-9649. [PMID: 27422872 PMCID: PMC5175336 DOI: 10.1093/nar/gkw639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/03/2022] Open
Abstract
Divergent transcription from within bacterial intergenic regions frequently involves promoters dependent on alternative σ-factors. This is the case for the non-overlapping σ70- and σ54-dependent promoters that control production of the substrate-responsive regulator and enzymes for (methyl)phenol catabolism. Here, using an array of in vivo and in vitro assays, we identify transcription-driven supercoiling arising from the σ54-promoter as the mechanism underlying inter-promoter communication that results in stimulation of the activity of the σ70-promoter. The non-overlapping 'back-to-back' configuration of a powerful σ54-promoter and weak σ70-promoter within this system offers a previously unknown means of inter-sigmulon communication that renders the σ70-promoter subservient to signals that elicit σ54-dependent transcription without it possessing a cognate binding site for the σ54-RNA polymerase holoenzyme. This mode of control has the potential to be a prevalent, but hitherto unappreciated, mechanism by which bacteria adjust promoter activity to gain appropriate transcriptional control.
Collapse
Affiliation(s)
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, Umeå SE 90187, Sweden
| |
Collapse
|
9
|
Ray S, Gunzburg MJ, Wilce M, Panjikar S, Anand R. Structural Basis of Selective Aromatic Pollutant Sensing by the Effector Binding Domain of MopR, an NtrC Family Transcriptional Regulator. ACS Chem Biol 2016; 11:2357-65. [PMID: 27362503 DOI: 10.1021/acschembio.6b00020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenol and its derivatives are common pollutants that are present in industrial discharge and are major xenobiotics that lead to water pollution. To monitor as well as improve water quality, attempts have been made in the past to engineer bacterial in vivo biosensors. However, due to the paucity of structural information, there is insufficiency in gauging the factors that lead to high sensitivity and selectivity, thereby impeding development. Here, we present the crystal structure of the sensor domain of MopR (MopR(AB)) from Acinetobacter calcoaceticus in complex with phenol and its derivatives to a maximum resolution of 2.5 Å. The structure reveals that the N-terminal residues 21-47 possess a unique fold, which are involved in stabilization of the biological dimer, and the central ligand binding domain belongs to the "nitric oxide signaling and golgi transport" fold, commonly present in eukaryotic proteins that bind long-chain fatty acids. In addition, MopR(AB) nests a zinc atom within a novel zinc binding motif, crucial for maintaining structural integrity. We propose that this motif is crucial for orchestrated motions associated with the formation of the effector binding pocket. Our studies reveal that residues W134 and H106 play an important role in ligand binding and are the key selectivity determinants. Furthermore, comparative analysis of MopR with XylR and DmpR sensor domains enabled the design of a MopR binding pocket that is competent in binding DmpR-specific ligands. Collectively, these findings pave way towards development of specific/broad based biosensors, which can act as useful tools for detection of this class of pollutants.
Collapse
Affiliation(s)
- Shamayeeta Ray
- IITB-Monash Research Academy, Mumbai 400076, Maharashtra, India
| | - Menachem J. Gunzburg
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew Wilce
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Santosh Panjikar
- Department
of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - Ruchi Anand
- Department
of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
- Wadhwani
Research Center for Bioengineering, IIT Bombay, Mumbai 400076, India
| |
Collapse
|
10
|
Madhushani A, del Peso-Santos T, Moreno R, Rojo F, Shingler V. Transcriptional and translational control through the 5′-leader region of thedmpRmaster regulatory gene of phenol metabolism. Environ Microbiol 2014; 17:119-33. [DOI: 10.1111/1462-2920.12511] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/11/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Anjana Madhushani
- Department of Molecular Biology; Umeå University; Umeå SE 90187 Sweden
| | | | - Renata Moreno
- Departamento de Biotecnologia Microbiana; Centro Nacional de Biotecnologia; CSIC; Madrid Spain
| | - Fernando Rojo
- Departamento de Biotecnologia Microbiana; Centro Nacional de Biotecnologia; CSIC; Madrid Spain
| | - Victoria Shingler
- Department of Molecular Biology; Umeå University; Umeå SE 90187 Sweden
| |
Collapse
|
11
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
12
|
Zhang N, Joly N, Buck M. A common feature from different subunits of a homomeric AAA+ protein contacts three spatially distinct transcription elements. Nucleic Acids Res 2012; 40:9139-52. [PMID: 22772990 PMCID: PMC3467059 DOI: 10.1093/nar/gks661] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Initiation of σ(54)-dependent transcription requires assistance to melt DNA at the promoter site but is impeded by numerous protein-protein and nucleo-protein interactions. To alleviate these inhibitory interactions, hexameric bacterial enhancer binding proteins (bEBP), a subset of the ATPases associated with various cellular activities (AAA+) protein family, are required to remodel the transcription complex using energy derived from ATP hydrolysis. However, neither the process of energy conversion nor the internal architecture of the closed promoter complex is well understood. Escherichia coli Phage shock protein F (PspF), a well-studied bEBP, contains a surface-exposed loop 1 (L1). L1 is key to the energy coupling process by interacting with Region I of σ(54) (σ(54)(RI)) in a nucleotide dependent manner. Our analyses uncover new levels of complexity in the engagement of a multimeric bEBP with a basal transcription complex via several L1s. The mechanistic implications for these multivalent L1 interactions are elaborated in the light of available structures for the bEBP and its target complexes.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | | |
Collapse
|
13
|
Transcriptional regulation by the dedicated nitric oxide sensor, NorR: a route towards NO detoxification. Biochem Soc Trans 2011; 39:289-93. [PMID: 21265790 DOI: 10.1042/bst0390289] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A flavorubredoxin and its associated oxidoreductase (encoded by norV and norW respectively) detoxify NO (nitric oxide) to form N2O (nitrous oxide) under anaerobic conditions in Escherichia coli. Transcription of the norVW genes is activated in response to NO by the σ54-dependent regulator and dedicated NO sensor, NorR, a member of the bacterial enhancer-binding protein family. In the absence of NO, the catalytic activity of the central ATPase domain of NorR is repressed by the N-terminal regulatory domain that contains a non-haem iron centre. Binding of NO to this centre results in the formation of a mononitrosyl iron species, enabling the activation of ATPase activity. Our studies suggest that the highly conserved GAFTGA loop in the ATPase domain, which engages with the alternative σ factor σ54 to activate transcription, is a target for intramolecular repression by the regulatory domain. Binding of NorR to three conserved enhancer sites upstream of the norVW promoter is essential for transcriptional activation and promotes the formation of a stable higher-order NorR nucleoprotein complex. We propose that enhancer-driven assembly of this oligomeric complex, in which NorR apparently forms a DNA-bound hexamer in the absence of NO, provides a 'poised' system for transcriptional activation that can respond rapidly to nitrosative stress.
Collapse
|
14
|
de las Heras A, de Lorenzo V. Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene. Mol Microbiol 2011; 79:1248-59. [DOI: 10.1111/j.1365-2958.2010.07518.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
|
16
|
Abstract
Alternative σ-factors of bacteria bind core RNA polymerase to program the specific promoter selectivity of the holoenzyme. Signal-responsive changes in the availability of different σ-factors redistribute the RNA polymerase among the distinct promoter classes in the genome for appropriate adaptive, developmental and survival responses. The σ(54) -factor is structurally and functionally distinct from all other σ-factors. Consequently, binding of σ(54) to RNA polymerase confers unique features on the cognate holoenzyme, which requires activation by an unusual class of mechano-transcriptional activators, whose activities are highly regulated in response to environmental cues. This review summarizes the current understanding of the mechanisms of transcriptional activation by σ(54) -RNA polymerase and highlights the impact of global regulatory factors on transcriptional efficiency from σ(54) -dependent promoters. These global factors include the DNA-bending proteins IHF and CRP, the nucleotide alarmone ppGpp, and the RNA polymerase-targeting protein DksA.
Collapse
|
17
|
Osterberg S, Skärfstad E, Shingler V. The sigma-factor FliA, ppGpp and DksA coordinate transcriptional control of the aer2 gene of Pseudomonas putida. Environ Microbiol 2010; 12:1439-51. [PMID: 20089044 DOI: 10.1111/j.1462-2920.2009.02139.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here the sigma-factor requirement for transcription of three similar, but differentially regulated, aer genes of Pseudomonas putida KT2440 is investigated. Previous work has shown that the three Aer proteins, like chemoreceptors, colocalize to a single pole in a CheA-dependent manner. Lack of Aer2 - the most abundant of these three proteins - mediates defects in metabolism-dependent taxis and aerotaxis, while lack of Aer1 or Aer3 has no apparent phenotype. We show, using wild-type and mutant P. putida derivatives combined with P. putida reconstituted FliA- (sigma(28)) and sigma(70)-dependent in vitro transcription assays, that transcription of aer2 is coupled to motility through the flagella sigma-factor FliA, while sigma(70) is responsible for transcription of aer1 and aer3. By comparing activities of the wild-type and mutant forms of the aer2 promoter, we present evidence (i) that transcription from FliA-dependent Paer2 is enhanced by changes towards the Escherichia coli consensus for FliA promoters rather than towards that of P. putida, (ii) that the nature of the AT-rich upstream region is important for both output and sigma(70) discrimination of this promoter, and (iii) that Paer2 output is directly stimulated by the bacterial alarmone ppGpp and its cofactor DksA.
Collapse
Affiliation(s)
- Sofia Osterberg
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
18
|
Kivisaar M. Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Mol Microbiol 2009; 74:777-81. [PMID: 19818019 DOI: 10.1111/j.1365-2958.2009.06905.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although many nitroaromatic compounds have been in nature for only a few decades, bacteria have already evolved the ability to metabolize them. Both horizontal transfer of genes and mutagenesis induced under stressful conditions might facilitate evolution of new catabolic pathways. Nitrotoluene degradation pathways are supposedly derived from an ancestral naphthalene degradation pathway. The 2-nitrotoluene degradation genes in Acidovorax sp. strain JS42 are controlled by the transcriptional activator NtdR, which differs from NagR, the activator of the naphthalene degradation operon in Ralstonia sp. strain U2, by only five amino acids. Both regulators respond to salicylate, an intermediate of naphthalene degradation, but NtdR also recognizes a wide range of nitroaromatic compounds. In this issue of Molecular Microbiology, Ju et al. present results of site-directed mutagenesis of NtdR and NagR and show how the nitrotoluene-responsive regulator NtdR can be generated from a NagR-like ancestor by only a few mutations. The reconstructed hypothetical pathway for the evolution of NtdR from NagR demonstrates stepwise broadening of the effector range of the evolving protein without loss of the original activity. These results provide strong evidence for the idea that promiscuity of proteins is an important step in the evolution of new functions.
Collapse
Affiliation(s)
- Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, Tartu University and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia.
| |
Collapse
|
19
|
Porrúa O, García-González V, Santero E, Shingler V, Govantes F. Activation and repression of a sigmaN-dependent promoter naturally lacking upstream activation sequences. Mol Microbiol 2009; 73:419-33. [PMID: 19570137 DOI: 10.1111/j.1365-2958.2009.06779.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Pseudomonas sp. strain ADP protein AtzR is a LysR-type transcriptional regulator required for activation of the atzDEF operon in response to nitrogen limitation and cyanuric acid. Transcription of atzR is directed by the sigma(N)-dependent promoter PatzR, activated by NtrC and repressed by AtzR. Here we use in vivo and in vitro approaches to address the mechanisms of PatzR activation and repression. Activation by NtrC did not require any promoter sequences other than the sigma(N) recognition motif both in vivo and in vitro, suggesting that NtrC activates PatzR in an upstream activation sequences-independent fashion. Regarding AtzR-dependent autorepression, our in vitro transcription experiments show that the concentration of AtzR required for repression of the PatzR promoter in vitro correlates with AtzR affinity for its binding site. In addition, AtzR prevents transcription from PatzR when added to a preformed E-sigma(N)-PatzR closed complex, but isomerization to an open complex prevents repression. Gel mobility shift and DNase I footprint assays indicate that DNA-bound AtzR and E-sigma(N) are mutually exclusive. Taken together, these results strongly support the notion that AtzR represses transcription from PatzR by competing with E-sigma(N) for their overlapping binding sites. There are no previous reports of a similar mechanism for repression of sigma(N)-dependent transcription.
Collapse
Affiliation(s)
- Odil Porrúa
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, Carretera de Utrera, Km. 1. 41013 Sevilla, Spain
| | | | | | | | | |
Collapse
|
20
|
Bernardo LMD, Johansson LUM, Skärfstad E, Shingler V. sigma54-promoter discrimination and regulation by ppGpp and DksA. J Biol Chem 2008; 284:828-38. [PMID: 19008221 DOI: 10.1074/jbc.m807707200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sigma(54)-factor controls expression of a variety of genes in response to environmental cues. Much previous work has implicated the nucleotide alarmone ppGpp and its co-factor DksA in control of sigma(54)-dependent transcription in the gut commensal Escherichia coli, which has evolved to live under very different environmental conditions than Pseudomonas putida. Here we compared ppGpp/DksA mediated control of sigma(54)-dependent transcription in these two organisms. Our in vivo experiments employed P. putida mutants and manipulations of factors implicated in ppGpp/DksA mediated control of sigma(54)-dependent transcription in combination with a series of sigma(54)-promoters with graded affinities for sigma(54)-RNA polymerase. For in vitro analysis we used a P. putida-based reconstituted sigma(54)-transcription assay system in conjunction with DNA-binding plasmon resonance analysis of native and heterologous sigma(54)-RNA polymerase holoenzymes. In comparison with E. coli, ppGpp/DksA responsive sigma(54)-transcription in the environmentally adaptable P. putida was found to be more robust under low energy conditions that occur upon nutrient depletion. The mechanism behind this difference can be traced to reduced promoter discrimination of low affinity sigma(54)-promoters that is conferred by the strong DNA binding properties of the P. putida sigma(54)-RNA polymerase holoenzyme.
Collapse
|
21
|
Johansson LUM, Solera D, Bernardo LMD, Moscoso JA, Shingler V. sigma54-RNA polymerase controls sigma70-dependent transcription from a non-overlapping divergent promoter. Mol Microbiol 2008; 70:709-23. [PMID: 18786144 DOI: 10.1111/j.1365-2958.2008.06440.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Divergent transcription of a regulatory gene and a cognate promoter under its control is a common theme in bacterial regulatory circuits. This genetic organization is found for the dmpR gene that encodes the substrate-responsive specific regulator of the sigma(54)-dependent Po promoter, which controls (methyl)phenol catabolism. Here we identify the Pr promoter of dmpR as a sigma(70)-dependent promoter that is regulated by a novel mechanism in which sigma(54)-RNA polymerase occupancy of the non-overlapping sigma(54)-Po promoter stimulates sigma(70)-Pr output. In addition, we show that DmpR stimulates its own production through Po activity both in vivo and in vitro. Hence, the demonstrated regulatory circuit reveals a novel role for sigma(54)-RNA polymerase, namely regulation of a sigma(70)-dependent promoter, and a new mechanism that places a single promoter under dual control of two alternative forms of RNA polymerase. We present a model in which guanosine tetra-phosphate plays a major role in the interplay between sigma(54)- and sigma(70)-dependent transcription to ensure metabolic integration to couple sigma(70)-Pr output to both low-energy conditions and the presence of substrate.
Collapse
|
22
|
Joly N, Rappas M, Wigneshweraraj SR, Zhang X, Buck M. Coupling nucleotide hydrolysis to transcription activation performance in a bacterial enhancer binding protein. Mol Microbiol 2007; 66:583-95. [PMID: 17883390 DOI: 10.1111/j.1365-2958.2007.05901.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial enhancer binding proteins (bEBP) are members of the AAA+ protein family and have a highly conserved 'DE' Walker B motif thought to be involved in the catalytic function of the protein with an active role in nucleotide hydrolysis. Based on detailed structural data, we analysed the functionality of the conserved 'DE' Walker B motif of a bEBP model, phage shock protein F (PspF), to investigate the role of these residues in the sigma(54)-dependent transcription activation process. We established their role in the regulation of PspF self-association and in the relay of the ATPase activity to the remodelling of an RNA polymerase.promoter complex (Esigma(54).DNA). Specific substitutions of the conserved glutamate (E) allowed the identification of new functional ATP.bEBP.Esigma(54) complexes which are stable and transcriptionally competent, providing a new tool to study the initial events of the sigma(54)-dependent transcription activation process. In addition, we show the importance of this glutamate residue in sigma(54).DNA conformation sensing, permitting the identification of new intermediate stages within the transcription activation pathway.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
23
|
Galvão TC, Mencía M, de Lorenzo V. Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol 2007; 65:907-19. [PMID: 17645451 DOI: 10.1111/j.1365-2958.2007.05832.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evolutionary expansion of metabolic networks entails the emergence of regulatory factors that become sensitive to new chemical species. A dedicated genetic system was developed for the soil bacterium Pseudomonas putida aimed at deciphering the steps involved in the gain of responsiveness of the toluene-activated prokaryotic regulator XylR to the xenobiotic chemical 2,4 dinitrotoluene (DNT). A mutant library of the A domain of XylR was screened in vivo for those variants activated by DNT through coupling the cognate promoter Pu to the P. putida yeast URA3 homologue, pyrF. All DNT-responsive clones maintained their sensitivity to ordinary effectors of XylR and broadened the range of inducers to unrelated aromatics. Yet, none of the altered amino acids lay in the recognizable effector binding pocket of the polypeptide. Instead, mutations appeared in protein surfaces believed to engage in the conformational shifts that follow effector binding and modulate signal transmission between XylR domains. It thus seems that transcriptional factors are likely to regress into functionally multipotent forms (i.e. stem protein types) as a first step towards the divergence of a new specificity.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
24
|
Cashin P, Goldsack L, Hall D, O'Toole R. Contrasting signal transduction mechanisms in bacterial and eukaryotic gene transcription. FEMS Microbiol Lett 2006; 261:155-64. [PMID: 16907715 DOI: 10.1111/j.1574-6968.2006.00295.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
All known cell types use signal transduction systems to respond to an extracellular or intracellular event. The role of these systems can be to adapt to environmental changes or simply to maintain homeostasis. Cells detect and respond to stimuli in a number of ways. Here we review the mechanisms involved in the transmission of a signal from point of detection to site of action. In particular, a comparison is made between the signalling networks which function in gene transcription in bacterial and eukaryotic cells. Knowledge of the similarities between the systems found in the two types of cells can provide a better understanding of the function and origin of signalling components. In addition, the divergence evident can be exploited by molecules that modulate or disrupt the function of differential signalling mechanisms.
Collapse
Affiliation(s)
- Phillipa Cashin
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | | | | | | |
Collapse
|
25
|
Joly N, Schumacher J, Buck M. Heterogeneous nucleotide occupancy stimulates functionality of phage shock protein F, an AAA+ transcriptional activator. J Biol Chem 2006; 281:34997-5007. [PMID: 16973614 DOI: 10.1074/jbc.m606628200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic AAA+ domain (PspF1-275) of an enhancer-binding protein is necessary and sufficient to contact sigma54-RNA polymerase holoenzyme (Esigma54), remodel it, and in so doing catalyze open promoter complex formation. Whether ATP binding and hydrolysis is coordinated between subunits of PspF and the precise nature of the nucleotide(s) bound to the oligomeric forms responsible for substrate remodeling are unknown. We demonstrate that ADP stimulates the intrinsic ATPase activity of PspF1-275 and propose that this heterogeneous nucleotide occupancy in a PspF1-275 hexamer is functionally important for specific activity. Binding of ADP and ATP triggers the formation of functional PspF1-275 hexamers as shown by a gain of specific activity. Furthermore, ATP concentrations congruent with stoichiometric ATP binding to PspF1-275 inhibit ATP hydrolysis and Esigma54-promoter open complex formation. Demonstration of a heterogeneous nucleotide-bound state of a functional PspF1-275.Esigma54 complex provides clear biochemical evidence for heterogeneous nucleotide occupancy in this AAA+ protein. Based on our data, we propose a stochastic nucleotide binding and a coordinated hydrolysis mechanism in PspF1-275 hexamers.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
26
|
Bernardo LMD, Johansson LUM, Solera D, Skärfstad E, Shingler V. The guanosine tetraphosphate (ppGpp) alarmone, DksA and promoter affinity for RNA polymerase in regulation of sigma-dependent transcription. Mol Microbiol 2006; 60:749-64. [PMID: 16629675 DOI: 10.1111/j.1365-2958.2006.05129.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The RNA polymerase-binding protein DksA is a cofactor required for guanosine tetraphosphate (ppGpp)-responsive control of transcription from sigma70 promoters. Here we present evidence: (i) that both DksA and ppGpp are required for in vivo sigma54 transcription even though they do not have any major direct effects on sigma54 transcription in reconstituted in vitro transcription and sigma-factor competition assays, (ii) that previously defined mutations rendering the housekeeping sigma70 less effective at competing with sigma54 for limiting amounts of core RNA polymerase similarly suppress the requirement for DksA and ppGpp in vivo and (iii) that the extent to which ppGpp and DksA affect transcription from sigma54 promoters in vivo reflects the innate affinity of the promoters for sigma54-RNA polymerase holoenzyme in vitro. Based on these findings, we propose a passive model for ppGpp/DksA regulation of sigma54-dependent transcription that depends on the potent negative effects of these regulatory molecules on transcription from powerful stringently regulated sigma70 promoters.
Collapse
|
27
|
Velázquez F, Fernández S, de Lorenzo V. The upstream-activating sequences of the sigma54 promoter Pu of Pseudomonas putida filter transcription readthrough from upstream genes. J Biol Chem 2006; 281:11940-8. [PMID: 16510445 DOI: 10.1074/jbc.m511782200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although the m-xylene-responsive sigma54 promoter Pu of Pseudomonas putida mt-2, borne by the TOL plasmid pWWO, is one of the strongest known promoters in vivo, its base-line level in the absence of its aromatic inducer is below the limit of any detection procedure. This is unusual because regulatory networks (such as the one to which Pu belongs) can hardly escape the noise caused by intrinsic fluctuations in background transcription, including that transmitted from upstream promoters. This study provides genetic evidence that the upstream-activating sequences (UAS), which serve as the binding sites for the pWW0-encoded XylR protein (the m-xylene-responsive sigma54-dependent activator of Pu), isolate expression of the upper TOL genes from any adventitious transcriptional flow originating further upstream. An in vivo test system was developed in which different segments of the Pu promoter were examined for the inhibition of incoming transcription products from an upstream promoter in P. putida and Escherichia coli. Minimal transcription filter ability was located within a 105-bp fragment encompassing the UAS of Pu. Although S1 nuclease assays showed that the UAS prevented the buildup of downstream transcripts, the mechanism seems to diverge from a typical termination system. This was shown by the fact that the UAS did not halt transcription in vitro and that the filter effect could not be relieved by the anti-termination system of lambda phage. Because the Pu promoter lies adjacent to the edge of a transposon in pWW0, the preset transcriptional filter in the UAS may isolate the upper TOL operon from undue expression after random insertion of the mobile genetic element in a new replicon.
Collapse
Affiliation(s)
- Francisco Velázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus UAM-Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
28
|
Schumacher J, Joly N, Rappas M, Zhang X, Buck M. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. J Struct Biol 2006; 156:190-9. [PMID: 16531068 DOI: 10.1016/j.jsb.2006.01.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 01/16/2006] [Accepted: 01/19/2006] [Indexed: 11/29/2022]
Abstract
Initiation of transcription is a major point of transcriptional regulation and invariably involves the transition from a closed to an open RNA polymerase (RNAP) promoter complex. In the case of the sigma(54)-RNAP, this multi step process requires energy, provided by ATP hydrolysis occurring within the AAA+ domain of enhancer binding proteins (EBPs). Typically, EBPs have an N-terminal regulatory domain, a central AAA+ domain that directly contacts sigma(54) and a C-terminal DNA binding domain. The following AAA+ EBP crystal structures have recently become available: heptameric AAA+ domains of NtrC1 and dimeric NtrC1 with its regulatory domain, hexameric AAA+ domains of ZraR with DNA binding domains, apo and nucleotide bound forms of the AAA+ domain of PspF as well as a cryo-EM structure of the AAA+ domain of PspF complexed with sigma(54). These AAA+ domains reveal the structural conservation between EBPs and other AAA+ domains. EBP specific structural features involved in substrate remodelling are located proximal to the pore of the hexameric ring. Parallels with the substrate binding elements near the central pore of other AAA+ members are drawn. We propose a structural model of EBPs in complex with a sigma(54)-RNAP-promoter complex.
Collapse
Affiliation(s)
- Jörg Schumacher
- Division of Biology, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
29
|
Tropel D, van der Meer JR. Characterization of HbpR binding by site-directed mutagenesis of its DNA-binding site and by deletion of the effector domain. FEBS J 2005; 272:1756-66. [PMID: 15794762 DOI: 10.1111/j.1742-4658.2005.04607.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of 2-hydroxybiphenyl, the enhancer binding protein, HbpR, activates the sigma54-dependent P(hbpC) promoter and controls the initial steps of 2-hydroxybiphenyl degradation in Pseudomonas azelaica. In the activation process, an oligomeric HbpR complex of unknown subunit composition binds to an operator region containing two imperfect palindromic sequences. Here, the HbpR-DNA binding interactions were investigated by site-directed mutagenesis of the operator region and by DNA-binding assays using purified HbpR. Mutations that disrupted the twofold symmetry in the palindromes did not affect the binding affinity of HbpR, but various mutations along a 60 bp region, and also outside the direct palindromic sequences, decreased the binding affinity. Footprints of HbpR on mutant operator fragments showed that a partial loss of binding contacts occurs, suggesting that the binding of one HbpR 'protomer' in the oligomeric complex is impaired whilst leaving the other contacts intact. An HbpR variant, devoid of its N-terminal sensing A-domain, was unable to activate transcription from the hbpC promoter while maintaining protection of the operator DNA in footprints. Wild-type HbpR was unable to activate transcription from the hbpC promoter when delta A-HbpR was expressed in the same cell, suggesting the formation of (repressing) hetero-oligomers. This model implies that HbpR can self-associate on its operator DNA without effector recognition or ATP binding. Furthermore, our findings suggest that the N-terminal sensing domain of HbpR is needed to activate the central ATPase domain rather than to repress a constitutively active C domain, as is the case for the related regulatory protein XylR.
Collapse
Affiliation(s)
- David Tropel
- Process of Environmental Microbiology and Molecular Ecotoxicology, Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
30
|
Kim MN, Park HH, Lim WK, Shin HJ. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J Microbiol Methods 2005; 60:235-45. [PMID: 15590098 DOI: 10.1016/j.mimet.2004.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 08/31/2004] [Accepted: 09/28/2004] [Indexed: 11/28/2022]
Abstract
The XylR regulatory protein is a transcription factor involved in the BTEX (benzene, toluene, ethylbenzene, and xylene) degradation pathway in Pseudomonas species. When XylR-dependent stimulation of transcription from a plasmid containing XylR and its cognate promoters Pr and Pu was monitored as firefly luciferase activities in Escherichia coli, a notably high level of basal activity was observed in the absence of inducers. To improve the response specificity of XylR in this system, two related but different promoters were tested for their activities; the XylS activator promoter Ps and the DmpR activator promoter Po. Po with the deletion of its own upstream activating sequences (UASs; Po') showed a very low level of basal activity compared to Pu and Ps. The maximum level with the addition of inducers was increased 3151-fold by o-xylene with Po', while it was 31.5 and 74.1 fold by m-xylene with Pu and Ps, respectively. Gel mobility shift assay showed that the purified XylR without inducers can bind to Pr/Pu but not to Pr/Po', implying that XylR multimerization with Pr/Pu could be formed for initiation of transcription in this system. The data suggest that Po' can be an excellent alternative in constructing a signal-intensified, whole-cell biosensor in response to the xenobiotics.
Collapse
Affiliation(s)
- Mi Na Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
31
|
Ogura T, Whiteheart SW, Wilkinson AJ. Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. J Struct Biol 2004; 146:106-12. [PMID: 15095758 DOI: 10.1016/j.jsb.2003.11.008] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Arginines are a recurrent feature of the active sites and subunit interfaces of the ATPase domains of AAA and AAA+ proteins. In particular family members these residues occupy two or more, of four key sites in the vicinity of the ATP cofactor, where they transduce the chemical events of ATP binding and hydrolysis into a mechanochemical outcome. Structural and biochemical analyses have led to the proposal of molecular mechanisms in which these conserved arginines play crucial roles. Comparative studies, however, point to functional divergence for each of these conserved arginines. In this review, we will discuss what is known about these critical arginines and what can be concluded about their role in the function of AAA and AAA+ proteins.
Collapse
Affiliation(s)
- Teru Ogura
- Division of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan.
| | | | | |
Collapse
|
32
|
Solera D, Arenghi FLG, Woelk T, Galli E, Barbieri P. TouR-mediated effector-independent growth phase-dependent activation of the sigma54 Ptou promoter of Pseudomonas stutzeri OX1. J Bacteriol 2004; 186:7353-63. [PMID: 15489447 PMCID: PMC523194 DOI: 10.1128/jb.186.21.7353-7363.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the catabolic touABCDEF operon, encoding the toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1, is driven by the sigma(54)-dependent Ptou promoter, whose activity is controlled by the phenol-responsive NtrC-like activator TouR. In this paper we describe for the first time a peculiar characteristic of this system, namely, that Ptou transcription is activated in a growth phase-dependent manner in the absence of genuine effectors of the cognate TouR regulator. This phenomenon, which we named gratuitous activation, was observed in the native strain P. stutzeri OX1, as well as in a Pseudomonas putida PaW340 host harboring the reconstructed tou regulatory circuit. Regulator-promoter swapping experiments demonstrated that the presence of TouR is necessary and sufficient for imposing gratuitous activation on the Ptou promoter, as well as on other sigma(54)-dependent catabolic promoters, whereas the highly similar phenol-responsive activator DmpR is unable to activate the Ptou promoter in the absence of effectors. We show that this phenomenon is specifically triggered by carbon source exhaustion but not by nitrogen starvation. An updated model of the tou regulatory circuit is presented.
Collapse
Affiliation(s)
- Dafne Solera
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | |
Collapse
|
33
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
34
|
Bordes P, Wigneshweraraj SR, Zhang X, Buck M. Sigma54-dependent transcription activator phage shock protein F of Escherichia coli: a fragmentation approach to identify sequences that contribute to self-association. Biochem J 2004; 378:735-44. [PMID: 14659000 PMCID: PMC1224020 DOI: 10.1042/bj20031464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 12/03/2003] [Accepted: 12/05/2003] [Indexed: 11/17/2022]
Abstract
Proteins that belong to the AAA (ATPases associated with various cellular activities) superfamily of mechanochemical enzymes are versatile and control a wide array of cellular functions. Many AAA proteins share the common property of self-association into oligomeric structures and use nucleotide binding and hydrolysis to regulate their biological output. The Escherichia coli transcription activator PspF (phage shock protein F) is a member of the sigma54-dependent transcriptional activators that belong to the AAA protein family. Nucleotide interactions condition the functional state of PspF, enabling it to self-associate and interact with its target, the sigma54-RNAP (RNA polymerase) closed complex. The self-association determinants within the AAA domain of sigma54-dependent activators remain poorly characterized. In the present study, we have used a fragment of the AAA domain of PspF as a probe to study the nucleotide-conditioned self-association of PspF. Results show that the PspF fragment acts in trans to inhibit specifically self-association of PspF. The PspF fragment prevented efficient binding of nucleotides to PspF, consistent with the observation that the site for nucleotide interactions within an oligomer of AAA proteins is created between two protomers. Using proximity-based footprinting and cross-linking techniques, we demonstrate that the sequences represented in this fragment are close to one protomer-protomer interface within a PspF oligomer. As the sequences represented in this PspF fragment also contain a highly conserved motif that interacts with the sigma54-RNAP closed complex, we suggest that PspF may be organized to link nucleotide interactions and self-association to sigma54-RNAP binding and transcription activation.
Collapse
Affiliation(s)
- Patricia Bordes
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
35
|
Schumacher J, Zhang X, Jones S, Bordes P, Buck M. ATP-dependent transcriptional activation by bacterial PspF AAA+protein. J Mol Biol 2004; 338:863-75. [PMID: 15111053 DOI: 10.1016/j.jmb.2004.02.071] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/23/2004] [Accepted: 02/23/2004] [Indexed: 10/26/2022]
Abstract
Transcription activation by bacterial sigma(54)-dependent enhancer-binding proteins (EBPs) requires their tri-nucleotide hydrolysis to restructure the sigma(54) RNA polymerase (RNAP). EBPs share sequence similarity with guanine nucleotide binding-proteins and ATPases associated with various cellular activities (AAA) proteins, especially in the mononucleotide binding P-loop fold. Using the phage shock protein F (PspF) EBP, we identify P-loop residues responsible for nucleotide binding and hydrolysis, consistent with their roles in other P-loop NTPases. We show the refined low-resolution structure of an EBP, PspF, revealing a hexameric ring organisation characteristic of AAA proteins. Functioning of EBPs involves ATP binding, higher oligomer formation and ATP hydrolysis coupled to the restructuring of the RNAP. This is thought to be a highly coordinated multi-step process, but the nucleotide-driven mechanism of oligomerisation and ATP hydrolysis is little understood. Our kinetic and structural data strongly suggest that three PspF dimers assemble to form a hexamer upon nucleotide binding. During the ATP hydrolysis cycle, both ATP and ADP are bound to oligomeric PspF, in line with a sequential hydrolysis cycle. We identify a putative R-finger, and show its involvement in ATP hydrolysis. Substitution of this arginine residue results in nucleotide-independent formation of hexameric rings, structurally linking the putative R-finger and, by inference, a specific nucleotide interaction to the control of PspF oligomerisation.
Collapse
Affiliation(s)
- Jörg Schumacher
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
36
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
37
|
Rescalli E, Saini S, Bartocci C, Rychlewski L, De Lorenzo V, Bertoni G. Novel physiological modulation of the Pu promoter of TOL plasmid: negative regulatory role of the TurA protein of Pseudomonas putida in the response to suboptimal growth temperatures. J Biol Chem 2003; 279:7777-84. [PMID: 14672954 DOI: 10.1074/jbc.m310580200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
From crude protein extracts of Pseudomonas putida KT2440, we identified a small protein, TurA, able to bind to DNA fragments bearing the entire Pu promoter sequence of the TOL plasmid. The knock-out inactivation of the turA gene resulted in enhanced transcription initiation from the Pu promoter, initially suggesting a negative regulatory role of TurA on Pu expression. Ectopic expression of TurA both in P. putida and in Escherichia coli reporter strains and transcription in vitro of the Pu promoter in the presence of purified TurA confirmed the TurA repressor role on Pu activity. turA gene inactivation did not significantly alter two well characterized physiological regulations of the Pu expression in routine conditions of cultivation, exponential silencing, and carbon-mediated repression, respectively. However, the growth at suboptimal temperatures resulted in a TurA-dependent increase of Pu repression. These results strongly suggest that a physiological significance of the negative role of TurA on Pu activity could be limitation of the expression of the toluene-degrading enzymes at suboptimal growth temperatures. Therefore, the identification of TurA as Pu-binding protein revealed a novel physiological modulation of Pu promoter that is different from those strictly nutritional described previously.
Collapse
Affiliation(s)
- Emanuela Rescalli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, via Celoria 26, 20133 Milan, Italy, BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
38
|
Valls M, de Lorenzo V. Transient XylR binding to the UAS of the Pseudomonas putida sigma54 promoter Pu revealed with high intensity UV footprinting in vivo. Nucleic Acids Res 2003; 31:6926-34. [PMID: 14627825 PMCID: PMC290279 DOI: 10.1093/nar/gkg912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 10/16/2003] [Accepted: 10/16/2003] [Indexed: 11/12/2022] Open
Abstract
The binding of the transcriptional regulator XylR to its cognate upstream activating sequences (UAS) of the sigma54-dependent promoter Pu of Pseudomonas putida has been examined in vivo in single copy gene dose and stoichiometry. To this end, we have employed a novel in vivo genomic footprinting procedure that uses short exposures of bacterial cells to diffuse high intensity UV light that causes formation of TT or TC dimers. In contrast to simpler models for activation of sigma54-dependent promoters, our results clearly indicate that the XylR protein is not permanently bound in vivo to its target sites in Pu. On the contrary, the UAS appear to be mostly unoccupied at all growth stages. This is in contrast to the integration host factor (IHF), which binds Pu strongly in vivo at stationary phase, as also revealed by UV footprinting. Only overexpression of XylR altered the photoreactivity of the corresponding DNA region to report stable binding of the regulator to the UAS. However, the presence of aromatic XylR inducers reversed the forced occupation caused by increased levels of the activator. These results are compatible with the notion that XylR interacts very transiently with the UAS and detaches from the promoter during transcriptional activation of Pu.
Collapse
Affiliation(s)
- Marc Valls
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
39
|
Ali NO, Jeusset J, Larquet E, Le Cam E, Belitsky B, Sonenshein AL, Msadek T, Débarbouillé M. Specificity of the interaction of RocR with the rocG-rocA intergenic region in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2003; 149:739-750. [PMID: 12634342 DOI: 10.1099/mic.0.26013-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Bacillus subtilis, expression of the rocG gene, encoding glutamate dehydrogenase, and the rocABC operon, involved in arginine catabolism, requires SigL (sigma(54))-containing RNA polymerase as well as RocR, a positive regulator of the NtrC/NifA family. The RocR protein was purified and shown to bind specifically to the intergenic region located between rocG and the rocABC operon. DNaseI footprinting experiments were used to define the RocR-binding site as an 8 bp inverted repeat, separated by one base pair, forming an imperfect palindrome which is present twice within the rocG-rocABC intergenic region, acting as both a downstream activating sequence (DAS) and an upstream activating sequence (UAS). Point mutations in either of these two sequences significantly lowered expression of both rocG and rocABC. This bidirectional enhancer element retained partial activity even when moved 9 kb downstream of the rocA promoter. Electron microscopy experiments indicated that an intrinsically curved region is located between the UAS/DAS region and the promoter of the rocABC operon. This curvature could facilitate interaction of RocR with sigma(54)-RNA polymerase at the rocABC promoter.
Collapse
Affiliation(s)
- Naima Ould Ali
- Unité de Biochimie Microbienne, Institut Pasteur, URA 2172 du Centre National de la Recherche Scientifique, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Josette Jeusset
- Laboratoire de Microscopie Cellulaire et Moléculaire, Institut Gustave Roussy, UMR 1598 du Centre National de la Recherche Scientifique, 94805 Villejuif Cedex, France
| | - Eric Larquet
- Laboratoire de Minéralogie Cristallographie, Université Paris 6, UMR 7590, IPGP, CNRS Case 115, Tour 16, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Groupe de Microscopie Structurale Moléculaire, Institut Pasteur, URA 2185 du Centre National de la Recherche Scientifique, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Eric Le Cam
- Laboratoire de Microscopie Cellulaire et Moléculaire, Institut Gustave Roussy, UMR 1598 du Centre National de la Recherche Scientifique, 94805 Villejuif Cedex, France
| | - Boris Belitsky
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA 02111, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA 02111, USA
| | - Tarek Msadek
- Unité de Biochimie Microbienne, Institut Pasteur, URA 2172 du Centre National de la Recherche Scientifique, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Michel Débarbouillé
- Unité de Biochimie Microbienne, Institut Pasteur, URA 2172 du Centre National de la Recherche Scientifique, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
40
|
Laurie AD, Bernardo LMD, Sze CC, Skarfstad E, Szalewska-Palasz A, Nyström T, Shingler V. The role of the alarmone (p)ppGpp in sigma N competition for core RNA polymerase. J Biol Chem 2003; 278:1494-503. [PMID: 12421818 DOI: 10.1074/jbc.m209268200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some promoters, including the DmpR-controlled sigma(N)-dependent Po promoter, are effectively rendered silent in cells lacking the nutritional alarmone (p)ppGpp. Here we demonstrate that four mutations within the housekeeping sigma(D)-factor can restore sigma(N)-dependent Po transcription in the absence of (p)ppGpp. Using both in vitro and in vivo transcription competition assays, we show that all the four sigma(D) mutant proteins are defective in their ability to compete with sigma(N) for available core RNA polymerase and that the magnitude of the defect reflects the hierarchy of restoration of transcription from Po in (p)ppGpp-deficient cells. Consistently, underproduction of sigma(D) or overproduction of the anti-sigma(D) protein Rsd were also found to allow (p)ppGpp-independent transcription from the sigma(N)-Po promoter. Together with data from the direct effects of (p)ppGpp on sigma(N)-dependent Po transcription and sigma-factor competition, the results support a model in which (p)ppGpp serves as a master global regulator of transcription by differentially modulating alternative sigma-factor competition to adapt to changing cellular nutritional demands.
Collapse
Affiliation(s)
- Andrew D Laurie
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Reyes-Ramirez F, Little R, Dixon R. Mutant forms of the Azotobacter vinelandii transcriptional activator NifA resistant to inhibition by the NifL regulatory protein. J Bacteriol 2002; 184:6777-85. [PMID: 12446627 PMCID: PMC135469 DOI: 10.1128/jb.184.24.6777-6785.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Azotobacter vinelandii sigma(54)-dependent transcriptional activator protein NifA is regulated by the NifL protein in response to redox, carbon, and nitrogen status. Under conditions inappropriate for nitrogen fixation, NifL inhibits transcription activation by NifA through the formation of the NifL-NifA protein complex. NifL inhibits the ATPase activity of the central AAA+ domain of NifA required to drive open complex formation by sigma(54)-RNA polymerase and may also inhibit the activator-polymerase interaction. To analyze the mechanism of inhibition in greater detail, we isolated NifA mutants which are resistant to the inhibitory action of NifL. Mutations in both the amino-terminal GAF domain and the catalytic AAA+ domain of NifA were isolated. Several mutants blocked inhibition by NifL in response to both nitrogen and redox status, whereas some of the mutant NifA proteins were apparently able to discriminate between the forms of NifL present under different environmental conditions. One mutant protein, NifA-Y254N, was resistant to NifL under conditions of anaerobic nitrogen excess but was relatively sensitive to NifL under aerobic growth conditions. The properties of the purified mutant protein in vitro were consistent with the in vivo phenotype and indicate that NifA-Y254N is not responsive to the nitrogen signal conveyed by the interaction of NifL with A. vinelandii GlnK but is responsive to the oxidized form of NifL when ADP is present. Our observations suggest that different conformers of NifL may be generated in response to discrete signal transduction events and that both the GAF and AAA+ domains of NifA are involved in the response to NifL.
Collapse
|
42
|
Lew CM, Gralla JD. New roles for conserved regions within a sigma 54-dependent enhancer-binding protein. J Biol Chem 2002; 277:41517-24. [PMID: 12186874 DOI: 10.1074/jbc.m206912200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
23 amino acid substitutions were made in the C7 and C3 regions of pspFDeltaHTH, a protein required to convert sigma(54) closed promoter complexes to open complexes. These mutants were assayed for transcriptional competence, for the ability to hydrolyze ATP, for their multimerization state, and for their ability to interact with sigma(54) and its holoenzyme. C7 region mutants caused the protein to assume a compact form. This property could be mimicked by the addition of ATP, implying that compaction via C7 and ATP is part of the activation process. A number of C3 mutants were important for energy coupling, as indicated previously for several members of this activator family (, ). However, a patch within C3 influenced oligomerization. The C3 region was especially important in interacting with sigma(54) during the transition state but not important in inducing sigma(54) holoenzyme to engage the nontemplate strand of the promoter. It is proposed that both regions contain deterrent functions that prevent premature activation. Overall, the results imply unexpected roles for the C7 and C3 regions of this protein family during promoter activation.
Collapse
Affiliation(s)
- Chih M Lew
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
43
|
Iwaki H, Hasegawa Y, Wang S, Kayser MM, Lau PCK. Cloning and characterization of a gene cluster involved in cyclopentanol metabolism in Comamonas sp. strain NCIMB 9872 and biotransformations effected by Escherichia coli-expressed cyclopentanone 1,2-monooxygenase. Appl Environ Microbiol 2002; 68:5671-84. [PMID: 12406764 PMCID: PMC129933 DOI: 10.1128/aem.68.11.5671-5684.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Accepted: 08/23/2002] [Indexed: 11/20/2022] Open
Abstract
Cyclopentanone 1,2-monooxygenase, a flavoprotein produced by Pseudomonas sp. strain NCIMB 9872 upon induction by cyclopentanol or cyclopentanone (M. Griffin and P. W. Trudgill, Biochem. J. 129:595-603, 1972), has been utilized as a biocatalyst in Baeyer-Villiger oxidations. To further explore this biocatalytic potential and to discover new genes, we have cloned and sequenced a 16-kb chromosomal locus of strain 9872 that is herein reclassified as belonging to the genus COMAMONAS: Sequence analysis revealed a cluster of genes and six potential open reading frames designated and grouped in at least four possible transcriptional units as (orf11-orf10-orf9)-(cpnE-cpnD-orf6-cpnC)-(cpnR-cpnB-cpnA)-(orf3-orf4 [partial 3' end]). The cpnABCDE genes encode enzymes for the five-step conversion of cyclopentanol to glutaric acid catalyzed by cyclopentanol dehydrogenase, cyclopentanone 1,2-monooxygenase, a ring-opening 5-valerolactone hydrolase, 5-hydroxyvalerate dehydrogenase, and 5-oxovalerate dehydrogenase, respectively. Inactivation of cpnB by using a lacZ-Km(r) cassette resulted in a strain that was not capable of growth on cyclopentanol or cyclopentanone as a sole carbon and energy source. The presence of sigma(54)-dependent regulatory elements in front of the divergently transcribed cpnB and cpnC genes supports the notion that cpnR is a regulatory gene of the NtrC type. Knowledge of the nucleotide sequence of the cpn genes was used to construct isopropyl-beta-thio-D-galactoside-inducible clones of Escherichia coli cells that overproduce the five enzymes of the cpn pathway. The substrate specificities of CpnA and CpnB were studied in particular to evaluate the potential of these enzymes and establish the latter recombinant strain as a bioreagent for Baeyer-Villiger oxidations. Although frequently nonenantioselective, cyclopentanone 1,2-monooxygenase was found to exhibit a broader substrate range than the related cyclohexanone 1,2-monooxygenase from Acinetobacter sp. strain NCIMB 9871. However, in a few cases opposite enantioselectivity was observed between the two biocatalysts.
Collapse
Affiliation(s)
- Hiroaki Iwaki
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 2R2, Department of Physical Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada, Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan
| | - Yoshie Hasegawa
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 2R2, Department of Physical Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada, Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan
| | - Shaozhao Wang
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 2R2, Department of Physical Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada, Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan
| | - Margaret M. Kayser
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 2R2, Department of Physical Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada, Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan
| | - Peter C. K. Lau
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec H4P 2R2, Department of Physical Sciences, University of New Brunswick, Saint John, New Brunswick E2L 4L5, Canada, Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Suita, Osaka 564-8680, Japan
| |
Collapse
|
44
|
Zhang X, Chaney M, Wigneshweraraj SR, Schumacher J, Bordes P, Cannon W, Buck M. Mechanochemical ATPases and transcriptional activation. Mol Microbiol 2002; 45:895-903. [PMID: 12180911 DOI: 10.1046/j.1365-2958.2002.03065.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transcriptional activator proteins that act upon the sigma54-containing form of the bacterial RNA polymerase belong to the extensive AAA+ superfamily of ATPases, members of which are found in all three kingdoms of life and function in diverse cellular processes, often via chaperone-like activities. Formation and collapse of the transition state of ATP for hydrolysis appears to engender the interaction of the activator proteins with sigma54 and leads to the protein structural transitions needed for RNA polymerase to isomerize and engage with the DNA template strand. The common oligomeric structures of AAA+ proteins and the creation of the active site for ATP hydrolysis between protomers suggest that the critical changes in protomer structure required for productive interactions with sigma54-holoenzyme occur as a consequence of sensing the state of the gamma-phosphate of ATP. Depending upon the form of nucleotide bound, different functional states of the activator are created that have distinct substrate and chaperone-like binding activities. In particular, interprotomer ATP interactions rely upon the use of an arginine finger, a situation reminiscent of GTPase-activating proteins.
Collapse
Affiliation(s)
- X Zhang
- Imperial College Centre for Structural Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Sze CC, Bernardo LMD, Shingler V. Integration of global regulation of two aromatic-responsive sigma(54)-dependent systems: a common phenotype by different mechanisms. J Bacteriol 2002; 184:760-70. [PMID: 11790746 PMCID: PMC139538 DOI: 10.1128/jb.184.3.760-770.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas-derived regulators DmpR and XylR are structurally and mechanistically related sigma(54)-dependent activators that control transcription of genes involved in catabolism of aromatic compounds. The binding of distinct sets of aromatic effectors to these regulatory proteins results in release of a repressive interdomain interaction and consequently allows the activators to promote transcription from their cognate target promoters. The DmpR-controlled Po promoter region and the XylR-controlled Pu promoter region are also similar, although homology is limited to three discrete DNA signatures for binding sigma(54) RNA polymerase, the integration host factor, and the regulator. These common properties allow cross-regulation of Pu and Po by DmpR and XylR in response to appropriate aromatic effectors. In vivo, transcription of both the DmpR/Po and XylR/Pu regulatory circuits is subject to dominant global regulation, which results in repression of transcription during growth in rich media. Here, we comparatively assess the contribution of (p)ppGpp, the FtsH protease, and a component of an alternative phosphoenolpyruvate-sugar phosphotransferase system, which have been independently implicated in mediating this level of regulation. Further, by exploiting the cross-regulatory abilities of these two circuits, we identify the target component(s) that are intercepted in each case. The results show that (i) contrary to previous speculation, FtsH is not universally required for transcription of sigma(54)-dependent systems; (ii) the two factors found to impact the XylR/Pu regulatory circuit do not intercept the DmpR/Po circuit; and (iii) (p)ppGpp impacts the DmpR/Po system to a greater extent than the XylR/Pu system in both the native Pseudomonas putida and a heterologous Escherichia coli host. The data demonstrate that, despite the similarities of the specific regulatory circuits, the host global regulatory network latches onto and dominates over these specific circuits by exploiting their different properties. The mechanistic implications of how each of the host factors exerts its action are discussed.
Collapse
Affiliation(s)
- Chun Chau Sze
- Department of Cell and Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | |
Collapse
|