1
|
Baral P, Sengul MY, MacKerell AD. Grand canonical Monte Carlo and deep learning assisted enhanced sampling to characterize the distribution of Mg2+ and influence of the Drude polarizable force field on the stability of folded states of the twister ribozyme. J Chem Phys 2024; 161:225102. [PMID: 39665326 PMCID: PMC11646137 DOI: 10.1063/5.0241246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Molecular dynamics simulations are crucial for understanding the structural and dynamical behavior of biomolecular systems, including the impact of their environment. However, there is a gap between the time scale of these simulations and that of real-world experiments. To address this problem, various enhanced simulation methods have been developed. In addition, there has been a significant advancement of the force fields used for simulations associated with the explicit treatment of electronic polarizability. In this study, we apply oscillating chemical potential grand canonical Monte Carlo and machine learning methods to determine reaction coordinates combined with metadynamics simulations to explore the role of Mg2+ distribution and electronic polarizability in the context of the classical Drude oscillator polarizable force field on the stability of the twister ribozyme. The introduction of electronic polarizability along with the details of the distribution of Mg2+ significantly stabilizes the simulations with respect to sampling the crystallographic conformation. The introduction of electronic polarizability leads to increased stability over that obtained with the additive CHARMM36 FF reported in a previous study, allowing for a distribution of a wider range of ions to stabilize twister. Specific interactions contributing to stabilization are identified, including both those observed in the crystal structures and additional experimentally unobserved interactions. Interactions of Mg2+ with the bases are indicated to make important contributions to stabilization. Notably, the presence of specific interactions between the Mg2+ ions and bases or the non-bridging phosphate oxygens (NBPOs) leads to enhanced dipole moments of all three moieties. Mg2+-NBPO interactions led to enhanced dipoles of the phosphates but, interestingly, not in all the participating ions. The present results further indicate the importance of electronic polarizability in stabilizing RNA in molecular simulations and the complicated nature of the relationship of Mg2+-RNA interactions with the polarization response of the bases and phosphates.
Collapse
Affiliation(s)
- Prabin Baral
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, USA
| | - Mert Y. Sengul
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, USA
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Baltimore, Baltimore, Maryland 21201, USA
| |
Collapse
|
2
|
Habibullah S, Baidya L, Kumar S, Reddy G. Metal Ion Sensing by Tetraloop-like RNA Fragment: Role of Compact Intermediates with Non-Native Metal Ion-RNA Inner-Shell Contacts. J Phys Chem B 2024; 128:11389-11401. [PMID: 39508828 DOI: 10.1021/acs.jpcb.4c06122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Divalent metal ions influence the folding and function of ribonucleic acid (RNA) in the cells. The mechanism of how RNA structural elements in riboswitches sense specific metal ions is unclear. RNA interacts with ions through two distinct binding modes: direct interaction between the ion and RNA (inner-shell (IS) coordination) and indirect interaction between the ion and RNA mediated through water molecules (outer-shell (OS) coordination). To understand how RNA senses metal ions such as Mg2+ and Ca2+, we studied the folding of a small RNA segment from the Mg2+ sensing M-Box riboswitch using computer simulations. This RNA segment has the characteristics of a GNRA tetraloop motif and interestingly requires the binding of a single Mg2+ ion. The folding free energy surface of this simple tetraloop system is multidimensional, with a population of multiple intermediates where the tetraloop and cation interact through IS and OS coordination. The partially folded compact tetraloop intermediates form multiple non-native IS contacts with the metal ion. Thermal fluctuations should break these strong non-native IS contacts so that the tetraloop can fold to the native state, resulting in higher folding free energy barriers. Ca2+ undergoes rapid OS to IS transitions and vice versa due to its lower charge density than Mg2+. However, the ability of Ca2+ to stabilize the native tetraloop state is weaker, as it could not hold the loop-closing nucleotides together due to its weaker interactions with the nucleotides. These insights are critical to understanding the specific ion sensing mechanisms in riboswitches, and the predictions are amenable for verification by nuclear magnetic resonance (NMR) experiments.
Collapse
Affiliation(s)
- Sk Habibullah
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Lipika Baidya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Sunil Kumar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
3
|
Henning-Knechtel A, Thirumalai D, Kirmizialtin S. Differences in ion-RNA binding modes due to charge density variations explain the stability of RNA in monovalent salts. SCIENCE ADVANCES 2022; 8:eabo1190. [PMID: 35857829 PMCID: PMC9299541 DOI: 10.1126/sciadv.abo1190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The stability of RNA increases as the charge density of the alkali metal cations increases. The molecular mechanism for this phenomenon remains elusive. To fill this gap, we performed all-atom molecular dynamics pulling simulations of HIV-1 trans-activation response RNA. We first established that the free energy landscape obtained in the simulations is in excellent agreement with the single-molecule optical tweezer experiments. The origin of the stronger stability in sodium compared to potassium is found to be due to the differences in the charge density-related binding modes. The smaller hydrated sodium ion preferentially binds to the highly charged phosphates that have high surface area. In contrast, the larger potassium ions interact with the major grooves. As a result, more cations condense around phosphate groups in the case of sodium ions, leading to the reduction of electrostatic repulsion. Because the proposed mechanism is generic, we predict that the same conclusions are valid for divalent alkaline earth metal cations.
Collapse
Affiliation(s)
| | - D. Thirumalai
- Department of Chemistry, University of Texas, Austin, TX 78712, USA
- Corresponding author. (D.T.); (S.K.)
| | - Serdal Kirmizialtin
- Chemistry Program, Math and Sciences, New York University Abu Dhabi, Abu Dhabi, UAE
- Corresponding author. (D.T.); (S.K.)
| |
Collapse
|
4
|
Matreux T, Le Vay K, Schmid A, Aikkila P, Belohlavek L, Çalışkanoğlu AZ, Salibi E, Kühnlein A, Springsklee C, Scheu B, Dingwell DB, Braun D, Mutschler H, Mast CB. Heat flows in rock cracks naturally optimize salt compositions for ribozymes. Nat Chem 2021; 13:1038-1045. [PMID: 34446924 DOI: 10.1038/s41557-021-00772-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Catalytic nucleic acids, such as ribozymes, are central to a variety of origin-of-life scenarios. Typically, they require elevated magnesium concentrations for folding and activity, but their function can be inhibited by high concentrations of monovalent salts. Here we show that geologically plausible high-sodium, low-magnesium solutions derived from leaching basalt (rock and remelted glass) inhibit ribozyme catalysis, but that this activity can be rescued by selective magnesium up-concentration by heat flow across rock fissures. In contrast to up-concentration by dehydration or freezing, this system is so far from equilibrium that it can actively alter the Mg:Na salt ratio to an extent that enables key ribozyme activities, such as self-replication and RNA extension, in otherwise challenging solution conditions. The principle demonstrated here is applicable to a broad range of salt concentrations and compositions, and, as such, highly relevant to various origin-of-life scenarios.
Collapse
Affiliation(s)
- T Matreux
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - K Le Vay
- MPI für Biochemie, Biomimetische Systeme, Martinsried, Germany
| | - A Schmid
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - P Aikkila
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - L Belohlavek
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - A Z Çalışkanoğlu
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - E Salibi
- MPI für Biochemie, Biomimetische Systeme, Martinsried, Germany
| | - A Kühnlein
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | - C Springsklee
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - B Scheu
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - D B Dingwell
- Earth and Environmental Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - D Braun
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany
| | | | - C B Mast
- Systems Biophysics, Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
5
|
Kognole AA, MacKerell AD. Contributions and competition of Mg 2+ and K + in folding and stabilization of the Twister ribozyme. RNA (NEW YORK, N.Y.) 2020; 26:1704-1715. [PMID: 32769092 PMCID: PMC7566569 DOI: 10.1261/rna.076851.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Native folded and compact intermediate states of RNA typically involve tertiary structures in the presence of divalent ions such as Mg2+ in a background of monovalent ions. In a recent study, we have shown how the presence of Mg2+ impacts the transition from partially unfolded to folded states through a "push-pull" mechanism where the ion both favors and disfavors the sampling of specific phosphate-phosphate interactions. To further understand the ion atmosphere of RNA in folded and partially folded states results from atomistic umbrella sampling and oscillating chemical potential grand canonical Monte Carlo/molecular dynamics (GCMC/MD) simulations are used to obtain atomic-level details of the distributions of Mg2+ and K+ ions around Twister RNA. Results show the presence of 100 mM Mg2+ to lead to increased charge neutralization over that predicted by counterion condensation theory. Upon going from partially unfolded to folded states, overall charge neutralization increases at all studied ion concentrations that, while associated with an increase in the number of direct ion-phosphate interactions, is fully accounted for by the monovalent K+ ions. Furthermore, K+ preferentially interacts with purine N7 atoms of helical regions in partially unfolded states, thereby potentially stabilizing the helical regions. Thus, both secondary helical structures and formation of tertiary structures leads to increased counterion condensation, thereby stabilizing those structural features of Twister. Notably, it is shown that K+ can act as a surrogate for Mg2+ by participating in specific interactions with nonsequential phosphate pairs that occur in the folded state, explaining the ability of Twister to self-cleave at submillimolar Mg2+ concentrations.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| |
Collapse
|
6
|
Templeton C, Elber R. Simple and Analytical Model of RNA Collapse. J Phys Chem B 2020; 124:5149-5155. [PMID: 32459501 DOI: 10.1021/acs.jpcb.0c03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An analytical model for the free energy change during collapse of an RNA molecule from an extended to a compact conformation is proposed. It considers explicit binding of water and ion molecules to the RNA and the exchange of these molecules with the aqueous solution. Microscopic states of the system are captured on a two-dimensional square lattice and evaluated using contact energies. We compute the free energy as a function of a collapse variable and the number of ions bound to the RNA. The major driving force to the collapse of the RNA chain is the gain in water entropy once expelled from the surface of the RNA molecule illustrated by decomposing the free energy into species contributions and their energy and entropy components. The sensitivity of the conclusions of the model to variations in parameters is computed and appears to be weak.
Collapse
Affiliation(s)
- Clark Templeton
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ron Elber
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.,Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Cruz-León S, Schwierz N. Hofmeister Series for Metal-Cation-RNA Interactions: The Interplay of Binding Affinity and Exchange Kinetics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5979-5989. [PMID: 32366101 PMCID: PMC7304902 DOI: 10.1021/acs.langmuir.0c00851] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A large variety of physicochemical properties involving RNA depends on the type of metal cation present in solution. In order to gain microscopic insight into the origin of these ion specific effects, we apply molecular dynamics simulations to describe the interactions of metal cations and RNA. For the three most common ion binding sites on RNA, we calculate the binding affinities and exchange rates of eight different mono- and divalent metal cations. Our results reveal that binding sites involving phosphate groups preferentially bind metal cations with high charge density (such as Mg2+) in inner-sphere conformations while binding sites involving N7 or O6 atoms preferentially bind cations with low charge density (such as K+). The binding affinity therefore follows a direct Hofmeister series at the backbone but is reversed at the nucleobases leading to a high selectivity of ion binding sites on RNA. In addition, the exchange rates for cation binding cover almost 5 orders of magnitude, leading to a vastly different time scale for the lifetimes of contact pairs. Taken together, the site-specific binding affinities and the specific lifetime of contact pairs provide the microscopic explanation of ion specific effects observed in a wide variety of macroscopic RNA properties. Finally, combining the results from atomistic simulations with extended Poisson-Boltzmann theory allows us to predict the distribution of metal cations around double-stranded RNA at finite concentrations and to reproduce the results of ion counting experiments with good accuracy.
Collapse
|
8
|
Nguyen HT, Thirumalai D. Charge Density of Cation Determines Inner versus Outer Shell Coordination to Phosphate in RNA. J Phys Chem B 2020; 124:4114-4122. [PMID: 32342689 DOI: 10.1021/acs.jpcb.0c02371] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Divalent cations are often required to fold RNA, which is a highly charged polyanion. Condensation of ions, such as Mg2+ or Ca2+, in the vicinity of RNA renormalizes the effective charges on the phosphate groups, thus minimizing the intra RNA electrostatic repulsion. The prevailing view is that divalent ions bind diffusively in a nonspecific manner. In sharp contrast, we arrive at the exact opposite conclusion using a theory for the interaction of ions with the phosphate groups using RISM theory in conjunction with simulations based on an accurate three-interaction-site RNA model. The divalent ions bind in a nucleotide-specific manner using either the inner (partially dehydrated) or outer (fully hydrated) shell coordination. The high charge density Mg2+ ion has a preference to bind to the outer shell, whereas the opposite is the case for Ca2+. Surprisingly, we find that bridging interactions, involving ions that are coordinated to two or more phosphate groups, play a crucial role in maintaining the integrity of the folded state. Their importance could become increasingly prominent as the size of the RNA increases. Because the modes of interaction of divalent ions with DNA are likely to be similar, we propose that specific inner and outer shell coordination could play a role in DNA condensation, and perhaps genome organization as well.
Collapse
Affiliation(s)
- Hung T Nguyen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Kognole AA, MacKerell AD. Mg 2+ Impacts the Twister Ribozyme through Push-Pull Stabilization of Nonsequential Phosphate Pairs. Biophys J 2020; 118:1424-1437. [PMID: 32053774 PMCID: PMC7091459 DOI: 10.1016/j.bpj.2020.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
RNA molecules perform a variety of biological functions for which the correct three-dimensional structure is essential, including as ribozymes where they catalyze chemical reactions. Metal ions, especially Mg2+, neutralize these negatively charged nucleic acids and specifically stabilize RNA tertiary structures as well as impact the folding landscape of RNAs as they assume their tertiary structures. Specific binding sites of Mg2+ in folded conformations of RNA have been studied extensively; however, the full range of interactions of the ion with compact intermediates and unfolded states of RNA is challenging to investigate, and the atomic details of the mechanism by which the ion facilitates tertiary structure formation is not fully known. Here, umbrella sampling combined with oscillating chemical potential Grand Canonical Monte Carlo/molecular dynamics simulations are used to capture the energetics and atomic-level details of Mg2+-RNA interactions that occur along an unfolding pathway of the Twister ribozyme. The free energy profiles reveal stabilization of partially unfolded states by Mg2+, as observed in unfolding experiments, with this stabilization being due to increased sampling of simultaneous interactions of Mg2+ with two or more nonsequential phosphate groups. Notably, these results indicate a push-pull mechanism in which the Mg2+-RNA interactions actually lead to destabilization of specific nonsequential phosphate-phosphate interactions (i.e., pushed apart), whereas other interactions are stabilized (i.e., pulled together), a balance that stabilizes unfolded states and facilitates the folding of Twister, including the formation of hydrogen bonds associated with the tertiary structure. This study establishes a better understanding of how Mg2+-ion interactions contribute to RNA structural properties and stability.
Collapse
Affiliation(s)
- Abhishek A Kognole
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland.
| |
Collapse
|
10
|
Hori N, Denesyuk NA, Thirumalai D. Ion Condensation onto Ribozyme Is Site Specific and Fold Dependent. Biophys J 2019; 116:2400-2410. [PMID: 31130233 DOI: 10.1016/j.bpj.2019.04.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 01/20/2023] Open
Abstract
The highly charged RNA molecules, with each phosphate carrying a single negative charge, cannot fold into well-defined architectures with tertiary interactions in the absence of ions. For ribozymes, divalent cations are known to be more efficient than monovalent ions in driving them to a compact state, although Mg2+ ions are needed for catalytic activities. Therefore, how ions interact with RNA is relevant in understanding RNA folding. It is often thought that most of the ions are territorially and nonspecifically bound to the RNA, as predicted by the counterion condensation theory. Here, we show using simulations of Azoarcus ribozyme, based on an accurate coarse-grained three-site interaction model with explicit divalent and monovalent cations, that ion condensation is highly specific and depends on the nucleotide position. The regions with high coordination between the phosphate groups and the divalent cations are discernible even at very low Mg2+ concentrations when the ribozyme does not form tertiary interactions. Surprisingly, these regions also contain the secondary structural elements that nucleate subsequently in the self-assembly of RNA, implying that ion condensation is determined by the architecture of the folded state. These results are in sharp contrast to interactions of ions (monovalent and divalent) with rigid charged rods, in which ion condensation is uniform and position independent. The differences are explained in terms of the dramatic nonmonotonic shape fluctuations in the ribozyme as it folds with increasing Mg2+ or Ca2+ concentration.
Collapse
Affiliation(s)
- Naoto Hori
- Department of Chemistry, University of Texas, Austin, Texas
| | - Natalia A Denesyuk
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | - D Thirumalai
- Department of Chemistry, University of Texas, Austin, Texas.
| |
Collapse
|
11
|
Mandic A, Hayes RL, Lammert H, Cheng RR, Onuchic JN. Structure-Based Model of RNA Pseudoknot Captures Magnesium-Dependent Folding Thermodynamics. J Phys Chem B 2019; 123:1505-1511. [PMID: 30676755 DOI: 10.1021/acs.jpcb.8b10791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We develop a simple, coarse-grained approach for simulating the folding of the Beet Western Yellow Virus (BWYV) pseudoknot toward the goal of creating a transferable model that can be used to study other small RNA molecules. This approach combines a structure-based model (SBM) of RNA with an electrostatic scheme that has previously been shown to correctly reproduce ionic condensation in the native basin. Mg2+ ions are represented explicitly, directly incorporating ion-ion correlations into the system, and K+ is represented implicitly, through the mean-field generalized Manning counterion condensation theory. Combining the electrostatic scheme with a SBM enables the electrostatic scheme to be tested beyond the native basin. We calibrate the SBM to reproduce experimental BWYV unfolding data by eliminating overstabilizing backbone interactions from the molecular contact map and by strengthening base pairing and stacking contacts relative to other native contacts, consistent with the experimental observation that relative helical stabilities are central determinants of the RNA unfolding sequence. We find that this approach quantitatively captures the Mg2+ dependence of the folding temperature and generates intermediate states that better approximate those revealed by experiment. Finally, we examine how our model captures Mg2+ condensation about the BWYV pseudoknot and a U-tail variant, for which the nine 3' end nucleotides are replaced with uracils, and find our results to be consistent with experimental condensation measurements. This approach can be easily transferred to other RNA molecules by eliminating and strengthening the same classes of contacts in the SBM and including generalized Manning counterion condensation.
Collapse
Affiliation(s)
- Ana Mandic
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States
| | - Ryan L Hayes
- Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Heiko Lammert
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States
| | - Ryan R Cheng
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States
| | - José N Onuchic
- Center for Theoretical Biological Physics , Rice University , Houston , Texas 77005 , United States
| |
Collapse
|
12
|
Denesyuk NA, Hori N, Thirumalai D. Molecular Simulations of Ion Effects on the Thermodynamics of RNA Folding. J Phys Chem B 2018; 122:11860-11867. [PMID: 30468380 DOI: 10.1021/acs.jpcb.8b08142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
How ions affect RNA folding thermodynamics and kinetics is an important but a vexing problem that remains unsolved. Experiments have shown that the free-energy change, Δ G( c), of RNA upon folding varies with the salt concentration ( c) as, Δ G( c) = k c ln c + const, where the coefficient k c is proportional to the difference in the ion preferential coefficient, ΔΓ. We performed simulations of a coarse-grained model, by modeling electrostatic interactions implicitly and with explicit representation of ions, to elucidate the molecular underpinnings of the relationship between Δ G and ΔΓ. The simulations quantitatively reproduce the heat capacity for a pseudoknot, thus validating the model. We show that Δ G( c), calculated directly from ΔΓ, varies linearly with ln c ( c < 0.2 M), for a hairpin and the pseudoknot, demonstrating a molecular link between the two quantities. Explicit ion simulations also show the linear dependence of Δ G( c) on ln c at all c with k c = 2 kB T, except that Δ G( c) values are shifted by ∼2 kcal/mol higher than experiments. The discrepancy is due to an underestimation of Γ for both the folded and unfolded states while giving accurate values for ΔΓ. The predictions for the salt dependence of ΔΓ are amenable to test using single-molecule pulling experiments. The framework provided here can be used to obtain accurate thermodynamics for other RNA molecules as well.
Collapse
Affiliation(s)
- Natalia A Denesyuk
- Department of Chemistry and Biochemistry and Biophysics Program, Institute for Physical Science and Technology , University of Maryland , College Park , Maryland 20742 , United States
| | - Naoto Hori
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| | - D Thirumalai
- Department of Chemistry , University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
13
|
Welty R, Pabit SA, Katz AM, Calvey GD, Pollack L, Hall KB. Divalent ions tune the kinetics of a bacterial GTPase center rRNA folding transition from secondary to tertiary structure. RNA (NEW YORK, N.Y.) 2018; 24:1828-1838. [PMID: 30254137 PMCID: PMC6239185 DOI: 10.1261/rna.068361.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/20/2018] [Indexed: 05/22/2023]
Abstract
Folding of an RNA from secondary to tertiary structure often depends on divalent ions for efficient electrostatic charge screening (nonspecific association) or binding (specific association). To measure how different divalent cations modify folding kinetics of the 60 nucleotide Ecoli rRNA GTPase center, we combined stopped-flow fluorescence in the presence of Mg2+, Ca2+, or Sr2+ together with time-resolved small angle X-ray scattering (SAXS) in the presence of Mg2+ to observe the folding process. Immediately upon addition of each divalent ion, the RNA undergoes a transition from an extended state with secondary structure to a more compact structure. Subsequently, specific divalent ions modulate populations of intermediates in conformational ensembles along the folding pathway with transition times longer than 10 msec. Rate constants for the five folding transitions act on timescales from submillisecond to tens of seconds. The sensitivity of RNA tertiary structure to divalent cation identity affects all but the fastest events in RNA folding, and allowed us to identify those states that prefer Mg2+ The GTPase center RNA appears to have optimized its folding trajectory to specifically utilize this most abundant intracellular divalent ion.
Collapse
Affiliation(s)
- Robb Welty
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Suzette A Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Andrea M Katz
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - George D Calvey
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Kathleen B Hall
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
14
|
Roh JH, Kilburn D, Behrouzi R, Sung W, Briber RM, Woodson SA. Effects of Preferential Counterion Interactions on the Specificity of RNA Folding. J Phys Chem Lett 2018; 9:5726-5732. [PMID: 30211556 PMCID: PMC6351067 DOI: 10.1021/acs.jpclett.8b02086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The real-time search for native RNA structure is essential for the operation of regulatory RNAs. We previously reported that a fraction of the Azoarcus ribozyme achieves a compact structure in less than a millisecond. To scrutinize the forces that drive initial folding steps, we used time-resolved SAXS to compare the folding dynamics of this ribozyme in thermodynamically isostable concentrations of different counterions. The results show that the size of the fast-folding population increases with the number of available counterions and correlates with the flexibility of initial RNA structures. Within 1 ms of folding, Mg2+ exhibits a smaller preferential interaction coefficient per charge, ΔΓ+/ Z, than Na+ or [Co(NH3)6]3+. The lower ΔΓ+/ Z corresponds to a smaller yield of folded RNA, although Mg2+ stabilizes native RNA more efficiently than other ions at equilibrium. These results suggest that strong Mg2+-RNA interactions impede the search for globally native structure during early folding stages.
Collapse
Affiliation(s)
- Joon Ho Roh
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Duncan Kilburn
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Reza Behrouzi
- Cell Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Wokyung Sung
- Department of Physics , Pohang University of Science and Technology , Pohang 37673 , Republic of Korea
| | - R M Briber
- Department of Materials Science and Engineering , University of Maryland , College Park , Maryland 20742 , United States
| | - Sarah A Woodson
- T. C. Jenkins Department of Biophysics , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| |
Collapse
|
15
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
16
|
The 2D Structure of the T. brucei Preedited RPS12 mRNA Is Not Affected by Macromolecular Crowding. J Nucleic Acids 2017; 2017:6067345. [PMID: 28698807 PMCID: PMC5494072 DOI: 10.1155/2017/6067345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial transcript maturation in African trypanosomes requires RNA editing to convert sequence-deficient pre-mRNAs into translatable mRNAs. The different pre-mRNAs have been shown to adopt highly stable 2D folds; however, it is not known whether these structures resemble the in vivo folds given the extreme "crowding" conditions within the mitochondrion. Here, we analyze the effects of macromolecular crowding on the structure of the mitochondrial RPS12 pre-mRNA. We use high molecular mass polyethylene glycol as a macromolecular cosolute and monitor the structure of the RNA globally and with nucleotide resolution. We demonstrate that crowding has no impact on the 2D fold and we conclude that the MFE structure in dilute solvent conditions represents a good proxy for the folding of the pre-mRNA in its mitochondrial solvent context.
Collapse
|
17
|
Hayatshahi H, Roe DR, Galindo-Murillo R, Hall KB, Cheatham TE. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA. J Phys Chem B 2017; 121:451-462. [PMID: 27983843 PMCID: PMC5278497 DOI: 10.1021/acs.jpcb.6b08764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/15/2016] [Indexed: 01/24/2023]
Abstract
An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results.
Collapse
Affiliation(s)
- Hamed
S. Hayatshahi
- Department
of Medicinal Chemistry, College of Pharmacy,
The University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112-5820, United States
| | - Daniel R. Roe
- Department
of Medicinal Chemistry, College of Pharmacy,
The University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112-5820, United States
| | - Rodrigo Galindo-Murillo
- Department
of Medicinal Chemistry, College of Pharmacy,
The University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112-5820, United States
| | - Kathleen B. Hall
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Thomas E. Cheatham
- Department
of Medicinal Chemistry, College of Pharmacy,
The University of Utah, 2000 East 30 South Skaggs 307, Salt Lake City, Utah 84112-5820, United States
| |
Collapse
|
18
|
Hori N, Denesyuk NA, Thirumalai D. Salt Effects on the Thermodynamics of a Frameshifting RNA Pseudoknot under Tension. J Mol Biol 2016; 428:2847-59. [PMID: 27315694 DOI: 10.1016/j.jmb.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/07/2016] [Indexed: 12/24/2022]
Abstract
Because of the potential link between -1 programmed ribosomal frameshifting and response of a pseudoknot (PK) RNA to force, a number of single-molecule pulling experiments have been performed on PKs to decipher the mechanism of programmed ribosomal frameshifting. Motivated in part by these experiments, we performed simulations using a coarse-grained model of RNA to describe the response of a PK over a range of mechanical forces (fs) and monovalent salt concentrations (Cs). The coarse-grained simulations quantitatively reproduce the multistep thermal melting observed in experiments, thus validating our model. The free energy changes obtained in simulations are in excellent agreement with experiments. By varying f and C, we calculated the phase diagram that shows a sequence of structural transitions, populating distinct intermediate states. As f and C are changed, the stem-loop tertiary interactions rupture first, followed by unfolding of the 3'-end hairpin (I⇌F). Finally, the 5'-end hairpin unravels, producing an extended state (E⇌I). A theoretical analysis of the phase boundaries shows that the critical force for rupture scales as (logCm)(α) with α=1(0.5) for E⇌I (I⇌F) transition. This relation is used to obtain the preferential ion-RNA interaction coefficient, which can be quantitatively measured in single-molecule experiments, as done previously for DNA hairpins. A by-product of our work is the suggestion that the frameshift efficiency is likely determined by the stability of the 5'-end hairpin that the ribosome first encounters during translation.
Collapse
Affiliation(s)
- Naoto Hori
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Natalia A Denesyuk
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
Chakraborty K, Khatua P, Bandyopadhyay S. Exploring ion induced folding of a single-stranded DNA oligomer from molecular simulation studies. Phys Chem Chem Phys 2016; 18:15899-910. [PMID: 27241311 DOI: 10.1039/c6cp00663a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One crucial issue in DNA hydration is the effect of salts on its conformational features. This has relevance in biology as cations present in the cellular environment shield the negative charges on the DNA backbone, thereby reducing the repulsive force between them. By screening the negative charges along the backbone, cations stabilize the folded structure of DNA. To study the effect of the added salt on single-stranded DNA (ss-DNA) conformations, we have performed room temperature molecular dynamics simulations of an aqueous solution containing the ss-DNA dodecamer with the 5'-CGCGAATTCGCG-3' sequence in the presence of 0.2, 0.5, and 0.8 M NaCl. Our calculations reveal that in the presence of the salt, the DNA molecule forms more collapsed coil-like conformations due to the screening of negative charges along the backbone. Additionally, we demonstrated that the formation of an octahedral inner-sphere complex by the strongly bound ion plays an important role in the stabilization of such folded conformation of DNA. Importantly, it is found that ion-DNA interactions can also explain the formation of non-sequential base stackings with longer lifetimes. Such non-sequential base stackings further stabilize the collapsed coil-like folded form of the DNA oligomer.
Collapse
Affiliation(s)
- Kaushik Chakraborty
- Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302, India.
| | | | | |
Collapse
|
20
|
ortho-Carboranylphenoxyacetanilides as inhibitors of hypoxia-inducible factor (HIF)-1 transcriptional activity and heat shock protein (HSP) 60 chaperon activity. Bioorg Med Chem Lett 2015; 25:2624-8. [DOI: 10.1016/j.bmcl.2015.04.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
|
21
|
Hayes RL, Noel JK, Mandic A, Whitford PC, Sanbonmatsu KY, Mohanty U, Onuchic JN. Generalized Manning Condensation Model Captures the RNA Ion Atmosphere. PHYSICAL REVIEW LETTERS 2015; 114:258105. [PMID: 26197147 PMCID: PMC4833092 DOI: 10.1103/physrevlett.114.258105] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 05/27/2023]
Abstract
RNA is highly sensitive to the ionic environment and typically requires Mg(2+) to form compact structures. There is a need for models capable of describing the ion atmosphere surrounding RNA with quantitative accuracy. We present a model of RNA electrostatics and apply it within coarse-grained molecular dynamics simulation. The model treats Mg(2+) ions explicitly to account for ion-ion correlations neglected by mean-field theories. Since mean-field theories capture KCl well, it is treated implicitly by a generalized Manning counterion condensation model. The model extends Manning condensation to deal with arbitrary RNA conformations, nonlimiting KCl concentrations, and the ion inaccessible volume of RNA. The model is tested against experimental measurements of the excess Mg(2+) associated with the RNA, Γ(2+), because Γ(2+) is directly related to the Mg(2+)-RNA interaction free energy. The excellent agreement with experiment demonstrates that the model captures the ionic dependence of the RNA free energy landscape.
Collapse
Affiliation(s)
- Ryan L Hayes
- Center for Theoretical Biological Physics and Department of Physics and Astronomy, Rice University, Houston, Texas 77030, USA
| | - Jeffrey K Noel
- Center for Theoretical Biological Physics and Department of Physics and Astronomy, Rice University, Houston, Texas 77030, USA
| | - Ana Mandic
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77004, USA
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Karissa Y Sanbonmatsu
- Theoretic Biology and Biophysics, Theoretic Division, Los Alamos National Labs, Los Alamos, New Mexico 87545, USA
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | - José N Onuchic
- Center for Theoretical Biological Physics and Department of Physics and Astronomy, Rice University, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Saxena A, García AE. Multisite ion model in concentrated solutions of divalent cations (MgCl2 and CaCl2): osmotic pressure calculations. J Phys Chem B 2015; 119:219-27. [PMID: 25482831 PMCID: PMC4291043 DOI: 10.1021/jp507008x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/03/2014] [Indexed: 01/09/2023]
Abstract
Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca(2+) and Mg(2+) ions. Saxena and Sept (J. Chem. Theor. Comput. 2013, 9, 3538-3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion-ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg(2+) and Ca(2+)) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations.
Collapse
Affiliation(s)
- Akansha Saxena
- Department of Physics, Applied
Physics, and Astronomy and The Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Angel E. García
- Department of Physics, Applied
Physics, and Astronomy and The Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
23
|
Dong H, Klein ML, Fiorin G. Counterion-Assisted Cation Transport in a Biological Calcium Channel. J Phys Chem B 2014; 118:9668-76. [DOI: 10.1021/jp5059897] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hao Dong
- Institute for Computational
Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Michael L. Klein
- Institute for Computational
Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Giacomo Fiorin
- Institute for Computational
Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
24
|
Yoon J, Lin JC, Hyeon C, Thirumalai D. Dynamical Transition and Heterogeneous Hydration Dynamics in RNA. J Phys Chem B 2014; 118:7910-9. [DOI: 10.1021/jp500643u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jeseong Yoon
- Korea Institute for Advanced Study, 130-722 Seoul, Korea
| | - Jong-Chin Lin
- Department
of Chemistry and Biochemistry, and Biophysics
Program, Institute for Physical Sciences and Technology, University of Maryland, College
Park, Maryland 20742, United States
| | | | - D. Thirumalai
- Department
of Chemistry and Biochemistry, and Biophysics
Program, Institute for Physical Sciences and Technology, University of Maryland, College
Park, Maryland 20742, United States
| |
Collapse
|
25
|
Hayes RL, Noel JK, Whitford PC, Mohanty U, Sanbonmatsu KY, Onuchic JN. Reduced model captures Mg(2+)-RNA interaction free energy of riboswitches. Biophys J 2014; 106:1508-19. [PMID: 24703312 PMCID: PMC3976530 DOI: 10.1016/j.bpj.2014.01.042] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 12/17/2022] Open
Abstract
The stability of RNA tertiary structures depends heavily on Mg(2+). The Mg(2+)-RNA interaction free energy that stabilizes an RNA structure can be computed experimentally through fluorescence-based assays that measure Γ2+, the number of excess Mg(2+) associated with an RNA molecule. Previous explicit-solvent simulations predict that the majority of excess Mg(2+) ions interact closely and strongly with the RNA, unlike monovalent ions such as K(+), suggesting that an explicit treatment of Mg(2+) is important for capturing RNA dynamics. Here we present a reduced model that accurately reproduces the thermodynamics of Mg(2+)-RNA interactions. This model is able to characterize long-timescale RNA dynamics coupled to Mg(2+) through the explicit representation of Mg(2+) ions. KCl is described by Debye-Hückel screening and a Manning condensation parameter, which represents condensed K(+) and models its competition with condensed Mg(2+). The model contains one fitted parameter, the number of condensed K(+) ions in the absence of Mg(2+). Values of Γ2+ computed from molecular dynamics simulations using the model show excellent agreement with both experimental data on the adenine riboswitch and previous explicit-solvent simulations of the SAM-I riboswitch. This agreement confirms the thermodynamic accuracy of the model via the direct relation of Γ2+ to the Mg(2+)-RNA interaction free energy, and provides further support for the predictions from explicit-solvent calculations. This reduced model will be useful for future studies of the interplay between Mg(2+) and RNA dynamics.
Collapse
Affiliation(s)
- Ryan L Hayes
- Center for Theoretical Biological Physics and Department of Physics and Astronomy, Rice University, Houston, Texas
| | - Jeffrey K Noel
- Center for Theoretical Biological Physics and Department of Physics and Astronomy, Rice University, Houston, Texas
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Labs, Los Alamos, New Mexico.
| | - José N Onuchic
- Center for Theoretical Biological Physics and Department of Physics and Astronomy, Rice University, Houston, Texas; Department of Chemistry and Department of Biochemistry and Cell Biology, Rice University, Houston, Texas.
| |
Collapse
|
26
|
Abstract
Ions surround nucleic acids in what is referred to as an ion atmosphere. As a result, the folding and dynamics of RNA and DNA and their complexes with proteins and with each other cannot be understood without a reasonably sophisticated appreciation of these ions' electrostatic interactions. However, the underlying behavior of the ion atmosphere follows physical rules that are distinct from the rules of site binding that biochemists are most familiar and comfortable with. The main goal of this review is to familiarize nucleic acid experimentalists with the physical concepts that underlie nucleic acid-ion interactions. Throughout, we provide practical strategies for interpreting and analyzing nucleic acid experiments that avoid pitfalls from oversimplified or incorrect models. We briefly review the status of theories that predict or simulate nucleic acid-ion interactions and experiments that test these theories. Finally, we describe opportunities for going beyond phenomenological fits to a next-generation, truly predictive understanding of nucleic acid-ion interactions.
Collapse
Affiliation(s)
- Jan Lipfert
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, Netherlands;
| | | | | | | |
Collapse
|
27
|
Hennelly SP, Novikova IV, Sanbonmatsu KY. The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch. Nucleic Acids Res 2012; 41:1922-35. [PMID: 23258703 PMCID: PMC3562059 DOI: 10.1093/nar/gks978] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Riboswitch operation involves the complex interplay between the aptamer domain and the expression platform. During transcription, these two domains compete against each other for shared sequence. In this study, we explore the cooperative effects of ligand binding and Magnesium interactions in the SAM-I riboswitch in the context of aptamer collapse and anti-terminator formation. Overall, our studies show the apo-aptamer acts as (i) a pre-organized aptamer competent to bind ligand and undergo structural collapse and (ii) a conformation that is more accessible to anti-terminator formation. We show that both Mg(2+) ions and SAM are required for a collapse transition to occur. We then use competition between the aptamer and expression platform for shared sequence to characterize the stability of the collapsed aptamer. We find that SAM and Mg(2+) interactions in the aptamer are highly cooperative in maintaining switch polarity (i.e. aptamer 'off-state' versus anti-terminator 'on-state'). We further show that the aptamer off-state is preferentially stabilized by Mg(2+) and similar divalent ions. Furthermore, the functional switching assay was used to select for phosphorothioate interference, and identifies potential magnesium chelation sites while characterizing their coordinated role with SAM in aptamer stabilization. In addition, we find that Mg(2+) interactions with the apo-aptamer are required for the full formation of the anti-terminator structure, and that higher concentrations of Mg(2+) (>4 mM) shift the equilibrium toward the anti-terminator on-state even in the presence of SAM.
Collapse
Affiliation(s)
- Scott P Hennelly
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
28
|
Lin JC, Hyeon C, Thirumalai D. RNA under tension: Folding Landscapes, Kinetic partitioning Mechanism, and Molecular Tensegrity. J Phys Chem Lett 2012; 3:3616-3625. [PMID: 23336034 PMCID: PMC3545440 DOI: 10.1021/jz301537t] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Non-coding RNA sequences play a great role in controlling a number of cellular functions, thus raising the need to understand their complex conformational dynamics in quantitative detail. In this perspective, we first show that single molecule pulling when combined with with theory and simulations can be used to quantitatively explore the folding landscape of nucleic acid hairpins, and riboswitches with tertiary interactions. Applications to riboswitches, which are non-coding RNA elements that control gene expression by undergoing dynamical conformational changes in response to binding of metabolites, lead to an organization principle that assembly of RNA is determined by the stability of isolated helices. We also point out the limitations of single molecule pulling experiments, with molecular extension as the only accessible parameter, in extracting key parameters of the folding landscapes of RNA molecules.
Collapse
Affiliation(s)
- Jong-Chin Lin
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
29
|
Mao AH, Pappu RV. Crystal lattice properties fully determine short-range interaction parameters for alkali and halide ions. J Chem Phys 2012; 137:064104. [DOI: 10.1063/1.4742068] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Hayes RL, Noel JK, Mohanty U, Whitford PC, Hennelly SP, Onuchic JN, Sanbonmatsu KY. Magnesium fluctuations modulate RNA dynamics in the SAM-I riboswitch. J Am Chem Soc 2012; 134:12043-53. [PMID: 22612276 PMCID: PMC3675279 DOI: 10.1021/ja301454u] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Experiments demonstrate that Mg(2+) is crucial for structure and function of RNA systems, yet the detailed molecular mechanism of Mg(2+) action on RNA is not well understood. We investigate the interplay between RNA and Mg(2+) at atomic resolution through ten 2-μs explicit solvent molecular dynamics simulations of the SAM-I riboswitch with varying ion concentrations. The structure, including three stemloops, is very stable on this time scale. Simulations reveal that outer-sphere coordinated Mg(2+) ions fluctuate on the same time scale as the RNA, and that their dynamics couple. Locally, Mg(2+) association affects RNA conformation through tertiary bridging interactions; globally, increasing Mg(2+) concentration slows RNA fluctuations. Outer-sphere Mg(2+) ions responsible for these effects account for 80% of Mg(2+) in our simulations. These ions are transiently bound to the RNA, maintaining interactions, but shuttled from site to site. Outer-sphere Mg(2+) are separated from the RNA by a single hydration shell, occupying a thin layer 3-5 Å from the RNA. Distribution functions reveal that outer-sphere Mg(2+) are positioned by electronegative atoms, hydration layers, and a preference for the major groove. Diffusion analysis suggests transient outer-sphere Mg(2+) dynamics are glassy. Since outer-sphere Mg(2+) ions account for most of the Mg(2+) in our simulations, these ions may change the paradigm of Mg(2+)-RNA interactions. Rather than a few inner-sphere ions anchoring the RNA structure surrounded by a continuum of diffuse ions, we observe a layer of outer-sphere coordinated Mg(2+) that is transiently bound but strongly coupled to the RNA.
Collapse
|
31
|
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics. J Mol Biol 2012; 423:198-216. [PMID: 22796627 DOI: 10.1016/j.jmb.2012.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 01/29/2023]
Abstract
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (k(dock)) and undocking (k(undock)) are obtained as a function of cation concentration, size, and valence, specifically for the series Na(+), K(+), Mg(2+), Ca(2+), Co(NH(3))(6)(3+), and spermidine(3+). Increasing cation concentration acceleratesk(dock)dramatically but achieves only a slight decrease in k(undock). These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine(3+), whose weaker influence on the docking equilibria with respect to Co(NH(3))(6)(3+) can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups.
Collapse
|
32
|
Moss WN, Dela-Moss LI, Kierzek E, Kierzek R, Priore SF, Turner DH. The 3' splice site of influenza A segment 7 mRNA can exist in two conformations: a pseudoknot and a hairpin. PLoS One 2012; 7:e38323. [PMID: 22685560 PMCID: PMC3369869 DOI: 10.1371/journal.pone.0038323] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022] Open
Abstract
The 3′ splice site of influenza A segment 7 is used to produce mRNA for the M2 ion-channel protein, which is critical to the formation of viable influenza virions. Native gel analysis, enzymatic/chemical structure probing, and oligonucleotide binding studies of a 63 nt fragment, containing the 3′ splice site, key residues of an SF2/ASF splicing factor binding site, and a polypyrimidine tract, provide evidence for an equilibrium between pseudoknot and hairpin structures. This equilibrium is sensitive to multivalent cations, and can be forced towards the pseudoknot by addition of 5 mM cobalt hexammine. In the two conformations, the splice site and other functional elements exist in very different structural environments. In particular, the splice site is sequestered in the middle of a double helix in the pseudoknot conformation, while in the hairpin it resides in a two-by-two nucleotide internal loop. The results suggest that segment 7 mRNA splicing can be controlled by a conformational switch that exposes or hides the splice site.
Collapse
Affiliation(s)
- Walter N. Moss
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Lumbini I. Dela-Moss
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Elzbieta Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego, Poland
| | - Ryszard Kierzek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Noskowskiego, Poland
| | - Salvatore F. Priore
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Douglas H. Turner
- Department of Chemistry, Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
33
|
Holmstrom ED, Fiore JL, Nesbitt DJ. Thermodynamic origins of monovalent facilitated RNA folding. Biochemistry 2012; 51:3732-43. [PMID: 22448852 DOI: 10.1021/bi201420a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cations have long been associated with formation of native RNA structure and are commonly thought to stabilize the formation of tertiary contacts by favorably interacting with the electrostatic potential of the RNA, giving rise to an "ion atmosphere". A significant amount of information regarding the thermodynamics of structural transitions in the presence of an ion atmosphere has accumulated and suggests stabilization is dominated by entropic terms. This work provides an analysis of how RNA-cation interactions affect the entropy and enthalpy associated with an RNA tertiary transition. Specifically, temperature-dependent single-molecule fluorescence resonance energy transfer studies have been exploited to determine the free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) of folding for an isolated tetraloop-receptor tertiary interaction as a function of Na(+) concentration. Somewhat unexpectedly, increasing the Na(+) concentration changes the folding enthalpy from a strongly exothermic process [e.g., ΔH° = -26(2) kcal/mol at 180 mM] to a weakly exothermic process [e.g., ΔH° = -4(1) kcal/mol at 630 mM]. As a direct corollary, it is the strong increase in folding entropy [Δ(ΔS°) > 0] that compensates for this loss of exothermicity for the achievement of more favorable folding [Δ(ΔG°) < 0] at higher Na(+) concentrations. In conjunction with corresponding measurements of the thermodynamics of the transition state barrier, these data provide a detailed description of the folding pathway associated with the GAAA tetraloop-receptor interaction as a function of Na(+) concentration. The results support a potentially universal mechanism for monovalent facilitated RNA folding, whereby an increasing monovalent concentration stabilizes tertiary structure by reducing the entropic penalty for folding.
Collapse
Affiliation(s)
- Erik D Holmstrom
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA
| | | | | |
Collapse
|
34
|
Vander Meulen KA, Butcher SE. Characterization of the kinetic and thermodynamic landscape of RNA folding using a novel application of isothermal titration calorimetry. Nucleic Acids Res 2012; 40:2140-51. [PMID: 22058128 PMCID: PMC3300012 DOI: 10.1093/nar/gkr894] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 01/23/2023] Open
Abstract
A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop-receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH(‡)) and Eyring transition state entropies (ΔS(‡)). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH(25°C) = -41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH(‡) = -0.6 ± 0.5). These parameters are significantly positively shifted in magnesium (ΔH(25°C) = -20.5 ± 2.1 kcal/mol, ΔH(‡) = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl(2)). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.
Collapse
Affiliation(s)
- Kirk A. Vander Meulen
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr Madison, WI 53706, USA
| | - Samuel E. Butcher
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Dr Madison, WI 53706, USA
| |
Collapse
|
35
|
Abstract
Mg(2+) is essential for the proper folding and function of RNA, though the effect of Mg(2+) concentration on the free energy, enthalpy, and entropy landscapes of RNA folding is unknown. This work exploits temperature-controlled single-molecule FRET methods to address the thermodynamics of RNA folding pathways by probing the intramolecular docking/undocking kinetics of the ubiquitous GAAA tetraloop-receptor tertiary interaction as a function of [Mg(2+)]. These measurements yield the barrier and standard state enthalpies, entropies, and free energies for an RNA tertiary transition, in particular, revealing the thermodynamic origin of [Mg(2+)]-facilitated folding. Surprisingly, these studies reveal that increasing [Mg(2+)] promotes tetraloop-receptor interaction by reducing the entropic barrier (-TΔS(++)(dock)) and the overall entropic penalty (-TΔS(+) (dock)) for docking, with essentially negligible effects on both the activation enthalpy (ΔH(++)(dock)) and overall exothermicity (ΔH(+)(dock)). These observations contrast with the conventional notion that increasing [Mg(2+)] facilitates folding by minimizing electrostatic repulsion of opposing RNA helices, which would incorrectly predict a decrease in ΔH(++)(dock)) and ΔH(+)(dock)) with [Mg(2+)]. Instead we propose that higher [Mg(2+)] can aid RNA folding by decreasing the entropic penalty of counterion uptake and by reducing disorder of the unfolded conformational ensemble.
Collapse
|
36
|
Rocca-Serra P, Bellaousov S, Birmingham A, Chen C, Cordero P, Das R, Davis-Neulander L, Duncan CD, Halvorsen M, Knight R, Leontis NB, Mathews DH, Ritz J, Stombaugh J, Weeks KM, Zirbel CL, Laederach A. Sharing and archiving nucleic acid structure mapping data. RNA (NEW YORK, N.Y.) 2011; 17:1204-12. [PMID: 21610212 PMCID: PMC3138558 DOI: 10.1261/rna.2753211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleic acids are particularly amenable to structural characterization using chemical and enzymatic probes. Each individual structure mapping experiment reveals specific information about the structure and/or dynamics of the nucleic acid. Currently, there is no simple approach for making these data publically available in a standardized format. We therefore developed a standard for reporting the results of single nucleotide resolution nucleic acid structure mapping experiments, or SNRNASMs. We propose a schema for sharing nucleic acid chemical probing data that uses generic public servers for storing, retrieving, and searching the data. We have also developed a consistent nomenclature (ontology) within the Ontology of Biomedical Investigations (OBI), which provides unique identifiers (termed persistent URLs, or PURLs) for classifying the data. Links to standardized data sets shared using our proposed format along with a tutorial and links to templates can be found at http://snrnasm.bio.unc.edu.
Collapse
Affiliation(s)
| | - Stanislav Bellaousov
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | | | - Chunxia Chen
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Pablo Cordero
- Biochemistry Department, Stanford University, Stanford, California 94305, USA
| | - Rhiju Das
- Biochemistry Department, Stanford University, Stanford, California 94305, USA
| | - Lauren Davis-Neulander
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Caia D.S. Duncan
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Matthew Halvorsen
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
- Howard Hughes Medical Institute, Boulder, Colorado 80309, USA
| | - Neocles B. Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - David H. Mathews
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Justin Ritz
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Jesse Stombaugh
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Kevin M. Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | - Alain Laederach
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
- Corresponding author.E-mail .
| |
Collapse
|
37
|
Abstract
The RNA folding trajectory features numerous off-pathway folding traps, which represent conformations that are often equally as stable as the native functional ones. Therefore, the conversion between these off-pathway structures and the native correctly folded ones is the critical step in RNA folding. This process, referred to as RNA refolding, is slow, and is represented by a transition state that has a characteristic high free energy. Because this kinetically limiting process occurs in vivo, proteins (called RNA chaperones) have evolved that facilitate the (re)folding of RNA molecules. Here, we present an overview of how proteins interact with RNA molecules in order to achieve properly folded states. In this respect, the discrimination between static and transient interactions is crucial, as different proteins have evolved a multitude of mechanisms for RNA remodeling. For RNA chaperones that act in a sequence-unspecific manner and without the use of external sources of energy, such as ATP, transient RNA–protein interactions represent the basis of the mode of action. By presenting stretches of positively charged amino acids that are positioned in defined spatial configurations, RNA chaperones enable the RNA backbone, via transient electrostatic interactions, to sample a wider conformational space that opens the route for efficient refolding reactions.
Collapse
Affiliation(s)
- Martina Doetsch
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
38
|
Westhof E, Masquida B, Jossinet F. Predicting and modeling RNA architecture. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003632. [PMID: 20504963 DOI: 10.1101/cshperspect.a003632] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A general approach for modeling the architecture of large and structured RNA molecules is described. The method exploits the modularity and the hierarchical folding of RNA architecture that is viewed as the assembly of preformed double-stranded helices defined by Watson-Crick base pairs and RNA modules maintained by non-Watson-Crick base pairs. Despite the extensive molecular neutrality observed in RNA structures, specificity in RNA folding is achieved through global constraints like lengths of helices, coaxiality of helical stacks, and structures adopted at the junctions of helices. The Assemble integrated suite of computer tools allows for sequence and structure analysis as well as interactive modeling by homology or ab initio assembly with possibilities for fitting within electronic density maps. The local key role of non-Watson-Crick pairs guides RNA architecture formation and offers metrics for assessing the accuracy of three-dimensional models in a more useful way than usual root mean square deviation (RMSD) values.
Collapse
Affiliation(s)
- Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084 Strasbourg, France.
| | | | | |
Collapse
|
39
|
Swadling JB, Coveney PV, Greenwell HC. Clay minerals mediate folding and regioselective interactions of RNA: a large-scale atomistic simulation study. J Am Chem Soc 2011; 132:13750-64. [PMID: 20843023 DOI: 10.1021/ja104106y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since a mineral-mediated origin of life was first hypothesized over 60 years ago, clays have played a significant role in origins of life studies. Such studies have hitherto rarely used computer simulation to understand the possible chemical pathways to the formation of biomolecules. We use molecular dynamics techniques, performed on supercomputing grids, to carry out large-scale simulations of various 25-mer sequences of ribonucleic acid (RNA), in bulk water and with aqueous montmorillonite clay over many tens of nanoseconds. Hitherto, there has only been limited experimental data reported for these systems. Our simulations are found to be in agreement with various experimental observations pertaining to the relative adsorption of RNA on montmorillonite in the presence of charge balancing cations. Over time scales of only a few nanoseconds, specific RNA sequences fold to characteristic secondary structural motifs, which do not form in the corresponding bulk water simulations. Our simulations also show that, in aqueous Ca(2+) environments, RNA can tether to the clay surface through a nucleotide base, leaving the 3'-end of the strand exposed, providing a mechanism for the regiospecific adsorption and elongation of RNA oligomers on clay surfaces.
Collapse
Affiliation(s)
- Jacob B Swadling
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | | | | |
Collapse
|
40
|
Ganisl B, Taucher M, Riml C, Breuker K. Charge as you like! Efficient manipulation of negative ion net charge in electrospray ionization of proteins and nucleic acids. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:333-343. [PMID: 22006635 DOI: 10.1255/ejms.1140] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood.
Collapse
|
41
|
Moriyama R, Shimada N, Kano A, Maruyama A. DNA assembly and re-assembly activated by cationic comb-type copolymer. Biomaterials 2010; 32:2351-8. [PMID: 21186054 DOI: 10.1016/j.biomaterials.2010.11.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/26/2010] [Indexed: 11/16/2022]
Abstract
Guanine-rich oligonucleotides, such as TG(4)T and TG(5)T, assemble into a tetramolecular quadruplexes with layers of G-quartets stabilized by coordination to monovalent cations. Association rates of the quadruplexes are extremely slow, likely owing to electrostatic repulsion among the four strands. We have shown that comb-type copolymers with a polycation backbone and abundant hydrophilic graft chains form water-soluble polyelectrolyte complexes with DNA and promote DNA hybridization. Here, we report the effect of cationic comb-type copolymers on the kinetics of tetramolecular quadruplex formation. The copolymer significantly increased the association rate of tetramolecular quadruplexes without altering kinetic effects of metal cations in quadruplex formation. Dissociation rates of the quadruplexes were also accelerated by the copolymer suggesting that the copolymer has chaperone-like activity that reduces the energy barriers associated with dissociation and re-assembly of base pairs. This hypothesis was further supported by the observation that the copolymer activated the strand exchange reaction between the quadruplex and a constituting single-stranded.
Collapse
Affiliation(s)
- Rui Moriyama
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 CE11 Motooka, Nishi, Fukuoka 819-0395, Japan
| | | | | | | |
Collapse
|
42
|
Lee C, Jaladat Y, Mohammadi A, Sharifi A, Geisler S, Valadkhan S. Metal binding and substrate positioning by evolutionarily invariant U6 sequences in catalytically active protein-free snRNAs. RNA (NEW YORK, N.Y.) 2010; 16:2226-38. [PMID: 20826700 PMCID: PMC2957061 DOI: 10.1261/rna.2170910] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Accepted: 07/31/2010] [Indexed: 05/20/2023]
Abstract
We have previously shown that a base-paired complex formed by two of the spliceosomal RNA components, U6 and U2 small nuclear RNAs (snRNAs), can catalyze a two-step splicing reaction that depended on an evolutionarily invariant region in U6, the ACAGAGA box. Here we further analyze this RNA-catalyzed reaction and show that while the 5' and 3' splice site substrates are juxtaposed and positioned near the ACAGAGA sequence in U6, the role of the snRNAs in the reaction is beyond mere juxtaposition of the substrates and likely involves the formation of a sophisticated active site. Interestingly, the snRNA-catalyzed reaction is metal dependent, as is the case with other known splicing RNA enzymes, and terbium(III) cleavage reactions indicate metal binding by the U6/U2 complex within the evolutionarily conserved regions of U6. The above results, combined with the structural similarities between U6 and catalytically critical domains in group II self-splicing introns, suggest that the base-paired complex of U6 and U2 snRNAs is a vestigial ribozyme and a likely descendant of a group II-like self-splicing intron.
Collapse
Affiliation(s)
- Caroline Lee
- Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Many non-coding RNAs fold into complex three-dimensional structures, yet the self-assembly of RNA structure is hampered by mispairing, weak tertiary interactions, electrostatic barriers, and the frequent requirement that the 5' and 3' ends of the transcript interact. This rugged free energy landscape for RNA folding means that some RNA molecules in a population rapidly form their native structure, while many others become kinetically trapped in misfolded conformations. Transient binding of RNA chaperone proteins destabilize misfolded intermediates and lower the transition states between conformations, producing a smoother landscape that increases the rate of folding and the probability that a molecule will find the native structure. DEAD-box proteins couple the chemical potential of ATP hydrolysis with repetitive cycles of RNA binding and release, expanding the range of conditions under which they can refold RNA structures.
Collapse
Affiliation(s)
- Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
44
|
Kirmizialtin S, Elber R. Computational exploration of mobile ion distributions around RNA duplex. J Phys Chem B 2010; 114:8207-20. [PMID: 20518549 DOI: 10.1021/jp911992t] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Atomically detailed distributions of ions around an A-form RNA are computed. Different mixtures of monovalent and divalent ions are considered explicitly. Studies of tightly bound and of diffusive (but bound) ions around 25 base pairs RNA are conducted in explicit solvent. Replica exchange simulations provide detailed equilibrium distributions with moderate computing resources (20 ns of simulation using 64 replicas). The simulations show distinct behavior of single and double charged cations. Binding of Mg(2+) ion includes tight binding to specific sites while Na(+) binds only diffusively. The tight binding of Mg(2+) is with a solvation shell while Na(+) can bind directly to RNA. Negative mobile ions can be found near the RNA but must be assisted by proximate and mobile cations. At distances larger than 16 A from the RNA center, a model of RNA as charged rod in a continuum of ionic solution provides quantitative description of the ion density (the same as in atomically detailed simulation). At shorter distances, the structure of RNA (and ions) has a significant impact on the pair correlation functions. Predicted binding sites of Mg(2+) at the RNA surface are in accord with structures from crystallography. Electric field relaxation is investigated. The relaxation due to solution rearrangements is completed in tens of picoseconds, while the contribution of RNA tumbling continues to a few nanoseconds.
Collapse
Affiliation(s)
- Serdal Kirmizialtin
- Department of Chemistry and Biochemistry and Institute of Computational Engineering and Sciences (ICES), 1 University Station, ICES, C0200, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
45
|
Fürtig B, Wenter P, Pitsch S, Schwalbe H. Probing mechanism and transition state of RNA refolding. ACS Chem Biol 2010; 5:753-65. [PMID: 20536261 DOI: 10.1021/cb100025a] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kinetics and the atomic detail of RNA refolding are only poorly understood. It has been proposed that conformations with transient base pairing interaction are populated during RNA refolding, but a detailed description of those states is lacking. By NMR and CD spectroscopy, we examined the refolding of a bistable RNA and the influence of urea, Mg(2+), and spermidine on its refolding kinetics. The bistable RNA serves as a model system and exhibits two almost equally stable ground-state conformations. We designed a photolabile caged RNA to selectively stabilize one of the two ground-state conformations and trigger RNA refolding by in situ light irradiation in the NMR spectrometer. We can show that the refolding kinetics of the bistable RNA is modulated by urea, Mg(2+), and spermidine by different mechanisms. From a statistical analysis based on elementary rate constants, we deduce the required number of base pairs that need to be destabilized during the refolding transition and propose a model for the transition state of the folding reaction.
Collapse
Affiliation(s)
- Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max von Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Philipp Wenter
- Laboratory of Nucleic Acid Chemistry, École Polytechnique Fédérale de Lausanne, EPFL-BCH, 1015 Lausanne, France
| | - Stefan Pitsch
- Laboratory of Nucleic Acid Chemistry, École Polytechnique Fédérale de Lausanne, EPFL-BCH, 1015 Lausanne, France
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max von Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
46
|
Roh JH, Guo L, Kilburn JD, Briber RM, Irving T, Woodson SA. Multistage collapse of a bacterial ribozyme observed by time-resolved small-angle X-ray scattering. J Am Chem Soc 2010; 132:10148-54. [PMID: 20597502 PMCID: PMC2918669 DOI: 10.1021/ja103867p] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribozymes must fold into compact, native structures to function properly in the cell. The first step in forming the RNA tertiary structure is the neutralization of the phosphate charge by cations, followed by collapse of the unfolded molecules into more compact structures. The specificity of the collapse transition determines the structures of the folding intermediates and the folding time to the native state. However, the forces that enable specific collapse in RNA are not understood. Using time-resolved SAXS, we report that upon addition of 5 mM Mg(2+) to the Azoarcus group I ribozyme up to 80% of chains form compact structures in less than 1 ms. In 1 mM Mg(2+), the collapse transition produces extended structures that slowly approach the folded state, while > or = 1.5 mM Mg(2+) leads to an ensemble of random coils that fold with multistage kinetics. Increased flexibility of molecules in the intermediate ensemble correlates with a Mg(2+)-dependent increase in the fast folding population and a previously unobserved crossover in the collapse kinetics. Partial denaturation of the unfolded RNA with urea also increases the fraction of chains following the fast-folding pathway. These results demonstrate that the preferred collapse mechanism depends on the extent of Mg(2+)-dependent charge neutralization and that non-native interactions within the unfolded ensemble contribute to the heterogeneity of the ribozyme folding pathways at the very earliest stages of tertiary structure formation.
Collapse
Affiliation(s)
- Joon Ho Roh
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- NIST Center for Neutron Scattering Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Liang Guo
- BioCAT, CSRRI and Department of BCPS, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - J. Duncan Kilburn
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert M. Briber
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Thomas Irving
- BioCAT, CSRRI and Department of BCPS, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Sarah A. Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
47
|
Abstract
Large noncoding RNAs fold into their biologically functional structures via compact yet disordered intermediates, which couple the stable secondary structure of the RNA with the emerging tertiary fold. The specificity of the collapse transition, which coincides with the assembly of helical domains, depends on RNA sequence and counterions. It determines the specificity of the folding pathways and the magnitude of the free energy barriers to the ensuing search for the native conformation. By coupling helix assembly with nascent tertiary interactions, compact folding intermediates in RNA also play a crucial role in ligand binding and RNA-protein recognition.
Collapse
Affiliation(s)
- Sarah A Woodson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| |
Collapse
|
48
|
Fedorova O, Solem A, Pyle AM. Protein-facilitated folding of group II intron ribozymes. J Mol Biol 2010; 397:799-813. [PMID: 20138894 PMCID: PMC2912160 DOI: 10.1016/j.jmb.2010.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 01/29/2023]
Abstract
Multiple studies hypothesize that DEAD-box proteins facilitate folding of the ai5gamma group II intron. However, these conclusions are generally inferred from splicing kinetics, and not from direct monitoring of DEAD-box protein-facilitated folding of the intron. Using native gel electrophoresis and dimethyl sulfate structural probing, we monitored Mss-116-facilitated folding of ai5gamma intron ribozymes and a catalytically active self-splicing RNA containing full-length intron and short exons. We found that the protein directly stimulates folding of these RNAs by accelerating formation of the compact near-native state. This process occurs in an ATP-independent manner, although ATP is required for the protein turnover. As Mss 116 binds RNA nonspecifically, most binding events do not result in the formation of the compact state, and ATP is required for the protein to dissociate from such nonproductive complexes and rebind the unfolded RNA. Results obtained from experiments at different concentrations of magnesium ions suggest that Mss 116 stimulates folding of ai5gamma ribozymes by promoting the formation of unstable folding intermediates, which is then followed by a cascade of folding events resulting in the formation of the compact near-native state. Dimethyl sulfate probing results suggest that the compact state formed in the presence of the protein is identical to the near-native state formed more slowly in its absence. Our results also indicate that Mss 116 does not stabilize the native state of the ribozyme, but that such stabilization results from binding of attached exons.
Collapse
Affiliation(s)
- Olga Fedorova
- Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | | | - Anna Marie Pyle
- Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
49
|
Moghaddam S, Caliskan G, Chauhan S, Hyeon C, Briber RM, Thirumalai D, Woodson SA. Metal ion dependence of cooperative collapse transitions in RNA. J Mol Biol 2009; 393:753-64. [PMID: 19712681 PMCID: PMC2772878 DOI: 10.1016/j.jmb.2009.08.044] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/18/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
Positively charged counterions drive RNA molecules into compact configurations that lead to their biologically active structures. To understand how the valence and size of the cations influences the collapse transition in RNA, small-angle X-ray scattering was used to follow the decrease in the radius of gyration (R(g)) of the Azoarcus and Tetrahymena ribozymes in different cations. Small, multivalent cations induced the collapse of both ribozymes more efficiently than did monovalent ions. Thus, the cooperativity of the collapse transition depends on the counterion charge density. Singular value decomposition of the scattering curves showed that folding of the smaller and more thermostable Azoarcus ribozyme is well described by two components, whereas collapse of the larger Tetrahymena ribozyme involves at least one intermediate. The ion-dependent persistence length, extracted from the distance distribution of the scattering vectors, shows that the Azoarcus ribozyme is less flexible at the midpoint of transition in low-charge-density ions than in high-charge-density ions. We conclude that the formation of sequence-specific tertiary interactions in the Azoarcus ribozyme overlaps with neutralization of the phosphate charge, while tertiary folding of the Tetrahymena ribozyme requires additional counterions. Thus, the stability of the RNA structure determines its sensitivity to the valence and size of the counterions.
Collapse
Affiliation(s)
- Sarvin Moghaddam
- Dept. of Materials Science and Engineering, University of Maryland, College Park, MD 20472
| | - Gokhan Caliskan
- T. C. Jenkins Dept. of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2685
| | - Seema Chauhan
- Dept. of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2685
| | - Changbong Hyeon
- Dept. of Chemistry, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - R. M. Briber
- Dept. of Materials Science and Engineering, University of Maryland, College Park, MD 20472
| | - D. Thirumalai
- Biophysics Program, Institute for Physical Sciences and Technology, University of Maryland, College Park, MD 20472 USA
| | - Sarah A. Woodson
- T. C. Jenkins Dept. of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2685
| |
Collapse
|
50
|
Chen X, Ballin JD, Della-Maria J, Tsai MS, White EJ, Tomkinson AE, Wilson GM. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair. DNA Repair (Amst) 2009; 8:961-8. [PMID: 19589734 DOI: 10.1016/j.dnarep.2009.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 06/09/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIIIbeta and the hLigIIIalpha/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiation Oncology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|