1
|
Marvin DA, Symmons MF, Straus SK. Structure and assembly of filamentous bacteriophages. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:80-122. [PMID: 24582831 DOI: 10.1016/j.pbiomolbio.2014.02.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 02/09/2014] [Indexed: 12/24/2022]
Abstract
Filamentous bacteriophages are interesting paradigms in structural molecular biology, in part because of the unusual mechanism of filamentous phage assembly. During assembly, several thousand copies of an intracellular DNA-binding protein bind to each copy of the replicating phage DNA, and are then displaced by membrane-spanning phage coat proteins as the nascent phage is extruded through the bacterial plasma membrane. This complicated process takes place without killing the host bacterium. The bacteriophage is a semi-flexible worm-like nucleoprotein filament. The virion comprises a tube of several thousand identical major coat protein subunits around a core of single-stranded circular DNA. Each protein subunit is a polymer of about 50 amino-acid residues, largely arranged in an α-helix. The subunits assemble into a helical sheath, with each subunit oriented at a small angle to the virion axis and interdigitated with neighbouring subunits. A few copies of "minor" phage proteins necessary for infection and/or extrusion of the virion are located at each end of the completed virion. Here we review both the structure of the virion and aspects of its function, such as the way the virion enters the host, multiplies, and exits to prey on further hosts. In particular we focus on our understanding of the way the components of the virion come together during assembly at the membrane. We try to follow a basic rule of empirical science, that one should chose the simplest theoretical explanation for experiments, but be prepared to modify or even abandon this explanation as new experiments add more detail.
Collapse
Affiliation(s)
- D A Marvin
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - M F Symmons
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - S K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
2
|
Severin PMD, Zou X, Schulten K, Gaub HE. Effects of cytosine hydroxymethylation on DNA strand separation. Biophys J 2013; 104:208-15. [PMID: 23332073 DOI: 10.1016/j.bpj.2012.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/10/2012] [Accepted: 11/13/2012] [Indexed: 12/22/2022] Open
Abstract
Cytosine hydroxymethylation is an epigenetic control factor in higher organisms. New discoveries of the biological roles of hydroxymethylation serve to raise questions about how this epigenetic modification exerts its functions and how organisms discriminate cytosine hydroxymethylation from methylation. Here, we report investigations that reveal an effect of cytosine hydroxymethylation on mechanical properties of DNA under load. The findings are based on molecular force assay measurements and steered molecular dynamics simulations. Molecular force assay experiments identified significant effects of hydroxymethylation on stretching-induced strand separation; the underlying physical mechanism has been revealed by steered molecular dynamics simulations. We find that hydroxymethylation can either upregulate or downregulate DNA's strand separation propensity, suggesting that hydroxymethylation can control gene expression by facilitating or obstructing the action of transcription machinery or the access to chromosomal DNA.
Collapse
Affiliation(s)
- Philip M D Severin
- Lehrstuhl für Angewandte Physik and Center for Nanoscience, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | | | |
Collapse
|
3
|
Severin PMD, Zou X, Gaub HE, Schulten K. Cytosine methylation alters DNA mechanical properties. Nucleic Acids Res 2011; 39:8740-51. [PMID: 21775342 PMCID: PMC3203585 DOI: 10.1093/nar/gkr578] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/14/2011] [Accepted: 06/28/2011] [Indexed: 12/22/2022] Open
Abstract
DNA methylation plays an essential role in transcriptional control of organismal development in epigenetics, from turning off a specific gene to inactivation of entire chromosomes. While the biological function of DNA methylation is becoming increasingly clear, the mechanism of methylation-induced gene regulation is still poorly understood. Through single-molecule force experiments and simulation we investigated the effects of methylation on strand separation of DNA, a crucial step in gene expression. Molecular force assay and single-molecule force spectroscopy revealed a strong methylation dependence of strand separation. Methylation is observed to either inhibit or facilitate strand separation, depending on methylation level and sequence context. Molecular dynamics simulations provided a detailed view of methylation effects on strand separation, suggesting the underlying physical mechanism. According to our study, methylation in epigenetics may regulate gene expression not only through mechanisms already known but also through changing mechanical properties of DNA.
Collapse
Affiliation(s)
- Philip M. D. Severin
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Munich Center For Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany, Beckman Institute, University of Illinois, Urbana, Illinois, USA, School of Physics, Peking University, Beijing, China and Department of Physics, University of Illinois, Urbana, Illinois, USA
| | - Xueqing Zou
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Munich Center For Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany, Beckman Institute, University of Illinois, Urbana, Illinois, USA, School of Physics, Peking University, Beijing, China and Department of Physics, University of Illinois, Urbana, Illinois, USA
| | - Hermann E. Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Munich Center For Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany, Beckman Institute, University of Illinois, Urbana, Illinois, USA, School of Physics, Peking University, Beijing, China and Department of Physics, University of Illinois, Urbana, Illinois, USA
| | - Klaus Schulten
- Lehrstuhl für Angewandte Physik and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Munich Center For Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377 Munich, Germany, Beckman Institute, University of Illinois, Urbana, Illinois, USA, School of Physics, Peking University, Beijing, China and Department of Physics, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
4
|
Malyshev DA, Pfaff DA, Ippoliti SI, Hwang GT, Dwyer TJ, Romesberg FE. Solution structure, mechanism of replication, and optimization of an unnatural base pair. Chemistry 2010; 16:12650-9. [PMID: 20859962 PMCID: PMC3332063 DOI: 10.1002/chem.201000959] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
As part of an ongoing effort to expand the genetic alphabet for in vitro and eventual in vivo applications, we have synthesized a wide variety of predominantly hydrophobic unnatural base pairs and evaluated their replication in DNA. Collectively, the results have led us to propose that these base pairs, which lack stabilizing edge-on interactions, are replicated by means of a unique intercalative mechanism. Here, we report the synthesis and characterization of three novel derivatives of the nucleotide analogue dMMO2, which forms an unnatural base pair with the nucleotide analogue d5SICS. Replacing the para-methyl substituent of dMMO2 with an annulated furan ring (yielding dFMO) has a dramatically negative effect on replication, while replacing it with a methoxy (dDMO) or with a thiomethyl group (dTMO) improves replication in both steady-state assays and during PCR amplification. Thus, dTMO-d5SICS, and especially dDMO-d5SICS, represent significant progress toward the expansion of the genetic alphabet. To elucidate the structure-activity relationships governing unnatural base pair replication, we determined the solution structure of duplex DNA containing the parental dMMO2-d5SICS pair, and also used this structure to generate models of the derivative base pairs. The results strongly support the intercalative mechanism of replication, reveal a surprisingly high level of specificity that may be achieved by optimizing packing interactions, and should prove invaluable for the further optimization of the unnatural base pair.
Collapse
Affiliation(s)
- Denis A. Malyshev
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858 784 7472
| | - Danielle A. Pfaff
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, CA 92110 (USA)
| | - Shannon I. Ippoliti
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, CA 92110 (USA)
| | - Gil Tae Hwang
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858 784 7472
| | - Tammy J. Dwyer
- Department of Chemistry and Biochemistry, University of San Diego, 5998 Alcala Park, San Diego, CA 92110 (USA)
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA), Fax: (+1) 858 784 7472
| |
Collapse
|
5
|
Dextraze ME, Cecchini S, Bergeron F, Girouard S, Turcotte K, Wagner JR, Hunting DJ. Reaching for the other side: generating sequence-dependent interstrand cross-links with 5-bromodeoxyuridine and gamma-rays. Biochemistry 2009; 48:2005-11. [PMID: 19216505 DOI: 10.1021/bi801684t] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interstrand cross-links impede critical cellular processes such as transcription and replication and are thus considered to be one of the most toxic types of DNA damage. Although several studies now point to the existence of gamma-radiation-induced cross-links in cellular DNA, little is known about the characteristics required for their creation. Recently, we reported the formation of interstrand cross-links that were specific for mismatched nucleotides within 5-bromo-2'-deoxyuridine-substituted DNA. Given the structural specificity for interstrand cross-link formation, it is likely that open or mismatched regions of DNA in cells may be particularly favorable for cross-link production. Herein, we investigated the effect of the local DNA sequence on the formation of interstrand cross-links, using 5-bromo-2'-deoxyuridine to generate radicals in a mismatched region of DNA. We investigated a total of 12 variations of bases in the mismatched region. The oligonucleotides were irradiated with gamma-rays, and interstrand cross-link formation was analyzed by denaturing gel electrophoresis. We found that the efficiency of cross-link formation was highly dependent on the nature of mismatched bases and, on the basis of electrophoretic mobility, observed several distinctive cross-link structures with specific DNA sequences. This study provides new insights into the reactivity of mismatched DNA and the mechanisms leading to interstrand cross-link formation. The potential application of 5-bromo-2'-deoxyuridine-induced interstrand cross-links to the field of DNA repair is discussed.
Collapse
Affiliation(s)
- Marie-Eve Dextraze
- Center for Research in Radiotherapy (CR2), Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
6
|
Grigorenko N, Leumann C. 2-Phenanthrenyl-DNA: Synthesis, Pairing, and Fluorescence Properties. Chemistry 2009; 15:639-45. [DOI: 10.1002/chem.200801135] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Johar Z, Zahn A, Leumann CJ, Jaun B. Solution structure of a DNA duplex containing a biphenyl pair. Chemistry 2008; 14:1080-6. [PMID: 18038386 DOI: 10.1002/chem.200701304] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydrogen-bonding and stacking interactions between nucleobases are considered to be the major noncovalent interactions that stabilize the DNA and RNA double helices. In recent work we found that one or multiple biphenyl pairs, devoid of any potential for hydrogen bond formation, can be introduced into a DNA double helix without loss of duplex stability. We hypothesized that interstrand stacking interactions of the biphenyl residues maintain duplex stability. Here we present an NMR structure of the decamer duplex d(GTGACXGCAG) d(CTGCYGTCAC) that contains one such X/Y biaryl pair. X represents a 3'',5''-dinitrobiphenyl- and Y a 3'',4''-dimethoxybiphenyl C-nucleoside unit. The experimentally determined solution structure shows a B-DNA duplex with a slight kink at the site of modification. The biphenyl groups are intercalated side by side as a pair between the natural base pairs and are stacked head to tail in van der Waals contact with each other. The first phenyl rings of the biphenyl units each show tight intrastrand stacking to their natural base neighbors on the 3'-side, thus strongly favoring one of two possible interstrand intercalation structures. In order to accommodate the biphenyl units in the duplex the helical pitch is widened while the helical twist at the site of modification is reduced. Interestingly, the biphenyl rings are not static in the duplex but are in dynamic motion even at 294 K.
Collapse
Affiliation(s)
- Zeena Johar
- Laboratory of Organic Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
8
|
Réblová K, Spacková N, Stefl R, Csaszar K, Koca J, Leontis NB, Sponer J. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E. Biophys J 2003; 84:3564-82. [PMID: 12770867 PMCID: PMC1302943 DOI: 10.1016/s0006-3495(03)75089-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Explicit solvent and counterion molecular dynamics simulations have been carried out for a total of >80 ns on the bacterial and spinach chloroplast 5S rRNA Loop E motifs. The Loop E sequences form unique duplex architectures composed of seven consecutive non-Watson-Crick basepairs. The starting structure of spinach chloroplast Loop E was modeled using isostericity principles, and the simulations refined the geometries of the three non-Watson-Crick basepairs that differ from the consensus bacterial sequence. The deep groove of Loop E motifs provides unique sites for cation binding. Binding of Mg(2+) rigidifies Loop E and stabilizes its major groove at an intermediate width. In the absence of Mg(2+), the Loop E motifs show an unprecedented degree of inner-shell binding of monovalent cations that, in contrast to Mg(2+), penetrate into the most negative regions inside the deep groove. The spinach chloroplast Loop E shows a marked tendency to compress its deep groove compared with the bacterial consensus. Structures with a narrow deep groove essentially collapse around a string of Na(+) cations with long coordination times. The Loop E non-Watson-Crick basepairing is complemented by highly specific hydration sites ranging from water bridges to hydration pockets hosting 2 to 3 long-residing waters. The ordered hydration is intimately connected with RNA local conformational variations.
Collapse
Affiliation(s)
- Kamila Réblová
- National Center for Biomolecular Research, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Single-stranded DNA or double-stranded DNA has the potential to adopt a wide variety of unusual duplex and hairpin motifs in the presence (trans) or absence (cis) of ligands. Several principles for the formation of those unusual structures have been established through the observation of a number of recurring structural motifs associated with different sequences. These include: (i) internal loops of consecutive mismatches can occur in a B-DNA duplex when sheared base pairs are adjacent to each other to confer extensive cross- and intra-strand base stacking; (ii) interdigitated (zipper-like) duplex structures form instead when sheared G*A base pairs are separated by one or two pairs of purine*purine mismatches; (iii) stacking is not restricted to base, deoxyribose also exhibits the potential to do so; (iv) canonical G*C or A.T base pairs are flexible enough to exhibit considerable changes from the regular H-bonded conformation. The paired bases become stacked when bracketed by sheared G.A base pairs, or become extruded out and perpendicular to their neighboring bases in the presence of interacting drugs; (v) the purine-rich and pyrimidine-rich loop structures are notably different in nature. The purine-rich loops form compact triloop structures closed by a sheared G*A, A*A, A*C or sheared-like G(anti)*C(syn) base pair that is stacked by a single residue. On the other hand, the pyrimidine-rich loops with a thymidine in the first position exhibit no base pairing but are characterized by the folding of the thymidine residue into the minor groove to form a compact loop structure. Identification of such diverse duplex or hairpin motifs greatly enlarges the repertoire for unusual DNA structural formation.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Department of Life Science, National Central University, Jung-Li, 320, Taiwan, ROC
| | | | | |
Collapse
|
10
|
Chou SH, Chin KH, Chen FM. Looped out and perpendicular: deformation of Watson-Crick base pair associated with actinomycin D binding. Proc Natl Acad Sci U S A 2002; 99:6625-30. [PMID: 12011426 PMCID: PMC124453 DOI: 10.1073/pnas.102580399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many anticancer drugs interact directly with DNA to exert their biological functions. To date, all noncovalent, intercalating drugs interact with DNA exclusively by inserting their chromophores into base steps to form elongated and unwound duplex structures without disrupting the flanking base pairs. By using actinomycin D (ActD)-5'-GXC/CYG-5' complexes as examples, we have found a rather unusual interaction mode for the intercalated drug; the central Watson-Crick X/Y base pairs are looped out and displaced by the ActD chromophore. The looped-out bases are not disordered but interact perpendicularly with the base/chromophore and form specific H bonds with DNA. Such a complex structure provides intriguing insights into how ligand interacts with DNA and enlarges the repertoires for sequence-specific DNA recognition.
Collapse
Affiliation(s)
- Shan-Ho Chou
- Institute of Biochemistry, National Chung-Hsing University, Taichung, Taiwan 40227, Republic of China.
| | | | | |
Collapse
|