1
|
Multiple Regulations of Parasitic Protozoan Viruses: A Double-Edged Sword for Protozoa. mBio 2023; 14:e0264222. [PMID: 36633419 PMCID: PMC9973342 DOI: 10.1128/mbio.02642-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Parasite infections affect human and animal health significantly and contribute to a major burden on the global economy. Parasitic protozoan viruses (PPVs) affect the protozoan parasites' morphology, phenotypes, pathogenicity, and growth rates. This discovery provides an opportunity to develop a novel preventive and therapeutic strategy for parasitic protozoan diseases (PPDs). Currently, there is greater awareness regarding PPVs; however, knowledge of viruses and their associations with host diseases remains limited. Parasite-host interactions become more complex owing to PPVs; however, few studies have investigated underlying viral regulatory mechanisms in parasites. In this study, we reviewed relevant studies to identify studies that investigated PPV development and life cycles, the triangular association between viruses, parasites, and hosts, and the effects of viruses on protozoan pathogenicity. This study highlights that viruses can alter parasite biology, and viral infection of parasites may exacerbate the adverse effects of virus-containing parasites on hosts or reduce parasite virulence. PPVs should be considered in the prevention of parasitic epidemics and outbreaks, although their effects on the host and the complexity of the triangular association between PPVs, protozoans, and hosts remain unclear. IMPORTANCE PPVs-based regulation of parasitic protozoa can provide a theoretical basis and direction for PPD prevention and control, although PPVs and PPV regulatory mechanisms remain unclear. In this review, we investigated the differences between PPVs and the unique properties of each virus regarding virus discovery, structures, and life cycles, focused on the Trichomonas vaginalis virus, Giardia lamblia virus, Leishmania RNA virus, and the Cryptosporidium parvum virus 1. The triangular association between PPVs, parasitic protozoa, and hosts reveals the "double-edged sword" property of PPVs, which maintains a balance between parasitic protozoa and hosts in both positive and negative respects. These studies discuss the complexity of parasitic protozoa and their co-existence with hosts and suggest novel pathways for using PPVs as tools to gain a deeper understanding of protozoal infection and treatment.
Collapse
|
2
|
Marucci G, Zullino I, Bertuccini L, Camerini S, Cecchetti S, Pietrantoni A, Casella M, Vatta P, Greenwood AD, Fiorillo A, Lalle M. Re-Discovery of Giardiavirus: Genomic and Functional Analysis of Viruses from Giardia duodenalis Isolates. Biomedicines 2021; 9:654. [PMID: 34201207 PMCID: PMC8230311 DOI: 10.3390/biomedicines9060654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
Giardiasis, caused by the protozoan parasite Giardia duodenalis, is an intestinal diarrheal disease affecting almost one billion people worldwide. A small endosymbiotic dsRNA viruses, G. lamblia virus (GLV), genus Giardiavirus, family Totiviridae, might inhabit human and animal isolates of G. duodenalis. Three GLV genomes have been sequenced so far, and only one was intensively studied; moreover, a positive correlation between GLV and parasite virulence is yet to be proved. To understand the biological significance of GLV infection in Giardia, the characterization of several GLV strains from naturally infected G. duodenalis isolates is necessary. Here we report high-throughput sequencing of four GLVs strains, from Giardia isolates of human and animal origin. We also report on a new, unclassified viral sequence (designed GdRV-2), unrelated to Giardiavirus, encoding and expressing for a single large protein with an RdRp domain homologous to Totiviridae and Botybirnaviridae. The result of our sequencing and proteomic analyses challenge the current knowledge on GLV and strongly suggest that viral capsid protein translation unusually starts with a proline and that translation of the RNA-dependent RNA polymerase (RdRp) occurs via a +1/-2 ribosomal frameshift mechanism. Nucleotide polymorphism, confirmed by mass-spectrometry analysis, was also observed among and between GLV strains. Phylogenetic analysis indicated the occurrence of at least two GLV subtypes which display different phenotypes and transmissibility in experimental infections of a GLV naïve Giardia isolate.
Collapse
Affiliation(s)
- Gianluca Marucci
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Ilaria Zullino
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Lucia Bertuccini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Serena Camerini
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Serena Cecchetti
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Agostina Pietrantoni
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (L.B.); (S.C.); (S.C.); (A.P.); (M.C.)
| | - Paolo Vatta
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| | - Alex D. Greenwood
- Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany;
- Department of Veterinary Medicine, Freie Universität Berlin, 14195 Berlin, Germany
| | - Annarita Fiorillo
- Department of Biochemical Science “A. Rossi-Fanelli”, Sapienza University, 00185 Rome, Italy;
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Disease, Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.M.); (I.Z.); (P.V.)
| |
Collapse
|
3
|
Abstract
Giardiavirus is the only virus that infects Giardia duodenalis, a highly prevalent parasite worldwide, especially in low-income and developing countries. This virus belongs to the Totiviridae family, being a relative of other viruses that infect fungi and protozoa. It has a simple structure with only two proteins encoded in its genome and it appears that it can leave the cell without lysis. All these characteristics make it an interesting study model; however, its research has unfortunately made little progress in recent years. Thus, in this review, we summarize the currently available data on Giardiavirus, from their structure, genome and main proteins, to the uses that have been given to them and the possible health applications for the future.
Collapse
|
4
|
Ventura M, Martin L, Jaubert C, Andréola ML, Masante C. Hepatitis C virus intragenomic interactions are modulated by the SLVI RNA structure of the core coding sequence. J Gen Virol 2017; 98:633-642. [PMID: 28141507 DOI: 10.1099/jgv.0.000719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Michel Ventura
- Fédération de Recherche "TransbioMed", Bordeaux, France
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
| | - Lucie Martin
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
- Fédération de Recherche "TransbioMed", Bordeaux, France
| | - Chloé Jaubert
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
- Fédération de Recherche "TransbioMed", Bordeaux, France
| | - Marie-Line Andréola
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
- Fédération de Recherche "TransbioMed", Bordeaux, France
| | - Cyril Masante
- CNRS UMR 5234, Laboratoire MFP, Université de Bordeaux, Bordeaux F-33076, France
- Fédération de Recherche "TransbioMed", Bordeaux, France
| |
Collapse
|
5
|
Garlapati S, Saraiya AA, Wang CC. A La autoantigen homologue is required for the internal ribosome entry site mediated translation of giardiavirus. PLoS One 2011; 6:e18263. [PMID: 21479239 PMCID: PMC3066225 DOI: 10.1371/journal.pone.0018263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/28/2011] [Indexed: 12/11/2022] Open
Abstract
Translation of Giardiavirus (GLV) mRNA is initiated at an internal ribosome entry site (IRES) in the viral transcript. The IRES localizes to a downstream portion of 5′ untranslated region (UTR) and a part of the early downstream coding region of the transcript. Recent studies indicated that the IRES does not require a pre-initiation complex to initiate translation but may directly recruit the small ribosome subunit with the help of a number of trans-activating protein factors. A La autoantigen homologue in the viral host Giardia lamblia, GlLa, was proposed as one of the potential trans-activating factors based on its specific binding to GLV-IRES in vitro. In this study, we further elucidated the functional role of GlLa in GLV-IRES mediated translation in Giardia by knocking down GlLa with antisense morpholino oligo, which resulted in a reduction of GLV-IRES activity by 40%. An over-expression of GlLa in Giardia moderately stimulated GLV-IRES activity by 20%. A yeast inhibitory RNA (IRNA), known to bind mammalian and yeast La autoantigen and inhibit Poliovirus and Hepatitis C virus IRES activities in vitro and in vivo, was also found to bind to GlLa protein in vitro and inhibited GLV-IRES function in vivo. The C-terminal domain of La autoantigen interferes with the dimerization of La and inhibits its function. An over-expression of the C-terminal domain (200–348aa) of GlLa in Giardia showed a dominant-negative effect on GLV-IRES activity, suggesting a potential inhibition of GlLa dimerization. HA tagged GlLa protein was detected mainly in the cytoplasm of Giardia, thus supporting a primary role of GlLa in translation initiation in Giardiavirus.
Collapse
Affiliation(s)
- Srinivas Garlapati
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Garlapati S, Wang CC. Giardiavirus internal ribosome entry site has an apparently unique mechanism of initiating translation. PLoS One 2009; 4:e7435. [PMID: 19826476 PMCID: PMC2757703 DOI: 10.1371/journal.pone.0007435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 09/12/2009] [Indexed: 01/27/2023] Open
Abstract
Giardiavirus (GLV) utilizes an internal ribosome entry site (IRES) for translation initiation in the early branching eukaryote Giardia lamblia. Unlike most of the viral IRESs among higher eukaryotes, which localize primarily within the 5'-untranslated region (UTR), the GLV IRES comprises 253 nts of 5'UTR and the initial 264 nts in the open-reading-frame (ORF). To test if GLV IRES also functions in higher eukaryotic systems, we examined it in rabbit reticulocyte lysate (RRL) and found that it functions much less efficiently than the IRES from the Encephalomyocarditis virus (EMCV) or Cricket paralysis virus (CrPV). In contrast, both EMCV-IRES and CrPV-IRESs were inactive in transfected Giardia cells. Structure-function analysis indicated that only the stem-loop U5 from the 5'UTR and the stem-loop I plus the downstream box (Dbox) from the ORF of GLV IRES are required for limited IRES function in RRL. Edeine, a translation initiation inhibitor, did not significantly affect the function of GLV IRES in either RRL or Giardia, indicating that a pre-initiation complex is not required for GLV IRES-mediated translation initiation. However, the small ribosomal subunit purified from Giardia did not bind to GLV IRES, indicating that additional protein factors may be necessary. A member of the helicase family IBP1 and two known viral IRES binding proteins La autoantigen and SRp20 have been identified in Giardia that bind to GLV IRES in vitro. These three proteins could be involved in facilitating small ribosome recruitment for initiating translation.
Collapse
Affiliation(s)
- Srinivas Garlapati
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
7
|
Clyde K, Harris E. RNA secondary structure in the coding region of dengue virus type 2 directs translation start codon selection and is required for viral replication. J Virol 2006; 80:2170-82. [PMID: 16474125 PMCID: PMC1395379 DOI: 10.1128/jvi.80.5.2170-2182.2006] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dengue virus is a positive-strand RNA virus and a member of the genus Flavivirus, which includes West Nile, yellow fever, and tick-borne encephalitis viruses. Flavivirus genomes are translated as a single polyprotein that is subsequently cleaved into 10 proteins, the first of which is the viral capsid (C) protein. Dengue virus type 2 (DENV2) and other mosquito-borne flaviviruses initiate translation of C from a start codon in a suboptimal context and have multiple in-frame AUGs downstream. Here, we show that an RNA hairpin structure in the capsid coding region (cHP) directs translation start site selection in human and mosquito cells. The ability of the cHP to direct initiation from the first start codon is proportional to its thermodynamic stability, is position dependent, and is sequence independent, consistent with a mechanism in which the scanning initiation complex stalls momentarily over the first AUG as it begins to unwind the cHP. The cHP of tick-borne flaviviruses is not maintained in a position to influence start codon selection, which suggests that this coding region cis element may serve another function in the flavivirus life cycle. Here, we demonstrate that the DENV2 cHP and both the first and second AUGs of C are necessary for efficient viral replication in human and mosquito cells. While numerous regulatory elements have been identified in the untranslated regions of RNA viral genomes, we show that the cHP is a coding-region RNA element that directs start codon selection and is required for viral replication.
Collapse
Affiliation(s)
- Karen Clyde
- Division of Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, 94720-7360, USA
| | | |
Collapse
|
8
|
Garlapati S, Wang CC. Structural elements in the 5'-untranslated region of giardiavirus transcript essential for internal ribosome entry site-mediated translation initiation. EUKARYOTIC CELL 2005; 4:742-54. [PMID: 15821134 PMCID: PMC1087810 DOI: 10.1128/ec.4.4.742-754.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Translation of uncapped giardiavirus (GLV) mRNA in Giardia lamblia requires the presence of a 5'-untranslated region (5'-UTR) and a viral capsid coding region. We used dicistronic viral constructs to show that the downstream 253 nucleotides (nt) of the 5'-UTR plus the initial 264-nt capsid coding region constitute an internal ribosome entry site (IRES). Predicted secondary structures in the 253-nt 5'-UTR include stem-loops U3, U4a, U4b, U4c, and U5. Chemical and enzymatic probing analysis confirmed the presence of all predicted stem-loops except U4a. Disruption of stem-loop structures U3 and U5 by site-directed mutagenesis resulted in a drastic reduction in translation of a monocistronic viral transcript, which could be restored by compensatory sequence changes. Mutations disrupting stem-loops U4b and U4c do not exert an appreciable effect on translation, but certain sequences in the U4a region and in U4b do appear to play important roles in the IRES. Structural analysis also suggests that an 8-nt U3 loop sequence (nt 147 to 154) pairs with an 8-nt downstream sequence (nt 168 to 175) to form a pseudoknot. Disruption of this pseudoknot by mutagenesis resulted in a drastic reduction in translation, which could be restored by compensatory sequence changes. This study has defined the secondary structure in the 5'-UTR of the IRES. Together with the previous results, we have now completed analysis of the entire structure of GLV IRES and fully defined the functionally essential structural elements in it.
Collapse
Affiliation(s)
- Srinivas Garlapati
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94107-2280, USA
| | | |
Collapse
|
9
|
Li L, Wang CC. Capped mRNA with a single nucleotide leader is optimally translated in a primitive eukaryote, Giardia lamblia. J Biol Chem 2004; 279:14656-64. [PMID: 14722094 DOI: 10.1074/jbc.m309879200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-untranslated region (5'-UTR) of an mRNA plays an important role in translation initiation in eukaryotes. A minimal length of about 20 nucleotides is required to prevent leaky ribosome scanning. In one of the most primitive eukaryotes, Giardia lamblia, however, the mRNAs have 5'-UTRs mostly in the range of 0 to 14 nucleotides without a conserved sequence, which raises the question on how the ribosome could effectively scan such short 5'-UTRs for an accurate initiation of translation. In the present study, we expressed capped transcripts of luciferase gene in Giardia trophozoites via transfection and observed that when the 5'-UTR of the transcript was lengthened from 9 to 21 nucleotides, there was a corresponding decrease of translation efficiency. Conversely, shortening of the 5'-UTR from nine nucleotides down to a single nucleotide did not result in any reduced translation or leaky scanning. Translation appeared to initiate exclusively from the first initiation codon located downstream from the cap. Experimental evidence indicated also that a stem-loop structure immediately downstream from the initiation codon exerted significant inhibition on translation initiation when the 5'-UTR consisted of less than seven nucleotides. This inhibitory effect was abolished by increasing the distance between the stem-loop and the cap-G structure either upstream or downstream from the start codon, thus suggesting a spatial requirement for effective ribosome recruitment. Overall, our results suggest an absence of ribosome scanning for AUG in initiating translation in Giardia. A capped mRNA with a single nucleotide leader is apparently sufficient for recruiting ribosome and initiating translation.
Collapse
Affiliation(s)
- Lei Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA
| | | |
Collapse
|
10
|
Garlapati S, Wang CC. Identification of a novel internal ribosome entry site in giardiavirus that extends to both sides of the initiation codon. J Biol Chem 2003; 279:3389-97. [PMID: 14615487 DOI: 10.1074/jbc.m307565200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Giardia lamblia, enhanced translation of luciferase mRNA, flanked between the 5'-untranslated region (UTR) and 3 '-end of giardiavirus transcript, requires the presence of the initial 264-nucleotide (nt) viral capsid-coding region. By introducing the transcripts of dicistronic viral constructs into Giardia, we demonstrated that the 264-nt downstream region alone is insufficient to function as an internal ribosome entry site (IRES) without including a portion of the 5 '-UTR as well. Deletion analysis showed that efficient internal initiation requires the last 253 nts (nts 114-367) of the 5 '-UTR in combination with the downstream 264 nts. Specific mutations that disrupted the predicted secondary structural elements in either the 5 '-UTR or the 264-nt capsid-coding region completely abolished the IRES-mediated translation of downstream cistron, suggesting that the IRES activity requires the presence of these structures in both regions. Mutations that abolished translation of the first cistron did not, however, affect the IRES-mediated translation of the second cistron, indicating that this IRES-mediated translation is independent of the translation of the upstream cistron. This is, to our knowledge, the first reported identification of a viral IRES with an estimated size of 517 nts that extends to both sides of the initiation site.
Collapse
Affiliation(s)
- Srinivas Garlapati
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA
| | | |
Collapse
|
11
|
Abstract
Giardia lamblia is a flagellated protozoan that infects several species including humans and is a major agent of waterborne outbreaks of diarrhea. G. lamblia is also important in the study of basic eukaryotic molecular biology and evolution; however, it has been difficult to employ standard genetic methods in the study of Giardia. Over the past 6 years, two transfection systems were developed and used for the genetic manipulation of G. lamblia. Both systems allow transient or stable transfection of Giardia and/or foreign genes. The DNA-based transfection system allows electroporation of circular or linear plasmid DNA into trophozoites. The RNA virus-based transfection system requires electroporation of in vitro transcribed RNA into GLV-infected trophozoites. Because G. lamblia is one of the most rudimentary eukaryotes, its processes of transcription, translation and protein transport, as well as its metabolic and biochemical pathways, are of interest. Study of these areas will continue to be advanced using transfection in combination with cellular and molecular tools. Several groups have combined these technologies with other techniques to study protein transport and the transcriptional and post-transcriptional regulation of Giardia genes, including encystation-specific and variant surface protein genes. In addition, coupling antisense techniques with transfection has permitted functional knockout of Giardia metabolic genes, allowing Giardia metabolic pathways to be studied. In the near future, both transfection systems will be potent tools in our investigations of the perplexing questions in Giardia biology.
Collapse
Affiliation(s)
- Sara R Davis-Hayman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0425, USA.
| | | |
Collapse
|
12
|
Ong SJ, Huang LC, Liu HW, Chang SC, Yang YC, Bessarab I, Tai JH. Characterization of a bi-directional promoter for divergent transcription of a PHD-zinc finger protein gene and a ran gene in the protozoan pathogen Giardia lamblia. Mol Microbiol 2002; 43:665-76. [PMID: 11929523 DOI: 10.1046/j.1365-2958.2002.02772.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We showed previously that transcription of the ran gene in Giardia lamblia is regulated by an AT-rich initiator. In the present study, the ran initiator was found to regulate transcription of a neighbouring PHD zinc-finger protein gene. Deletion and scanning mutagenesis of the phd promoter in a firefly luciferase reporter system showed that the promoter activity is determined by multiple single-stranded T-tract DNA elements distributed into a distal domain spanning the ran initiator (-134/-103) and a proximal domain (-88/-48) spanning phd messenger RNA (mRNA) start sites (-74, -55 and -53 relative to the first ATG). The promoter activity is repressed by the single T-tract element on a non-template strand of the ran initiator, and is activated by closely spaced T-tract elements on the opposite strand. The T-tract elements in the phd and ran initiators compete for similar ssDNA binding proteins. Mutation of -47/-42 resulted in dramatic reduction of luciferase activity without changing luciferase mRNA levels, indicating the potential involvement of a regulatory mechanism in PHD protein translation. These findings suggest that G. lamblia uses multiple copies of a T-tract element as both core and distal elements in regulating transcription initiation, and that expression of the phd gene is regulated at multiple levels.
Collapse
Affiliation(s)
- Shiou-Jeng Ong
- Department of Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The RNA polymerase of giardiavirus (GLV) is synthesized as a fusion protein through a -1 ribosomal frameshift in a region where gag and pol open reading frames (ORFs) overlap. A heptamer, CCCUUUA, and a potential pseudoknot found in the overlap were predicted to be required for the frameshift. A 68-nucleotide (nt) cDNA fragment containing these elements was inserted between the GLV 5' 631-nt cDNA and the out-of-frame luciferase gene that required a -1 frameshift within the 68-nt fragment for expression. Giardia lamblia trophozoites transfected with the transcript of this construct showed a frameshift frequency at 1.7%, coinciding with the polymerase-to-capsid protein ratio in GLV. The heptamer is required for the frameshift but can be replaced with other sequences of the same motif. Mutations placing stop codons in the 0 or -1 frame, located directly before or after the heptamer, implicated the latter as the site for the -1 frameshift. Shortening or destroying the putative stem decreased the frameshift efficiency threefold; the efficiency was fully recovered by mutations to restore the stem. Deleting 18 nt from the 3' end of the 68-nt fragment, which formed the second stem in the putative pseudoknot, had no effect on the frequency of the frameshift. Chemical probing of the RNA secondary structure in the frameshift region showed that bases resistant to chemical modification were clustered in the putative stem structures, thus confirming the presence of the postulated stem-loop, while all the bases in the loop were chemically modified, thus ruling out their capability of forming a pseudoknot. These results confirmed the conclusion based on data from the mutation study that there is but a simple stem-loop downstream from the heptamer. Together, they constitute the structural elements for a -1 ribosomal frameshift in the GLV transcript.
Collapse
Affiliation(s)
- L Li
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 94143-0446, USA
| | | | | |
Collapse
|