1
|
Koning H, Lai J, Marshall A, Stroeher E, Monahan G, Pullakhandam A, Knott G, Ryan T, Fox A, Whitten A, Lee M, Bond C. Structural plasticity of the coiled-coil interactions in human SFPQ. Nucleic Acids Res 2025; 53:gkae1198. [PMID: 39698821 PMCID: PMC11754644 DOI: 10.1093/nar/gkae1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/10/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
The proteins SFPQ (splicing Factor Proline/Glutamine rich) and NONO (non-POU domain-containing octamer-binding protein) are mammalian members of the Drosophila Behaviour/Human Splicing (DBHS) protein family, which share 76% sequence identity in their conserved 320 amino acid DBHS domain. SFPQ and NONO are involved in all steps of post-transcriptional regulation and are primarily located in mammalian paraspeckles: liquid phase-separated, ribonucleoprotein sub-nuclear bodies templated by NEAT1 long non-coding RNA. A combination of structured and low-complexity regions provide polyvalent interaction interfaces that facilitate homo- and heterodimerisation, polymerisation, interactions with oligonucleotides, mRNA, long non-coding RNA, and liquid phase-separation, all of which have been implicated in cellular homeostasis and neurological diseases including neuroblastoma. The strength and competition of these interaction modes define the ability of DBHS proteins to dissociate from paraspeckles to fulfil functional roles throughout the nucleus or the cytoplasm. In this study, we define and dissect the coiled-coil interactions which promote the polymerisation of DBHS proteins, using a crystal structure of an SFPQ/NONO heterodimer which reveals a flexible coiled-coil interaction interface which differs from previous studies. We support this through extensive solution small-angle X-ray scattering experiments using a panel of SFPQ/NONO heterodimer variants which are capable of tetramerisation to varying extents. The QM mutant displayed a negligible amount of tetramerisation (quadruple loss of function coiled-coil mutant L535A/L539A/L546A/M549A), the Charged Single Alpha Helix (ΔCSAH) variant displayed a dimer-tetramer equilibrium interaction, and the disulfide-forming variant displayed constitutive tetramerisation (R542C which mimics the pathological Drosophila nonAdiss allele). We demonstrate that newly characterised coiled-coil interfaces play a role in the polymerisation of DBHS proteins in addition to the previously described canonical coiled-coil interface. The detail of these interactions provides insight into a process critical for the assembly of paraspeckles as well as the behaviour of SFPQ as a transcription factor, and general multipurpose auxiliary protein with functions essential to mammalian life. Our understanding of the coiled coil behaviour of SFPQ also enhances the explanatory power of mutations (often disease-associated) observed in the DBHS family, potentially allowing for the development of future medical options such as targeted gene therapy.
Collapse
Affiliation(s)
- Heidar J Koning
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Jia Y Lai
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Andrew C Marshall
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Elke Stroeher
- WA Proteomics Facility, School of Molecular Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Gavin Monahan
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands WA 6009, Australia
| | - Anuradha Pullakhandam
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Gavin J Knott
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy M Ryan
- Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Archa H Fox
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | - Andrew Whitten
- ANSTONew Illawarra Rd, Lucas Heights, NSW 2234, Australia
| | - Mihwa Lee
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
2
|
Zhang J, Qian J, Zou Q, Zhou F, Kurgan L. Recent Advances in Computational Prediction of Secondary and Supersecondary Structures from Protein Sequences. Methods Mol Biol 2025; 2870:1-19. [PMID: 39543027 DOI: 10.1007/978-1-0716-4213-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The secondary structures (SSs) and supersecondary structures (SSSs) underlie the three-dimensional structure of proteins. Prediction of the SSs and SSSs from protein sequences enjoys high levels of use and finds numerous applications in the development of a broad range of other bioinformatics tools. Numerous sequence-based predictors of SS and SSS were developed and published in recent years. We survey and analyze 45 SS predictors that were released since 2018, focusing on their inputs, predictive models, scope of their prediction, and availability. We also review 32 sequence-based SSS predictors, which primarily focus on predicting coiled coils and beta-hairpins and which include five methods that were published since 2018. Substantial majority of these predictive tools rely on machine learning models, including a variety of deep neural network architectures. They also frequently use evolutionary sequence profiles. We discuss details of several modern SS and SSS predictors that are currently available to the users and which were published in higher impact venues.
Collapse
Affiliation(s)
- Jian Zhang
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China.
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China.
| | - Jingjing Qian
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Feng Zhou
- School of Computer and Information Technology, Xinyang Normal University, Xinyang, China
| | - Lukasz Kurgan
- Department of Computer Science, College of Engineering, Virginia Commonwealth University, Virginia, VA, USA.
| |
Collapse
|
3
|
Caballero I, Castellví A, Triviño J, Jiménez E, Soler N, Borges R, Usón I. ARCIMBOLDO at low resolution: Verification for coiled coils and globular proteins. Protein Sci 2024; 33:e5136. [PMID: 39150227 PMCID: PMC11328115 DOI: 10.1002/pro.5136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/07/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024]
Abstract
Crystallography at low resolution must determine the atomic model from less experimental observations, which is challenging in the absence of a model. In addition, model bias is more severe when independent experimental data are scarce. Our methods solve the phase problem by combining the location of accurate model fragments using Phaser with density modification and interpretation of the resulting maps using SHELXE. From a partial, correct structure, the density modification process and the stereochemical constraints draw the rest of the structure, validating the result. This same principle is now exploited at low resolution. Coiled coils are important, ubiquitous structures but notoriously difficult to phase and to predict. Both correct solutions and incorrect ones are poorly discriminated by the crystallographic figures of merit as long as helices are correctly oriented. We incorporate coiled-coil verification, designed to set up competing, incompatible structural hypotheses to probe both the results and establish the power of the data to discriminate them. Efficiency of coiled-coil phasing and validation in test cases from 3 to 4 Å is demonstrated in ARCIMBOLDO_LITE, placing single helices, and in ARCIMBOLDO_SHREDDER, with fragments derived from AlphaFold models. SHELXE tracing at low resolution has been enhanced, maintaining its local character but extending the environment assessment. For non-helical structures, verification is demonstrated in the fragment location process. Its use is exemplified with the solution of the VSR1 structure at 3.5 Å, depending on LLG optimization and the emergence of new features in the electron density. Relying on verification, we have extended the use of the ARCIMBOLDO software to low resolution.
Collapse
Affiliation(s)
- Iracema Caballero
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona, Spain
| | - Albert Castellví
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona, Spain
| | - Josep Triviño
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona, Spain
| | - Elisabet Jiménez
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona, Spain
| | - Nicolas Soler
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona, Spain
| | - Rafael Borges
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona, Spain
| | - Isabel Usón
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Barcelona Science Park, Barcelona, Spain
- ICREA: Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
4
|
Xiao F, Luo L, Liu X, Ljubetič A, Jin N, Jerala R, Hu G. Comparative Simulative Analysis and Design of Single-Chain Self-Assembled Protein Cages. J Phys Chem B 2024; 128:6272-6282. [PMID: 38904939 DOI: 10.1021/acs.jpcb.4c01957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coiled-coil protein origami (CCPO) is a modular strategy for the de novo design of polypeptide nanostructures. It represents a type of modular design based on pairwise-interacting coiled-coil (CC) units with a single-chain protein programmed to fold into a polyhedral cage. However, the mechanisms underlying the self-assembly of the protein tetrahedron are still not fully understood. In the present study, 18 CCPO cages with three different topologies were modeled in silico. Then, molecular dynamics simulations and CC parameters were calculated to characterize the dynamic properties of protein tetrahedral cages at both the local and global levels. Furthermore, a deformed CC unit was redesigned, and the stability of the new cage was significantly improved.
Collapse
Affiliation(s)
- Fei Xiao
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| | - Longfei Luo
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
| | - Xin Liu
- Institute of Blood and Marrow Transplantation, Medical College of Soochow University, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, National Clinical Research Center for Hematologic Diseases, Soochow University, Suzhou 215123, China
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
- EN-FIST Centre of Excellence, SI-1000 Ljubljana, Slovenia
| | - Nengzhi Jin
- Key Laboratory of Advanced Computing of Gansu Province, Gansu Computing Center, Lanzhou 730030, China
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Guang Hu
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Department of Bioinformatics, Center for Systems Biology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215213, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China
| |
Collapse
|
5
|
Manfredi M, Savojardo C, Martelli PL, Casadio R. CoCoNat: A Deep Learning-Based Tool for the Prediction of Coiled-coil Domains in Protein Sequences. Bio Protoc 2024; 14:e4935. [PMID: 38405078 PMCID: PMC10883893 DOI: 10.21769/bioprotoc.4935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 02/27/2024] Open
Abstract
Coiled-coil domains (CCDs) are structural motifs observed in proteins in all organisms that perform several crucial functions. The computational identification of CCD segments over a protein sequence is of great importance for its functional characterization. This task can essentially be divided into three separate steps: the detection of segment boundaries, the annotation of the heptad repeat pattern along the segment, and the classification of its oligomerization state. Several methods have been proposed over the years addressing one or more of these predictive steps. In this protocol, we illustrate how to make use of CoCoNat, a novel approach based on protein language models, to characterize CCDs. CoCoNat is, at its release (August 2023), the state of the art for CCD detection. The web server allows users to submit input protein sequences and visualize the predicted domains after a few minutes. Optionally, precomputed segments can be provided to the model, which will predict the oligomerization state for each of them. CoCoNat can be easily integrated into biological pipelines by downloading the standalone version, which provides a single executable script to produce the output. Key features • Web server for the prediction of coiled-coil segments from a protein sequence. • Three different predictions from a single tool (segment position, heptad repeat annotation, oligomerization state). • Possibility to visualize the results online or to download the predictions in different formats for further processing. • Easy integration in automated pipelines with the local version of the tool.
Collapse
Affiliation(s)
- Matteo Manfredi
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Schweke H, Pacesa M, Levin T, Goverde CA, Kumar P, Duhoo Y, Dornfeld LJ, Dubreuil B, Georgeon S, Ovchinnikov S, Woolfson DN, Correia BE, Dey S, Levy ED. An atlas of protein homo-oligomerization across domains of life. Cell 2024; 187:999-1010.e15. [PMID: 38325366 DOI: 10.1016/j.cell.2024.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.
Collapse
Affiliation(s)
- Hugo Schweke
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tal Levin
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Prasun Kumar
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Yoan Duhoo
- Protein Production and Structure Characterization Core Facility (PTPSP), School of Life Sciences, École polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Benjamin Dubreuil
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sergey Ovchinnikov
- John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA, USA
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Bristol BS8 1TQ, UK; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sucharita Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan, India.
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Min J, Rong X, Zhang J, Su R, Wang Y, Qi W. Computational Design of Peptide Assemblies. J Chem Theory Comput 2024; 20:532-550. [PMID: 38206800 DOI: 10.1021/acs.jctc.3c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
With the ongoing development of peptide self-assembling materials, there is growing interest in exploring novel functional peptide sequences. From short peptides to long polypeptides, as the functionality increases, the sequence space is also expanding exponentially. Consequently, attempting to explore all functional sequences comprehensively through experience and experiments alone has become impractical. By utilizing computational methods, especially artificial intelligence enhanced molecular dynamics (MD) simulation and de novo peptide design, there has been a significant expansion in the exploration of sequence space. Through these methods, a variety of supramolecular functional materials, including fibers, two-dimensional arrays, nanocages, etc., have been designed by meticulously controlling the inter- and intramolecular interactions. In this review, we first provide a brief overview of the current main computational methods and then focus on the computational design methods for various self-assembled peptide materials. Additionally, we introduce some representative protein self-assemblies to offer guidance for the design of self-assembling peptides.
Collapse
Affiliation(s)
- Jiwei Min
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xi Rong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| |
Collapse
|
8
|
Ridone P, Winter DL, Baker MAB. Tuning the stator subunit of the flagellar motor with coiled-coil engineering. Protein Sci 2023; 32:e4811. [PMID: 37870481 PMCID: PMC10659934 DOI: 10.1002/pro.4811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Many bacteria swim driven by an extracellular filament rotated by the bacterial flagellar motor. This motor is powered by the stator complex, MotA5 MotB2 , an heptameric complex which forms an ion channel which couples energy from the ion motive force to torque generation. Recent structural work revealed that stator complex consists of a ring of five MotA subunits which rotate around a central dimer of MotB subunits. Transmembrane (TM) domains TM3 and TM4 from MotA combine with the single TM domain from MotB to form two separate ion channels within this complex. Much is known about the ion binding site and ion specificity; however, to date, no modeling has been undertaken to explore the MotB-MotB dimer stability and the role of MotB conformational dynamics during rotation. Here, we modeled the central MotB dimer using coiled-coil engineering and modeling principles and calculated free energies to identify stable states in the operating cycle of the stator. We found three stable coiled-coil states with dimer interface angles of 28°, 56°, and 64°. We tested the effect of strategic mutagenesis on the comparative energy of the states and correlated motility with a specific hierarchy of stability between the three states. In general, our results indicate agreement with existing models describing a 36° rotation step of the MotA pentameric ring during the power stroke and provide an energetic basis for the coordinated rotation of the central MotB dimer based on coiled-coil modeling.
Collapse
Affiliation(s)
- Pietro Ridone
- School of Biotechnology and Biomolecular ScienceUNSW SydneySydneyAustralia
| | - Daniel L. Winter
- School of Biotechnology and Biomolecular ScienceUNSW SydneySydneyAustralia
| | | |
Collapse
|
9
|
Kumar P, Petrenas R, Dawson WM, Schweke H, Levy ED, Woolfson DN. CC + : A searchable database of validated coiled coils in PDB structures and AlphaFold2 models. Protein Sci 2023; 32:e4789. [PMID: 37768271 PMCID: PMC10588367 DOI: 10.1002/pro.4789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/10/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023]
Abstract
α-Helical coiled coils are common tertiary and quaternary elements of protein structure. In coiled coils, two or more α helices wrap around each other to form bundles. This apparently simple structural motif can generate many architectures and topologies. Coiled coil-forming sequences can be predicted from heptad repeats of hydrophobic and polar residues, hpphppp, although this is not always reliable. Alternatively, coiled-coil structures can be identified using the program SOCKET, which finds knobs-into-holes (KIH) packing between side chains of neighboring helices. SOCKET also classifies coiled-coil architecture and topology, thus allowing sequence-to-structure relationships to be garnered. In 2009, we used SOCKET to create a relational database of coiled-coil structures, CC+ , from the RCSB Protein Data Bank (PDB). Here, we report an update of CC+ following an update of SOCKET (to Socket2) and the recent explosion of structural data and the success of AlphaFold2 in predicting protein structures from genome sequences. With the most-stringent SOCKET parameters, CC+ contains ≈12,000 coiled-coil assemblies from experimentally determined structures, and ≈120,000 potential coiled-coil structures within single-chain models predicted by AlphaFold2 across 48 proteomes. CC+ allows these and other less-stringently defined coiled coils to be searched at various levels of structure, sequence, and side-chain interactions. The identified coiled coils can be viewed directly from CC+ using the Socket2 application, and their associated data can be downloaded for further analyses. CC+ is available freely at http://coiledcoils.chm.bris.ac.uk/CCPlus/Home.html. It will be updated automatically. We envisage that CC+ could be used to understand coiled-coil assemblies and their sequence-to-structure relationships, and to aid protein design and engineering.
Collapse
Affiliation(s)
- Prasun Kumar
- School of ChemistryUniversity of BristolBristolUK
| | | | | | - Hugo Schweke
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Emmanuel D. Levy
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Derek N. Woolfson
- School of ChemistryUniversity of BristolBristolUK
- School of BiochemistryUniversity of Bristol, Medical Sciences Building, University WalkBristolUK
- Bristol BioDesign Institute, School of ChemistryUniversity of BristolBristolUK
| |
Collapse
|
10
|
Shamir M, Martin FJO, Woolfson DN, Friedler A. Molecular Mechanism of STIL Coiled-Coil Domain Oligomerization. Int J Mol Sci 2023; 24:14616. [PMID: 37834064 PMCID: PMC10572602 DOI: 10.3390/ijms241914616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Coiled-coil domains (CCDs) play key roles in regulating both healthy cellular processes and the pathogenesis of various diseases by controlling protein self-association and protein-protein interactions. Here, we probe the mechanism of oligomerization of a peptide representing the CCD of the STIL protein, a tetrameric multi-domain protein that is over-expressed in several cancers and associated with metastatic spread. STIL tetramerization is mediated both by an intrinsically disordered domain (STIL400-700) and a structured CCD (STIL CCD718-749). Disrupting STIL oligomerization via the CCD inhibits its activity in vivo. We describe a comprehensive biophysical and structural characterization of the concentration-dependent oligomerization of STIL CCD peptide. We combine analytical ultracentrifugation, fluorescence and circular dichroism spectroscopy to probe the STIL CCD peptide assembly in solution and determine dissociation constants of both the dimerization, (KD = 8 ± 2 µM) and tetramerization (KD = 68 ± 2 µM) of the WT STIL CCD peptide. The higher-order oligomers result in increased thermal stability and cooperativity of association. We suggest that this complex oligomerization mechanism regulates the activated levels of STIL in the cell and during centriole duplication. In addition, we present X-ray crystal structures for the CCD containing destabilising (L736E) and stabilising (Q729L) mutations, which reveal dimeric and tetrameric antiparallel coiled-coil structures, respectively. Overall, this study offers a basis for understanding the structural molecular biology of the STIL protein, and how it might be targeted to discover anti-cancer reagents.
Collapse
Affiliation(s)
- Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel;
| | - Freddie J. O. Martin
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK;
| | - Derek N. Woolfson
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK;
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus Givat Ram, Jerusalem 91904, Israel;
| |
Collapse
|
11
|
Ko S, Toda A, Tanaka H, Yu J, Kurisu G. Crystal structure of the stalk region of axonemal inner-arm dynein-d reveals unique features in the coiled-coil and microtubule-binding domain. FEBS Lett 2023; 597:2149-2160. [PMID: 37400274 DOI: 10.1002/1873-3468.14690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Axonemal dynein is an ATP-dependent microtubular motor protein responsible for cilia and flagella beating, and its dysfunction can cause diseases such as primary ciliary dyskinesia and sperm dysmotility. Despite its biological importance, structure-based mechanisms underlying axonemal dynein motors remain unclear. Here, we determined the X-ray crystal structure of the human inner-arm dynein-d (DNAH1) stalk region, which contains a long antiparallel coiled-coil and a microtubule-binding domain (MTBD), at 2.7 Å resolution. Notably, differences in the relative orientation of the coiled-coil and MTBD in comparison with other dyneins, as well as the diverse orientations of the MTBD flap region among various isoforms, lead us to propose a 'spike shoe model' with an altered stepping angle for the interaction between IAD-d and microtubules. Based on these findings, we discuss isoform-specific functions of the axonemal dynein stalk MTBDs.
Collapse
Affiliation(s)
- Seolmin Ko
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Akiyuki Toda
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hideaki Tanaka
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Jian Yu
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
| | - Genji Kurisu
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| |
Collapse
|
12
|
Madeo G, Savojardo C, Manfredi M, Martelli PL, Casadio R. CoCoNat: a novel method based on deep learning for coiled-coil prediction. Bioinformatics 2023; 39:btad495. [PMID: 37540220 PMCID: PMC10425188 DOI: 10.1093/bioinformatics/btad495] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023] Open
Abstract
MOTIVATION Coiled-coil domains (CCD) are widespread in all organisms and perform several crucial functions. Given their relevance, the computational detection of CCD is very important for protein functional annotation. State-of-the-art prediction methods include the precise identification of CCD boundaries, the annotation of the typical heptad repeat pattern along the coiled-coil helices as well as the prediction of the oligomerization state. RESULTS In this article, we describe CoCoNat, a novel method for predicting coiled-coil helix boundaries, residue-level register annotation, and oligomerization state. Our method encodes sequences with the combination of two state-of-the-art protein language models and implements a three-step deep learning procedure concatenated with a Grammatical-Restrained Hidden Conditional Random Field for CCD identification and refinement. A final neural network predicts the oligomerization state. When tested on a blind test set routinely adopted, CoCoNat obtains a performance superior to the current state-of-the-art both for residue-level and segment-level CCD. CoCoNat significantly outperforms the most recent state-of-the-art methods on register annotation and prediction of oligomerization states. AVAILABILITY AND IMPLEMENTATION CoCoNat web server is available at https://coconat.biocomp.unibo.it. Standalone version is available on GitHub at https://github.com/BolognaBiocomp/coconat.
Collapse
Affiliation(s)
- Giovanni Madeo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Matteo Manfredi
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| |
Collapse
|
13
|
Hutchins GH, Noble CEM, Bunzel HA, Williams C, Dubiel P, Yadav SKN, Molinaro PM, Barringer R, Blackburn H, Hardy BJ, Parnell AE, Landau C, Race PR, Oliver TAA, Koder RL, Crump MP, Schaffitzel C, Oliveira ASF, Mulholland AJ, Anderson JLR. An expandable, modular de novo protein platform for precision redox engineering. Proc Natl Acad Sci U S A 2023; 120:e2306046120. [PMID: 37487099 PMCID: PMC10400981 DOI: 10.1073/pnas.2306046120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.
Collapse
Affiliation(s)
- George H. Hutchins
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Claire E. M. Noble
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - H. Adrian Bunzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | | | - Paulina Dubiel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul M. Molinaro
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Rob Barringer
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Hector Blackburn
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Benjamin J. Hardy
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Alice E. Parnell
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Charles Landau
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul R. Race
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | | | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - A. Sofia F. Oliveira
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Adrian J. Mulholland
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - J. L. Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| |
Collapse
|
14
|
Wu S, Østergaard M, Fredholt F, Christensen NJ, Sørensen KK, Mishra NK, Nielsen HM, Jensen KJ. Ca 2+-Responsive Glyco-insulin. Bioconjug Chem 2023; 34:518-528. [PMID: 36756787 DOI: 10.1021/acs.bioconjchem.2c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Chemical modification of peptides and proteins, such as PEGylation and lipidation, creates conjugates with new properties. However, they are typically not dynamic or stimuli-responsive. Self-assembly controlled by a stimulus will allow adjusting properties directly. Here, we report that conjugates of oligogalacturonic acids (OGAs), isolated from plant-derived pectin, are Ca2+-responsive. We report the conjugation of OGA to human insulin (HI) to create new glyco-insulins. In addition, we coupled OGA to model peptides. We studied their self-assembly by dynamic light scattering, small-angle X-ray scattering, and circular dichroism, which showed that the self-assembly to form nanostructures depended on the length of the OGA sequence and Zn2+ and Ca2+ concentrations. Subcutaneous administration of OGA12-HI with Zn2+ showed a stable decrease in blood glucose over a longer period of time compared to HI, despite the lower receptor binding affinity.
Collapse
Affiliation(s)
- Shunliang Wu
- Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Mads Østergaard
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Freja Fredholt
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Niels Johan Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Kasper K Sørensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Narendra K Mishra
- Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Hanne M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Knud J Jensen
- Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Department of Chemistry, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
16
|
Zinzula L, Mereu AM, Orsini M, Seeleitner C, Bracher A, Nagy I, Baumeister W. Ebola and Marburg virus VP35 coiled-coil validated as antiviral target by tripartite split-GFP complementation. iScience 2022; 25:105354. [PMID: 36325051 PMCID: PMC9619376 DOI: 10.1016/j.isci.2022.105354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Ebola virus (EBOV) and Marburg virus (MARV) are highly pathogenic viruses in humans, against which approved antivirals are lacking. During EBOV and MARV infection, coiled-coil mediated oligomerization is essential for the virion protein 35 (VP35) polymerase co-factor function and type I interferon antagonism, making VP35 coiled-coil an elective drug target. We established a tripartite split-green fluorescent protein (GFP) fluorescence complementation (FC) system based on recombinant GFP-tagged EBOV and MARV VP35, which probes VP35 coiled-coil assembly by monitoring fluorescence on E. coli colonies, or in vitro in 96/384-multiwell. Oligomerization-defective VP35 mutants showed that correct coiled-coil knobs-into-holes pairing within VP35 oligomer is pre-requisite for GFP tags and GFP detector to reconstitute fluorescing full-length GFP. The method was validated by screening a small compound library, which identified Myricetin and 4,5,6,7-Tetrabromobenzotriazole as inhibitors of EBOV and MARV VP35 oligomerization-dependent FC with low-micromolar IC50 values. These findings substantiate the VP35 coiled-coil value as antiviral target. Ebola and Marburg virus VP35 oligomerize via trimeric and tetrameric coiled-coil VP35 coiled-coil assembly triggers fluorescence of a tripartite split-GFP system Mutations perturbing VP35 coiled-coil hamper split-GFP complementation Myricetin and TBBT inhibit split-GFP complementation mediated by VP35 coiled-coil
Collapse
Affiliation(s)
- Luca Zinzula
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
- Corresponding author
| | - Angela Maria Mereu
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Risk Analysis and Public Health Surveillance, Viale dell’Università 10, 35020 Legnaro, Italy
| | - Christine Seeleitner
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Andreas Bracher
- The Max-Planck Institute of Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - István Nagy
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Wolfgang Baumeister
- The Max-Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
- Corresponding author
| |
Collapse
|
17
|
Naudin EA, Albanese KI, Smith AJ, Mylemans B, Baker EG, Weiner OD, Andrews DM, Tigue N, Savery NJ, Woolfson DN. From peptides to proteins: coiled-coil tetramers to single-chain 4-helix bundles. Chem Sci 2022; 13:11330-11340. [PMID: 36320580 PMCID: PMC9533478 DOI: 10.1039/d2sc04479j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
The design of completely synthetic proteins from first principles-de novo protein design-is challenging. This is because, despite recent advances in computational protein-structure prediction and design, we do not understand fully the sequence-to-structure relationships for protein folding, assembly, and stabilization. Antiparallel 4-helix bundles are amongst the most studied scaffolds for de novo protein design. We set out to re-examine this target, and to determine clear sequence-to-structure relationships, or design rules, for the structure. Our aim was to determine a common and robust sequence background for designing multiple de novo 4-helix bundles. In turn, this could be used in chemical and synthetic biology to direct protein-protein interactions and as scaffolds for functional protein design. Our approach starts by analyzing known antiparallel 4-helix coiled-coil structures to deduce design rules. In terms of the heptad repeat, abcdefg -i.e., the sequence signature of many helical bundles-the key features that we identify are: a = Leu, d = Ile, e = Ala, g = Gln, and the use of complementary charged residues at b and c. Next, we implement these rules in the rational design of synthetic peptides to form antiparallel homo- and heterotetramers. Finally, we use the sequence of the homotetramer to derive in one step a single-chain 4-helix-bundle protein for recombinant production in E. coli. All of the assembled designs are confirmed in aqueous solution using biophysical methods, and ultimately by determining high-resolution X-ray crystal structures. Our route from peptides to proteins provides an understanding of the role of each residue in each design.
Collapse
Affiliation(s)
- Elise A Naudin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Katherine I Albanese
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Abigail J Smith
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Bram Mylemans
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Emily G Baker
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Orion D Weiner
- Cardiovascular Research Institute, Department of Biochemistry and Biophysics, University of California 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - David M Andrews
- Oncology R&D, AstraZeneca Cambridge Science Park, Darwin Building Cambridge CB4 0WG UK
| | - Natalie Tigue
- BioPharmaceuticals R&D, AstraZeneca Granta Park Cambridge CB21 6GH UK
| | - Nigel J Savery
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisEngBio, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk Bristol BS8 1TD UK
- BrisEngBio, School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
18
|
Qing R, Hao S, Smorodina E, Jin D, Zalevsky A, Zhang S. Protein Design: From the Aspect of Water Solubility and Stability. Chem Rev 2022; 122:14085-14179. [PMID: 35921495 PMCID: PMC9523718 DOI: 10.1021/acs.chemrev.1c00757] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Water solubility and structural stability are key merits for proteins defined by the primary sequence and 3D-conformation. Their manipulation represents important aspects of the protein design field that relies on the accurate placement of amino acids and molecular interactions, guided by underlying physiochemical principles. Emulated designer proteins with well-defined properties both fuel the knowledge-base for more precise computational design models and are used in various biomedical and nanotechnological applications. The continuous developments in protein science, increasing computing power, new algorithms, and characterization techniques provide sophisticated toolkits for solubility design beyond guess work. In this review, we summarize recent advances in the protein design field with respect to water solubility and structural stability. After introducing fundamental design rules, we discuss the transmembrane protein solubilization and de novo transmembrane protein design. Traditional strategies to enhance protein solubility and structural stability are introduced. The designs of stable protein complexes and high-order assemblies are covered. Computational methodologies behind these endeavors, including structure prediction programs, machine learning algorithms, and specialty software dedicated to the evaluation of protein solubility and aggregation, are discussed. The findings and opportunities for Cryo-EM are presented. This review provides an overview of significant progress and prospects in accurate protein design for solubility and stability.
Collapse
Affiliation(s)
- Rui Qing
- State
Key Laboratory of Microbial Metabolism, School of Life Sciences and
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The
David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shilei Hao
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Key
Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Eva Smorodina
- Department
of Immunology, University of Oslo and Oslo
University Hospital, Oslo 0424, Norway
| | - David Jin
- Avalon GloboCare
Corp., Freehold, New Jersey 07728, United States
| | - Arthur Zalevsky
- Laboratory
of Bioinformatics Approaches in Combinatorial Chemistry and Biology, Shemyakin−Ovchinnikov Institute of Bioorganic
Chemistry RAS, Moscow 117997, Russia
| | - Shuguang Zhang
- Media
Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Ennist NM, Stayrook SE, Dutton PL, Moser CC. Rational design of photosynthetic reaction center protein maquettes. Front Mol Biosci 2022; 9:997295. [PMID: 36213121 PMCID: PMC9532970 DOI: 10.3389/fmolb.2022.997295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
New technologies for efficient solar-to-fuel energy conversion will help facilitate a global shift from dependence on fossil fuels to renewable energy. Nature uses photosynthetic reaction centers to convert photon energy into a cascade of electron-transfer reactions that eventually produce chemical fuel. The design of new reaction centers de novo deepens our understanding of photosynthetic charge separation and may one day allow production of biofuels with higher thermodynamic efficiency than natural photosystems. Recently, we described the multi-step electron-transfer activity of a designed reaction center maquette protein (the RC maquette), which can assemble metal ions, tyrosine, a Zn tetrapyrrole, and heme into an electron-transport chain. Here, we detail our modular strategy for rational protein design and show that the intended RC maquette design agrees with crystal structures in various states of assembly. A flexible, dynamic apo-state collapses by design into a more ordered holo-state upon cofactor binding. Crystal structures illustrate the structural transitions upon binding of different cofactors. Spectroscopic assays demonstrate that the RC maquette binds various electron donors, pigments, and electron acceptors with high affinity. We close with a critique of the present RC maquette design and use electron-tunneling theory to envision a path toward a designed RC with a substantially higher thermodynamic efficiency than natural photosystems.
Collapse
Affiliation(s)
- Nathan M. Ennist
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- *Correspondence: Nathan M. Ennist,
| | - Steven E. Stayrook
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, United States
| | - P. Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher C. Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
20
|
Bioinformatics Analysis of the Periodicity in Proteins with Coiled-Coil Structure—Enumerating All Decompositions of Sequence Periods. Int J Mol Sci 2022; 23:ijms23158692. [PMID: 35955828 PMCID: PMC9369452 DOI: 10.3390/ijms23158692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
A coiled coil is a structural motif in proteins that consists of at least two α-helices wound around each other. For structural stabilization, these α-helices form interhelical contacts via their amino acid side chains. However, there are restrictions as to the distances along the amino acid sequence at which those contacts occur. As the spatial period of the α-helix is 3.6, the most frequent distances between hydrophobic contacts are 3, 4, and 7. Up to now, the multitude of possible decompositions of α-helices participating in coiled coils at these distances has not been explored systematically. Here, we present an algorithm that computes all non-redundant decompositions of sequence periods of hydrophobic amino acids into distances of 3, 4, and 7. Further, we examine which decompositions can be found in nature by analyzing the available data and taking a closer look at correlations between the properties of the coiled coil and its decomposition. We find that the availability of decompositions allowing for coiled-coil formation without putting too much strain on the α-helix geometry follows an oscillatory pattern in respect of period length. Our algorithm supplies the basis for exploring the possible decompositions of coiled coils of any period length.
Collapse
|
21
|
Kantsadi AL, Hatzopoulos GN, Gönczy P, Vakonakis I. Structures of SAS-6 coiled coil hold implications for the polarity of the centriolar cartwheel. Structure 2022; 30:671-684.e5. [PMID: 35240058 DOI: 10.1016/j.str.2022.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/22/2022]
Abstract
Centrioles are eukaryotic organelles that template the formation of cilia and flagella, as well as organize the microtubule network and the mitotic spindle in animal cells. Centrioles have proximal-distal polarity and a 9-fold radial symmetry imparted by a likewise symmetrical central scaffold, the cartwheel. The spindle assembly abnormal protein 6 (SAS-6) self-assembles into 9-fold radially symmetric ring-shaped oligomers that stack via an unknown mechanism to form the cartwheel. Here, we uncover a homo-oligomerization interaction mediated by the coiled-coil domain of SAS-6. Crystallographic structures of Chlamydomonas reinhardtii SAS-6 coiled-coil complexes suggest this interaction is asymmetric, thereby imparting polarity to the cartwheel. Using a cryoelectron microscopy (cryo-EM) reconstitution assay, we demonstrate that amino acid substitutions disrupting this asymmetric association also impair SAS-6 ring stacking. Our work raises the possibility that the asymmetric interaction inherent to SAS-6 coiled-coil provides a polar element for cartwheel assembly, which may assist the establishment of the centriolar proximal-distal axis.
Collapse
Affiliation(s)
| | - Georgios N Hatzopoulos
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1005 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1005 Lausanne, Switzerland.
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Feng SH, Xia CQ, Shen HB. CoCoPRED: coiled-coil protein structural feature prediction from amino acid sequence using deep neural networks. Bioinformatics 2022; 38:720-729. [PMID: 34718416 DOI: 10.1093/bioinformatics/btab744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Coiled-coil is composed of two or more helices that are wound around each other. It widely exists in proteins and has been discovered to play a variety of critical roles in biology processes. Generally, there are three types of structural features in coiled-coil: coiled-coil domain (CCD), oligomeric state and register. However, most of the existing computational tools only focus on one of them. RESULTS Here, we describe a new deep learning model, CoCoPRED, which is based on convolutional layers, bidirectional long short-term memory, and attention mechanism. It has three networks, i.e. CCD network, oligomeric state network, and register network, corresponding to the three types of structural features in coiled-coil. This means CoCoPRED has the ability of fulfilling comprehensive prediction for coiled-coil proteins. Through the 5-fold cross-validation experiment, we demonstrate that CoCoPRED can achieve better performance than the state-of-the-art models on both CCD prediction and oligomeric state prediction. Further analysis suggests the CCD prediction may be a performance indicator of the oligomeric state prediction in CoCoPRED. The attention heads in CoCoPRED indicate that registers a, b and e are more crucial for the oligomeric state prediction. AVAILABILITY AND IMPLEMENTATION CoCoPRED is available at http://www.csbio.sjtu.edu.cn/bioinf/CoCoPRED. The datasets used in this research can also be downloaded from the website. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shi-Hao Feng
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Chun-Qiu Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.,Department of Computer Science, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai 200240, China
| |
Collapse
|
23
|
Pandey S, Mandal S, Danielsen MB, Brown A, Hu C, Christensen NJ, Kulakova AV, Song S, Brown T, Jensen KJ, Wengel J, Lou C, Mao H. Chirality transmission in macromolecular domains. Nat Commun 2022; 13:76. [PMID: 35013247 PMCID: PMC8748818 DOI: 10.1038/s41467-021-27708-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Chiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins. Chiral communication can propagate in secondary structures within the effective intermolecular force (IMF) range but it is not known whether long-range chiral communication exists between tertiary peptide structures. Here, the authors use single-molecule force spectroscopy to investigate chiral interaction between DNA duplexes/triplexes and peptide coiled-coils and demonstrate chiral communication beyond the IMF distance.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Mathias Bogetoft Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Asha Brown
- ATDBio Ltd., Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, OX4 4GA, UK
| | - Changpeng Hu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Niels Johan Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | | | - Shixi Song
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
24
|
Sinha NJ, Langenstein MG, Pochan DJ, Kloxin CJ, Saven JG. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem Rev 2021; 121:13915-13935. [PMID: 34709798 DOI: 10.1021/acs.chemrev.1c00712] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have been extensively utilized to construct nanomaterials that display targeted structure through hierarchical assembly. The self-assembly of both rationally designed peptides derived from naturally occurring domains in proteins as well as intuitively or computationally designed peptides that form β-sheets and helical secondary structures have been widely successful in constructing nanoscale morphologies with well-defined 1-d, 2-d, and 3-d architectures. In this review, we discuss these successes of peptide self-assembly, especially in the context of designing hierarchical materials. In particular, we emphasize the differences in the level of peptide design as an indicator of complexity within the targeted self-assembled materials and highlight future avenues for scientific and technological advances in this field.
Collapse
Affiliation(s)
- Nairiti J Sinha
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew G Langenstein
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.,Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
25
|
Daudey GA, Shen M, Singhal A, van der Est P, Sevink GJA, Boyle AL, Kros A. Liposome fusion with orthogonal coiled coil peptides as fusogens: the efficacy of roleplaying peptides. Chem Sci 2021; 12:13782-13792. [PMID: 34760163 PMCID: PMC8549789 DOI: 10.1039/d0sc06635d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Biological membrane fusion is a highly specific and coordinated process as a multitude of vesicular fusion events proceed simultaneously in a complex environment with minimal off-target delivery. In this study, we develop a liposomal fusion model system with specific recognition using lipidated derivatives of a set of four de novo designed heterodimeric coiled coil (CC) peptide pairs. Content mixing was only obtained between liposomes functionalized with complementary peptides, demonstrating both fusogenic activity of CC peptides and the specificity of this model system. The diverse peptide fusogens revealed important relationships between the fusogenic efficacy and the peptide characteristics. The fusion efficiency increased from 20% to 70% as affinity between complementary peptides decreased, (from KF ≈ 108 to 104 M−1), and fusion efficiency also increased due to more pronounced asymmetric role-playing of membrane interacting ‘K’ peptides and homodimer-forming ‘E’ peptides. Furthermore, a new and highly fusogenic CC pair (E3/P1K) was discovered, providing an orthogonal peptide triad with the fusogenic CC pairs P2E/P2K and P3E/P3K. This E3/P1k pair was revealed, via molecular dynamics simulations, to have a shifted heptad repeat that can accommodate mismatched asparagine residues. These results will have broad implications not only for the fundamental understanding of CC design and how asparagine residues can be accommodated within the hydrophobic core, but also for drug delivery systems by revealing the necessary interplay of efficient peptide fusogens and enabling the targeted delivery of different carrier vesicles at various peptide-functionalized locations. We developed a liposomal fusion model system with specific recognition using a set of heterodimeric coiled coil peptide pairs. This study unravels important structure–fusogenic efficacy relationships of peptide fusogens.![]()
Collapse
Affiliation(s)
- Geert A Daudey
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Mengjie Shen
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Ankush Singhal
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Patrick van der Est
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - G J Agur Sevink
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
26
|
Sakuma K, Minami S. Enumeration and comprehensive in-silico modeling of three-helix bundle structures composed of typical αα-hairpins. BMC Bioinformatics 2021; 22:465. [PMID: 34579643 PMCID: PMC8474748 DOI: 10.1186/s12859-021-04380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The design of protein structures from scratch requires special attention to the combination of the types and lengths of the secondary structures and the loops required to build highly designable backbone structure models. However, it is difficult to predict the combinations that result in globular and protein-like conformations without simulations. In this study, we used single-chain three-helix bundles as simple models of protein tertiary structures and sought to thoroughly investigate the conditions required to construct them, starting from the identification of the typical αα-hairpin motifs. RESULTS First, by statistical analysis of naturally occurring protein structures, we identified three αα-hairpins motifs that were specifically related to the left- and right-handedness of helix-helix packing. Second, specifying these αα-hairpins motifs as junctions, we performed sequence-independent backbone-building simulations to comparatively build single-chain three-helix bundle structures and identified the promising combinations of the length of the α-helix and αα-hairpins types that results in tight packing between the first and third α-helices. Third, using those single-chain three-helix bundle backbone structures as template structures, we designed amino acid sequences that were predicted to fold into the target topologies, which supports that the compact single-chain three-helix bundles structures that we sampled show sufficient quality to allow amino-acid sequence design. CONCLUSION The enumeration of the dominant subsets of possible backbone structures for small single-chain three-helical bundle topologies revealed that the compact foldable structures are discontinuously and sparsely distributed in the conformational space. Additionally, although the designs have not been experimentally validated in the present research, the comprehensive set of computational structural models generated also offers protein designers the opportunity to skip building similar structures by themselves and enables them to quickly focus on building specialized designs using the prebuilt structure models. The backbone and best design models in this study are publicly accessible from the following URL: https://doi.org/10.5281/zenodo.4321632 .
Collapse
Affiliation(s)
- Koya Sakuma
- SOKENDAI, The Graduate University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
- Institute for Molecular Science, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
| | | |
Collapse
|
27
|
Kumar P, Woolfson DN. Socket2: A Program for Locating, Visualising, and Analysing Coiled-coil Interfaces in Protein Structures. Bioinformatics 2021; 37:4575-4577. [PMID: 34498035 PMCID: PMC8652024 DOI: 10.1093/bioinformatics/btab631] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/14/2021] [Accepted: 08/24/2021] [Indexed: 12/03/2022] Open
Abstract
Motivation Protein–protein interactions are central to all biological processes. One frequently observed mode of such interactions is the α-helical coiled coil (CC). Thus, an ability to extract, visualize and analyze CC interfaces quickly and without expert guidance would facilitate a wide range of biological research. In 2001, we reported Socket, which locates and characterizes CCs in protein structures based on the knobs-into-holes (KIH) packing between helices in CCs. Since then, studies of natural and de novo designed CCs have boomed, and the number of CCs in the RCSB PDB has increased rapidly. Therefore, we have updated Socket and made it accessible to expert and nonexpert users alike. Results The original Socket only classified CCs with up to six helices. Here, we report Socket2, which rectifies this oversight to identify CCs with any number of helices, and KIH interfaces with any of the 20 proteinogenic residues or incorporating nonnatural amino acids. In addition, we have developed a new and easy-to-use web server with additional features. These include the use of NGL Viewer for instantly visualizing CCs, and tabs for viewing the sequence repeats, helix-packing angles and core-packing geometries of CCs identified and calculated by Socket2. Availability and implementation Socket2 has been tested on all modern browsers. It can be accessed freely at http://coiledcoils.chm.bris.ac.uk/socket2/home.html. The source code is distributed using an MIT licence and available to download under the Downloads tab of the Socket2 home page.
Collapse
Affiliation(s)
- Prasun Kumar
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom BS8 1TD.,Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8, United Kingdom 1TQ
| |
Collapse
|
28
|
Aranha MP, Penfound TA, Salehi S, Botteaux A, Smeesters P, Dale JB, Smith JC. Design of Broadly Cross-Reactive M Protein-Based Group A Streptococcal Vaccines. THE JOURNAL OF IMMUNOLOGY 2021; 207:1138-1149. [PMID: 34341168 DOI: 10.4049/jimmunol.2100286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/13/2021] [Indexed: 11/19/2022]
Abstract
Group A streptococcal infections are a significant cause of global morbidity and mortality. A leading vaccine candidate is the surface M protein, a major virulence determinant and protective Ag. One obstacle to the development of M protein-based vaccines is the >200 different M types defined by the N-terminal sequences that contain protective epitopes. Despite sequence variability, M proteins share coiled-coil structural motifs that bind host proteins required for virulence. In this study, we exploit this potential Achilles heel of conserved structure to predict cross-reactive M peptides that could serve as broadly protective vaccine Ags. Combining sequences with structural predictions, six heterologous M peptides in a sequence-related cluster were predicted to elicit cross-reactive Abs with the remaining five nonvaccine M types in the cluster. The six-valent vaccine elicited Abs in rabbits that reacted with all 11 M peptides in the cluster and functional opsonic Abs against vaccine and nonvaccine M types in the cluster. We next immunized mice with four sequence-unrelated M peptides predicted to contain different coiled-coil propensities and tested the antisera for cross-reactivity against 41 heterologous M peptides. Based on these results, we developed an improved algorithm to select cross-reactive peptide pairs using additional parameters of coiled-coil length and propensity. The revised algorithm accurately predicted cross-reactive Ab binding, improving the Matthews correlation coefficient from 0.42 to 0.74. These results form the basis for selecting the minimum number of N-terminal M peptides to include in potentially broadly efficacious multivalent vaccines that could impact the overall global burden of group A streptococcal diseases.
Collapse
Affiliation(s)
- Michelle P Aranha
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN; .,Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN
| | - Thomas A Penfound
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN
| | - Sanaz Salehi
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Free University of Brussels, Brussels, Belgium
| | - Pierre Smeesters
- Molecular Bacteriology Laboratory, Free University of Brussels, Brussels, Belgium.,Academic Children's Hospital Queen Fabiola, Free University of Brussels, Brussels, Belgium; and.,Centre for International Child Health, University of Melbourne, Melbourne, Victoria, Australia
| | - James B Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, TN;
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN; .,Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN
| |
Collapse
|
29
|
Woolfson DN. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J Mol Biol 2021; 433:167160. [PMID: 34298061 DOI: 10.1016/j.jmb.2021.167160] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/26/2022]
Abstract
Protein design has come of age, but how will it mature? In the 1980s and the 1990s, the primary motivation for de novo protein design was to test our understanding of the informational aspect of the protein-folding problem; i.e., how does protein sequence determine protein structure and function? This necessitated minimal and rational design approaches whereby the placement of each residue in a design was reasoned using chemical principles and/or biochemical knowledge. At that time, though with some notable exceptions, the use of computers to aid design was not widespread. Over the past two decades, the tables have turned and computational protein design is firmly established. Here, I illustrate this progress through a timeline of de novo protein structures that have been solved to atomic resolution and deposited in the Protein Data Bank. From this, it is clear that the impact of rational and computational design has been considerable: More-complex and more-sophisticated designs are being targeted with many being resolved to atomic resolution. Furthermore, our ability to generate and manipulate synthetic proteins has advanced to a point where they are providing realistic alternatives to natural protein functions for applications both in vitro and in cells. Also, and increasingly, computational protein design is becoming accessible to non-specialists. This all begs the questions: Is there still a place for minimal and rational design approaches? And, what challenges lie ahead for the burgeoning field of de novo protein design as a whole?
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK; Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
30
|
Simm D, Hatje K, Waack S, Kollmar M. Critical assessment of coiled-coil predictions based on protein structure data. Sci Rep 2021; 11:12439. [PMID: 34127723 PMCID: PMC8203680 DOI: 10.1038/s41598-021-91886-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Coiled-coil regions were among the first protein motifs described structurally and theoretically. The simplicity of the motif promises that coiled-coil regions can be detected with reasonable accuracy and precision in any protein sequence. Here, we re-evaluated the most commonly used coiled-coil prediction tools with respect to the most comprehensive reference data set available, the entire Protein Data Bank, down to each amino acid and its secondary structure. Apart from the 30-fold difference in minimum and maximum number of coiled coils predicted the tools strongly vary in where they predict coiled-coil regions. Accordingly, there is a high number of false predictions and missed, true coiled-coil regions. The evaluation of the binary classification metrics in comparison with naïve coin-flip models and the calculation of the Matthews correlation coefficient, the most reliable performance metric for imbalanced data sets, suggests that the tested tools' performance is close to random. This implicates that the tools' predictions have only limited informative value. Coiled-coil predictions are often used to interpret biochemical data and are part of in-silico functional genome annotation. Our results indicate that these predictions should be treated very cautiously and need to be supported and validated by experimental evidence.
Collapse
Affiliation(s)
- Dominic Simm
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Klas Hatje
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.417570.00000 0004 0374 1269Present Address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stephan Waack
- grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| | - Martin Kollmar
- grid.418140.80000 0001 2104 4211Group Systems Biology of Motor Proteins, Department of NMR-Based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany ,grid.7450.60000 0001 2364 4210Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
31
|
Dawson WM, Martin FJO, Rhys GG, Shelley KL, Brady RL, Woolfson DN. Coiled coils 9-to-5: rational de novo design of α-helical barrels with tunable oligomeric states. Chem Sci 2021; 12:6923-6928. [PMID: 34745518 PMCID: PMC8503928 DOI: 10.1039/d1sc00460c] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 01/10/2023] Open
Abstract
The rational design of linear peptides that assemble controllably and predictably in water is challenging. Short sequences must encode unique target structures and avoid alternative states. However, the non-covalent forces that stabilize and discriminate between states are weak. Nonetheless, for α-helical coiled-coil assemblies considerable progress has been made in rational de novo design. In these, sequence repeats of nominally hydrophobic (h) and polar (p) residues, hpphppp, direct the assembly of amphipathic helices into dimeric to tetrameric bundles. Expanding this pattern to hpphhph can produce larger α-helical barrels. Here, we show that pentameric to nonameric barrels are accessed by varying the residue at one of the h sites. In peptides with four L/I-K-E-I-A-x-Z repeats, decreasing the size of Z from threonine to serine to alanine to glycine gives progressively larger oligomers. X-ray crystal structures of the resulting α-helical barrels rationalize this: side chains at Z point directly into the helical interfaces, and smaller residues allow closer helix contacts and larger assemblies.
Collapse
Affiliation(s)
- William M Dawson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Freddie J O Martin
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Guto G Rhys
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30 95447 Bayreuth Germany
| | - Kathryn L Shelley
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - R Leo Brady
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biochemistry, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
- Bristol BioDesign Institute, University of Bristol Life Sciences Building, Tyndall Avenue Bristol BS8 1TQ UK
| |
Collapse
|
32
|
Constructing ion channels from water-soluble α-helical barrels. Nat Chem 2021; 13:643-650. [PMID: 33972753 PMCID: PMC7611114 DOI: 10.1038/s41557-021-00688-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022]
Abstract
The design of peptides that assemble in membranes to form functional ion channels is challenging. Specifically, hydrophobic interactions must be designed between the peptides and at the peptide-lipid interfaces simultaneously. Here, we take a multi-step approach towards this problem. First, we use rational de novo design to generate water-soluble α-helical barrels with polar interiors, and confirm their structures using high-resolution X-ray crystallography. These α-helical barrels have water-filled lumens like those of transmembrane channels. Then, we modify the sequences to facilitate their insertion into lipid bilayers. Single-channel electrical recordings and fluorescent imaging of the peptides in membranes show monodisperse, cation-selective channels of unitary conductance. Surprisingly, however, an X-ray structure solved from lipidic cubic phase for one peptide reveals an alternative state with tightly packed helices and a constricted channel. To reconcile these observations, we perform computational analyses to compare the properties of possible different states of the peptide.
Collapse
|
33
|
Upadhyay T, Potteth US, Karekar VV, Saraogi I. A Stutter in the Coiled-Coil Domain of Escherichia coli Co-chaperone GrpE Connects Structure with Function. Biochemistry 2021; 60:1356-1367. [PMID: 33881310 DOI: 10.1021/acs.biochem.1c00110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In bacteria, the co-chaperone GrpE acts as a nucleotide exchange factor and plays an important role in controlling the chaperone cycle of DnaK. The functional form of GrpE is an asymmetric dimer, consisting of a non-ideal coiled coil. Partial unfolding of this region during heat stress results in reduced nucleotide exchange and disrupts protein folding by DnaK. In this study, we elucidate the role of non-ideality in the coiled-coil domain of Escherichia coli GrpE in controlling its co-chaperone activity. The presence of a four-residue stutter introduces nonheptad periodicity in the GrpE coiled coil, resulting in global structural changes in GrpE and regulating its interaction with DnaK. Introduction of hydrophobic residues at the stutter core increased the structural stability of the protein. Using an in vitro FRET assay, we show that the enhanced stability of GrpE resulted in an increased affinity for DnaK. However, these mutants were unable to support bacterial growth at 42°C in a grpE-deleted E. coli strain. This work provides valuable insights into the functional role of a stutter in GrpE in regulating the DnaK-chaperone cycle during heat stress. More generally, our findings illustrate how stutters in a coiled-coil domain regulate structure-function trade-off in proteins.
Collapse
Affiliation(s)
- Tulsi Upadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Upasana S Potteth
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Vaibhav V Karekar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|
34
|
Mehla J, Liechti G, Morgenstein RM, Caufield JH, Hosseinnia A, Gagarinova A, Phanse S, Goodacre N, Brockett M, Sakhawalkar N, Babu M, Xiao R, Montelione GT, Vorobiev S, den Blaauwen T, Hunt JF, Uetz P. ZapG (YhcB/DUF1043), a novel cell division protein in gamma-proteobacteria linking the Z-ring to septal peptidoglycan synthesis. J Biol Chem 2021; 296:100700. [PMID: 33895137 PMCID: PMC8163987 DOI: 10.1016/j.jbc.2021.100700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 01/26/2023] Open
Abstract
YhcB, a poorly understood protein conserved across gamma-proteobacteria, contains a domain of unknown function (DUF1043) and an N-terminal transmembrane domain. Here, we used an integrated approach including X-ray crystallography, genetics, and molecular biology to investigate the function and structure of YhcB. The Escherichia coli yhcB KO strain does not grow at 45 °C and is hypersensitive to cell wall–acting antibiotics, even in the stationary phase. The deletion of yhcB leads to filamentation, abnormal FtsZ ring formation, and aberrant septum development. The Z-ring is essential for the positioning of the septa and the initiation of cell division. We found that YhcB interacts with proteins of the divisome (e.g., FtsI, FtsQ) and elongasome (e.g., RodZ, RodA). Seven of these interactions are also conserved in Yersinia pestis and/or Vibrio cholerae. Furthermore, we mapped the amino acid residues likely involved in the interactions of YhcB with FtsI and RodZ. The 2.8 Å crystal structure of the cytosolic domain of Haemophilus ducreyi YhcB shows a unique tetrameric α-helical coiled-coil structure likely to be involved in linking the Z-ring to the septal peptidoglycan-synthesizing complexes. In summary, YhcB is a conserved and conditionally essential protein that plays a role in cell division and consequently affects envelope biogenesis. Based on these findings, we propose to rename YhcB to ZapG (Z-ring-associated protein G). This study will serve as a starting point for future studies on this protein family and on how cells transit from exponential to stationary survival.
Collapse
Affiliation(s)
- Jitender Mehla
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA.
| | - George Liechti
- Department of Microbiology and Immunology, Henry Jackson Foundation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Randy M Morgenstein
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - J Harry Caufield
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ali Hosseinnia
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Alla Gagarinova
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sadhna Phanse
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Norman Goodacre
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mary Brockett
- Department of Microbiology and Immunology, Henry Jackson Foundation, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Neha Sakhawalkar
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan, Canada
| | - Rong Xiao
- Nexomics Biosciences Inc., Rocky Hill, New Jersey, USA; Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Gaetano T Montelione
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sergey Vorobiev
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - John F Hunt
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA; Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Peter Uetz
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
35
|
Rhys GG, Dawson WM, Beesley JL, Martin FJO, Brady RL, Thomson AR, Woolfson DN. How Coiled-Coil Assemblies Accommodate Multiple Aromatic Residues. Biomacromolecules 2021; 22:2010-2019. [PMID: 33881308 DOI: 10.1021/acs.biomac.1c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rational protein design requires understanding the contribution of each amino acid to a targeted protein fold. For a subset of protein structures, namely, α-helical coiled coils (CCs), knowledge is sufficiently advanced to allow the rational de novo design of many structures, including entirely new protein folds. Current CC design rules center on using aliphatic hydrophobic residues predominantly to drive the folding and assembly of amphipathic α helices. The consequences of using aromatic residues-which would be useful for introducing structural probes, and binding and catalytic functionalities-into these interfaces are not understood. There are specific examples of designed CCs containing such aromatic residues, e.g., phenylalanine-rich sequences, and the use of polar aromatic residues to make buried hydrogen-bond networks. However, it is not known generally if sequences rich in tyrosine can form CCs, or what CC assemblies these would lead to. Here, we explore tyrosine-rich sequences in a general CC-forming background and resolve new CC structures. In one of these, an antiparallel tetramer, the tyrosine residues are solvent accessible and pack at the interface between the core and the surface. In another more complex structure, the residues are buried and form an extended hydrogen-bond network.
Collapse
Affiliation(s)
- Guto G Rhys
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,Department of Biochemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - William M Dawson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Joseph L Beesley
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Freddie J O Martin
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - R Leo Brady
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Andrew R Thomson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom.,School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.,Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
36
|
Cui H, Ali MY, Goyal P, Zhang K, Loh JY, Trybus KM, Solmaz SR. Coiled-coil registry shifts in the F684I mutant of Bicaudal D result in cargo-independent activation of dynein motility. Traffic 2021; 21:463-478. [PMID: 32378283 DOI: 10.1111/tra.12734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022]
Abstract
The dynein adaptor Drosophila Bicaudal D (BicD) is auto-inhibited and activates dynein motility only after cargo is bound, but the underlying mechanism is elusive. In contrast, we show that the full-length BicD/F684I mutant activates dynein processivity even in the absence of cargo. Our X-ray structure of the C-terminal domain of the BicD/F684I mutant reveals a coiled-coil registry shift; in the N-terminal region, the two helices of the homodimer are aligned, whereas they are vertically shifted in the wild-type. One chain is partially disordered and this structural flexibility is confirmed by computations, which reveal that the mutant transitions back and forth between the two registries. We propose that a coiled-coil registry shift upon cargo-binding activates BicD for dynein recruitment. Moreover, the human homolog BicD2/F743I exhibits diminished binding of cargo adaptor Nup358, implying that a coiled-coil registry shift may be a mechanism to modulate cargo selection for BicD2-dependent transport pathways.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kaiqi Zhang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Jia Ying Loh
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont, USA
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York, USA
| |
Collapse
|
37
|
Szczepaniak K, Bukala A, da Silva Neto AM, Ludwiczak J, Dunin-Horkawicz S. A library of coiled-coil domains: from regular bundles to peculiar twists. Bioinformatics 2021; 36:5368-5376. [PMID: 33325494 PMCID: PMC8016460 DOI: 10.1093/bioinformatics/btaa1041] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/30/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
MOTIVATION Coiled coils are widespread protein domains involved in diverse processes ranging from providing structural rigidity to the transduction of conformational changes. They comprise two or more α-helices that are wound around each other to form a regular supercoiled bundle. Owing to this regularity, coiled-coil structures can be described with parametric equations, thus enabling the numerical representation of their properties, such as the degree and handedness of supercoiling, rotational state of the helices, and the offset between them. These descriptors are invaluable in understanding the function of coiled coils and designing new structures of this type. The existing tools for such calculations require manual preparation of input and are therefore not suitable for the high-throughput analyses. RESULTS To address this problem, we developed SamCC-Turbo, a software for fully automated, per-residue measurement of coiled coils. By surveying Protein Data Bank with SamCC-Turbo, we generated a comprehensive atlas of ∼50 000 coiled-coil regions. This machine learning-ready dataset features precise measurements as well as decomposes coiled-coil structures into fragments characterized by various degrees of supercoiling. The potential applications of SamCC-Turbo are exemplified by analyses in which we reveal general structural features of coiled coils involved in functions requiring conformational plasticity. Finally, we discuss further directions in the prediction and modeling of coiled coils. AVAILABILITY AND IMPLEMENTATION SamCC-Turbo is available as a web server (https://lbs.cent.uw.edu.pl/samcc_turbo) and as a Python library (https://github.com/labstructbioinf/samcc_turbo), whereas the results of the Protein Data Bank scan can be browsed and downloaded at https://lbs.cent.uw.edu.pl/ccdb. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Krzysztof Szczepaniak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Adriana Bukala
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Antonio Marinho da Silva Neto
- Molecular Prospecting and Bioinformatics Group, Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, 50670-901 Recife, Brazil
| | - Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Stanislaw Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
38
|
Lv C, Zhang X, Liu Y, Zhang T, Chen H, Zang J, Zheng B, Zhao G. Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chem Soc Rev 2021; 50:3957-3989. [PMID: 33587075 DOI: 10.1039/d0cs01349h] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Compartmentalization is a hallmark of living systems. Through compartmentalization, ubiquitous protein nanocages such as viral capsids, ferritin, small heat shock proteins, and DNA-binding proteins from starved cells fulfill a variety of functions, while their shell-like structures hold great promise for various applications in the field of nanomedicine and nanotechnology. However, the number and structure of natural protein nanocages are limited, and these natural protein nanocages may not be suited for a given application, which might impede their further application as nanovehicles, biotemplates or building blocks. To overcome these shortcomings, different strategies have been developed by scientists to construct artificial protein nanocages, and 1D, 2D and 3D protein arrays with protein nanocages as building blocks through genetic and chemical modification to rival the size and functionality of natural protein nanocages. This review outlines the recent advances in the field of the design and construction of artificial protein nanocages and their assemblies with higher order, summarizes the strategies for creating the assembly of protein nanocages from zero-dimension to three dimensions, and introduces their corresponding applications in the preparation of nanomaterials, electrochemistry, and drug delivery. The review will highlight the roles of both the inter-subunit/intermolecular interactions at the key interface and the protein symmetry in constructing and controlling protein nanocage assemblies with different dimensions.
Collapse
Affiliation(s)
- Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Structural resolution of switchable states of a de novo peptide assembly. Nat Commun 2021; 12:1530. [PMID: 33750792 PMCID: PMC7943578 DOI: 10.1038/s41467-021-21851-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
De novo protein design is advancing rapidly. However, most designs are for single states. Here we report a de novo designed peptide that forms multiple α-helical-bundle states that are accessible and interconvertible under the same conditions. Usually in such designs amphipathic α helices associate to form compact structures with consolidated hydrophobic cores. However, recent rational and computational designs have delivered open α-helical barrels with functionalisable cavities. By placing glycine judiciously in the helical interfaces of an α-helical barrel, we obtain both open and compact states in a single protein crystal. Molecular dynamics simulations indicate a free-energy landscape with multiple and interconverting states. Together, these findings suggest a frustrated system in which steric interactions that maintain the open barrel and the hydrophobic effect that drives complete collapse are traded-off. Indeed, addition of a hydrophobic co-solvent that can bind within the barrel affects the switch between the states both in silico and experimentally. So far most of the de novo designed proteins are for single states only. Here, the authors present the de novo design and crystal structure determination of a coiled-coil peptide that assembles into multiple, distinct conformational states under the same conditions and further characterise its properties with biophysical experiments, NMR and MD simulations.
Collapse
|
40
|
Loening NM, Barbar E. Structural characterization of the self-association domain of swallow. Protein Sci 2021; 30:1056-1063. [PMID: 33641207 DOI: 10.1002/pro.4055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/29/2023]
Abstract
Swallow, a 62 kDa multidomain protein, is required for the proper localization of several mRNAs involved in the development of Drosophila oocytes. The dimerization of Swallow depends on a 71-residue self-association domain in the center of the protein sequence, and is significantly stabilized by a binding interaction with dynein light chain (LC8). Here, we detail the use of solution-state nuclear magnetic resonance spectroscopy to characterize the structure of this self-association domain, thereby establishing that this domain forms a parallel coiled-coil and providing insight into how the stability of the dimerization interaction is regulated.
Collapse
Affiliation(s)
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
41
|
Utterström J, Naeimipour S, Selegård R, Aili D. Coiled coil-based therapeutics and drug delivery systems. Adv Drug Deliv Rev 2021; 170:26-43. [PMID: 33378707 DOI: 10.1016/j.addr.2020.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022]
Abstract
Coiled coils are characterized by an arrangement of two or more α-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self-assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies.
Collapse
|
42
|
Kalman ZE, Mészáros B, Gáspári Z, Dobson L. Distribution of disease-causing germline mutations in coiled-coils implies an important role of their N-terminal region. Sci Rep 2020; 10:17333. [PMID: 33060664 PMCID: PMC7562717 DOI: 10.1038/s41598-020-74354-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022] Open
Abstract
Next-generation sequencing resulted in the identification of a huge number of naturally occurring variations in human proteins. The correct interpretation of the functional effects of these variations necessitates the understanding of how they modulate protein structure. Coiled-coils are α-helical structures responsible for a diverse range of functions, but most importantly, they facilitate the structural organization of macromolecular scaffolds via oligomerization. In this study, we analyzed a comprehensive set of disease-associated germline mutations in coiled-coil structures. Our results suggest an important role of residues near the N-terminal part of coiled-coil regions, possibly critical for superhelix assembly and folding in some cases. We also show that coiled-coils of different oligomerization states exhibit characteristically distinct patterns of disease-causing mutations. Our study provides structural and functional explanations on how disease emerges through the mutation of these structural motifs.
Collapse
Affiliation(s)
- Zsofia E Kalman
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary
- 3in-PPCU Research Group, 2500, Esztergom, Hungary
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary.
| | - Laszlo Dobson
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary.
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
43
|
Abstract
Ethanol is a chemoattractant for Bacillus subtilis even though it is not metabolized and inhibits growth. B. subtilis likely uses ethanol to find ethanol-fermenting microorganisms to utilize as prey. Two chemoreceptors sense ethanol: HemAT and McpB. HemAT’s myoglobin-like sensing domain directly binds ethanol, but the heme group is not involved. McpB is a transmembrane receptor consisting of an extracellular sensing domain and a cytoplasmic signaling domain. While most attractants bind the extracellular sensing domain, we found that ethanol directly binds between intermonomer helices of the cytoplasmic signaling domain of McpB, using a mechanism akin to those identified in many mammalian ethanol-binding proteins. Our results indicate that the sensory repertoire of chemoreceptors extends beyond the sensing domain and can directly involve the signaling domain. Motile bacteria sense chemical gradients using chemoreceptors, which consist of distinct sensing and signaling domains. The general model is that the sensing domain binds the chemical and the signaling domain induces the tactic response. Here, we investigated the unconventional sensing mechanism for ethanol taxis in Bacillus subtilis. Ethanol and other short-chain alcohols are attractants for B. subtilis. Two chemoreceptors, McpB and HemAT, sense these alcohols. In the case of McpB, the signaling domain directly binds ethanol. We were further able to identify a single amino acid residue, Ala431, on the cytoplasmic signaling domain of McpB that, when mutated to serine, reduces taxis to alcohols. Molecular dynamics simulations suggest that the conversion of Ala431 to serine increases coiled-coil packing within the signaling domain, thereby reducing the ability of ethanol to bind between the helices of the signaling domain. In the case of HemAT, the myoglobin-like sensing domain binds ethanol, likely between the helices encapsulating the heme group. Aside from being sensed by an unconventional mechanism, ethanol also differs from many other chemoattractants because it is not metabolized by B. subtilis and is toxic. We propose that B. subtilis uses ethanol and other short-chain alcohols to locate prey, namely, alcohol-producing microorganisms.
Collapse
|
44
|
Zottig X, Côté-Cyr M, Arpin D, Archambault D, Bourgault S. Protein Supramolecular Structures: From Self-Assembly to Nanovaccine Design. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1008. [PMID: 32466176 PMCID: PMC7281494 DOI: 10.3390/nano10051008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Life-inspired protein supramolecular assemblies have recently attracted considerable attention for the development of next-generation vaccines to fight against infectious diseases, as well as autoimmune diseases and cancer. Protein self-assembly enables atomic scale precision over the final architecture, with a remarkable diversity of structures and functionalities. Self-assembling protein nanovaccines are associated with numerous advantages, including biocompatibility, stability, molecular specificity and multivalency. Owing to their nanoscale size, proteinaceous nature, symmetrical organization and repetitive antigen display, protein assemblies closely mimic most invading pathogens, serving as danger signals for the immune system. Elucidating how the structural and physicochemical properties of the assemblies modulate the potency and the polarization of the immune responses is critical for bottom-up design of vaccines. In this context, this review briefly covers the fundamentals of supramolecular interactions involved in protein self-assembly and presents the strategies to design and functionalize these assemblies. Examples of advanced nanovaccines are presented, and properties of protein supramolecular structures enabling modulation of the immune responses are discussed. Combining the understanding of the self-assembly process at the molecular level with knowledge regarding the activation of the innate and adaptive immune responses will support the design of safe and effective nanovaccines.
Collapse
Affiliation(s)
- Ximena Zottig
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mélanie Côté-Cyr
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Dominic Arpin
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Denis Archambault
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Biological Sciences, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC H2L 2C4, Canada; (X.Z.); (M.C.-C.); (D.A.)
- The Quebec Network for Research on Protein Function, Engineering and Applications, PROTEO, Quebec, QC G1V 0A6, Canada
- The Swine and Poultry Infectious Diseases Research Centre, CRIPA, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
45
|
Lou C, Boesen JT, Christensen NJ, Sørensen KK, Thulstrup PW, Pedersen MN, Giralt E, Jensen KJ, Wengel J. Self‐Assembly of DNA–Peptide Supermolecules: Coiled‐Coil Peptide Structures Templated by
d
‐DNA and
l
‐DNA Triplexes Exhibit Chirality‐Independent but Orientation‐Dependent Stabilizing Cooperativity. Chemistry 2020; 26:5676-5684. [DOI: 10.1002/chem.201905636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Chenguang Lou
- Biomolecular Nanoscale Engineering CenterDepartment of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Josephine Tuborg Boesen
- Biomolecular Nanoscale Engineering CenterDepartment of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Niels Johan Christensen
- Biomolecular Nanoscale Engineering CenterDepartment of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Kasper K. Sørensen
- Biomolecular Nanoscale Engineering CenterDepartment of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Peter W. Thulstrup
- Department of ChemistryUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Martin Nors Pedersen
- X-ray and Neutron ScienceNiels Bohr InstituteUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Ø Denmark
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST) Baldiri Reixac 10 Barcelona 08028 Spain
- Department of Inorganic and Organic ChemistryUniversity of Barcelona Martí i Franquès 1–11 Barcelona 08028 Spain
| | - Knud J. Jensen
- Biomolecular Nanoscale Engineering CenterDepartment of ChemistryUniversity of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering CenterDepartment of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense M Denmark
| |
Collapse
|
46
|
Thomas JMH, Keegan RM, Rigden DJ, Davies OR. Extending the scope of coiled-coil crystal structure solution by AMPLE through improved ab initio modelling. Acta Crystallogr D Struct Biol 2020; 76:272-284. [PMID: 32133991 PMCID: PMC7057219 DOI: 10.1107/s2059798320000443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/14/2020] [Indexed: 11/10/2022] Open
Abstract
The phase problem remains a major barrier to overcome in protein structure solution by X-ray crystallography. In recent years, new molecular-replacement approaches using ab initio models and ideal secondary-structure components have greatly contributed to the solution of novel structures in the absence of clear homologues in the PDB or experimental phasing information. This has been particularly successful for highly α-helical structures, and especially coiled-coils, in which the relatively rigid α-helices provide very useful molecular-replacement fragments. This has been seen within the program AMPLE, which uses clustered and truncated ensembles of numerous ab initio models in structure solution, and is already accomplished for α-helical and coiled-coil structures. Here, an expansion in the scope of coiled-coil structure solution by AMPLE is reported, which has been achieved through general improvements in the pipeline, the removal of tNCS correction in molecular replacement and two improved methods for ab initio modelling. Of the latter improvements, enforcing the modelling of elongated helices overcame the bias towards globular folds and provided a rapid method (equivalent to the time requirements of the existing modelling procedures in AMPLE) for enhanced solution. Further, the modelling of two-, three- and four-helical oligomeric coiled-coils, and the use of full/partial oligomers in molecular replacement, provided additional success in difficult and lower resolution cases. Together, these approaches have enabled the solution of a number of parallel/antiparallel dimeric, trimeric and tetrameric coiled-coils at resolutions as low as 3.3 Å, and have thus overcome previous limitations in AMPLE and provided a new functionality in coiled-coil structure solution at lower resolutions. These new approaches have been incorporated into a new release of AMPLE in which automated elongated monomer and oligomer modelling may be activated by selecting `coiled-coil' mode.
Collapse
Affiliation(s)
- Jens M. H. Thomas
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Ronan M. Keegan
- Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Didcot OX11 0FA, England
| | - Daniel J. Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England
| | - Owen R. Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, England
| |
Collapse
|
47
|
Aranha MP, Penfound TA, Spencer JA, Agarwal R, Baudry J, Dale JB, Smith JC. Structure-based group A streptococcal vaccine design: Helical wheel homology predicts antibody cross-reactivity among streptococcal M protein-derived peptides. J Biol Chem 2020; 295:3826-3836. [PMID: 32029479 DOI: 10.1074/jbc.ra119.011258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/05/2020] [Indexed: 12/26/2022] Open
Abstract
Group A streptococcus (Strep A) surface M protein, an α-helical coiled-coil dimer, is a vaccine target and a major determinant of streptococcal virulence. The sequence-variable N-terminal region of the M protein defines the M type and also contains epitopes that promote opsonophagocytic killing of streptococci. Recent reports have reported considerable cross-reactivity among different M types, suggesting the prospect of identifying cross-protective epitopes that would constitute a broadly protective multivalent vaccine against Strep A isolates. Here, we have used a combination of immunological assays, structural biology, and cheminformatics to construct a recombinant M protein-based vaccine that included six Strep A M peptides that were predicted to elicit antisera that would cross-react with an additional 15 nonvaccine M types of Strep A. Rabbit antisera against this recombinant vaccine cross-reacted with 10 of the 15 nonvaccine M peptides. Two of the five nonvaccine M peptides that did not cross-react shared high sequence identity (≥50%) with the vaccine peptides, implying that high sequence identity alone was insufficient for cross-reactivity among the M peptides. Additional structural analyses revealed that the sequence identity at corresponding polar helical-wheel heptad sites between vaccine and nonvaccine peptides accurately distinguishes cross-reactive from non-cross-reactive peptides. On the basis of these observations, we developed a scoring algorithm based on the sequence identity at polar heptad sites. When applied to all epidemiologically important M types, this algorithm should enable the selection of a minimal number of M peptide-based vaccine candidates that elicit broadly protective immunity against Strep A.
Collapse
Affiliation(s)
- Michelle P Aranha
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States .,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Thomas A Penfound
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jay A Spencer
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Rupesh Agarwal
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jerome Baudry
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - James B Dale
- Department of Medicine, Division of Infectious Diseases, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States.,University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
48
|
Karade SS, Ansari A, Srivastava VK, Nayak AR, Pratap JV. Molecular and structural analysis of a mechanical transition of helices in the L. donovani coronin coiled-coil domain. Int J Biol Macromol 2020; 143:785-796. [PMID: 31778699 DOI: 10.1016/j.ijbiomac.2019.09.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 09/04/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions of cellular importance are mediated by coiled coils (CCs), the ubiquitous structural motif formed by the association of two or more α-helices in a knobs into holes manner. Coronins, actin-associated multi-functional proteins that possess distinct cytoskeleton-dependent and independent functions, oligomerize through their C-terminal CC domain. The structure of the L. donovani coronin CC domain (LdCoroCC; PDB ID 5CX2) revealed, in addition to a novel topology and architecture, an inherent asymmetry, with one of the helices of the 4-helix bundle axially shifted (~2 turns). The structural analysis identified that steric hindrance by Ile 486, Leu 493 and Met 500 as the cause for this asymmetry. To experimentally validate this hypothesis and to better understand the sequence-structure relationship in CCs, these amino acids have been mutated (I486A, L493A, M500V and the double mutant I486A-L493A) and characterized. Thermal CD studies suggest that the I486A and M500V mutants have comparable Tm values to LdCoroCC, while the other mutants have lower melting temperatures. The mutant crystal structures (I486A, M500V and the double mutant) retain the 'ade' core packing as LdcoroCC. While the M500V structure is similar to LdCoroCC, the I486A and the I486A-L493A structures show an asymmetry to symmetry transition. This study reveals crucial role of residues at position 'a' in coiled-coil domain play an important role in stabilizing the asymmetry in LdCoroCC, which might be necessary pursue specific biological function(s) inside the Leishmania.
Collapse
Affiliation(s)
- Sharanbasappa Shrimant Karade
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ahmadullah Ansari
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vijay Kumar Srivastava
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ashok Ranjan Nayak
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - J Venkatesh Pratap
- Molecular and Structural Biology Division, CSIR - Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
49
|
Heal JW, Bartlett GJ, Wood CW, Thomson AR, Woolfson DN. Applying graph theory to protein structures: an Atlas of coiled coils. Bioinformatics 2019; 34:3316-3323. [PMID: 29722888 PMCID: PMC6157074 DOI: 10.1093/bioinformatics/bty347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Motivation To understand protein structure, folding and function fully and to design proteins de novo reliably, we must learn from natural protein structures that have been characterized experimentally. The number of protein structures available is large and growing exponentially, which makes this task challenging. Indeed, computational resources are becoming increasingly important for classifying and analyzing this resource. Here, we use tools from graph theory to define an Atlas classification scheme for automatically categorizing certain protein substructures. Results Focusing on the α-helical coiled coils, which are ubiquitous protein-structure and protein-protein interaction motifs, we present a suite of computational resources designed for analyzing these assemblies. iSOCKET enables interactive analysis of side-chain packing within proteins to identify coiled coils automatically and with considerable user control. Applying a graph theory-based Atlas classification scheme to structures identified by iSOCKET gives the Atlas of Coiled Coils, a fully automated, updated overview of extant coiled coils. The utility of this approach is illustrated with the first formal classification of an emerging subclass of coiled coils called α-helical barrels. Furthermore, in the Atlas, the known coiled-coil universe is presented alongside a partial enumeration of the 'dark matter' of coiled-coil structures; i.e. those coiled-coil architectures that are theoretically possible but have not been observed to date, and thus present defined targets for protein design. Availability and implementation iSOCKET is available as part of the open-source GitHub repository associated with this work (https://github.com/woolfson-group/isocket). This repository also contains all the data generated when classifying the protein graphs. The Atlas of Coiled Coils is available at: http://coiledcoils.chm.bris.ac.uk/atlas/app.
Collapse
Affiliation(s)
- Jack W Heal
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Andrew R Thomson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Chemistry, University of Glasgow, Glasgow, UK
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Life Sciences Building, Bristol, UK
| |
Collapse
|
50
|
Gae DD, Budamagunta MS, Hess JF, McCarrick RM, Lorigan GA, FitzGerald PG, Voss JC. Completion of the Vimentin Rod Domain Structure Using Experimental Restraints: A New Tool for Exploring Intermediate Filament Assembly and Mutations. Structure 2019; 27:1547-1560.e4. [PMID: 31402219 PMCID: PMC6774864 DOI: 10.1016/j.str.2019.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/23/2019] [Accepted: 07/22/2019] [Indexed: 11/28/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy of full-length vimentin and X-ray crystallography of vimentin peptides has provided concordant structural data for nearly the entire central rod domain of the protein. In this report, we use a combination of EPR spectroscopy and molecular modeling to determine the structure and dynamics of the missing region and unite the separate elements into a single structure. Validation of the linker 1-2 (L1-2) modeling approach is demonstrated by the close correlation between EPR and X-ray data in the previously solved regions. Importantly, molecular dynamic (MD) simulation of the constructed model agrees with spin label motion as determined by EPR. Furthermore, MD simulation shows L1-2 heterogeneity, with a concerted switching of states among the dimer chains. These data provide the first ever experimentally driven model of a complete intermediate filament rod domain, providing research tools for further modeling and assembly studies.
Collapse
Affiliation(s)
- David D Gae
- Department of Surgery, School of Medicine, University of California San Francisco, San Francisco, CA 94118, USA
| | - Madhu S Budamagunta
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - John F Hess
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|