1
|
Lennartz M, Atug D, Dwertmann Rico S, Reiswich V, Viehweger F, Büscheck F, Kluth M, Hube-Magg C, Hinsch A, Bernreuther C, Sauter G, Burandt E, Marx AH, Krech T, Simon R, Minner S, Clauditz TS, Jacobsen F, Lebok P, Gorbokon N, Möller K, Steurer S, Fraune C. Analysis of More than 16,000 Human Tumor and Normal Tissues Identifies Uroplakin 3B as a Useful Diagnostic Marker for Mesothelioma and Normal Mesothelial Cells. Diagnostics (Basel) 2022; 12:2516. [PMID: 36292206 PMCID: PMC9600073 DOI: 10.3390/diagnostics12102516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 10/02/2023] Open
Abstract
Uroplakin 3B (Upk3b) is involved in stabilizing and strengthening the urothelial cell layer of the bladder. Based on RNA expression studies, Upk3b is expressed in a limited number of normal and tumor tissues. The potential use of Upk3b as a diagnostic or prognostic marker in tumor diagnosis has not yet been extensively investigated. A tissue microarray containing 17,693 samples from 151 different tumor types/subtypes and 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. In normal tissues, Upk3b expression was largely limited to mesothelial cells, urothelial umbrella cells, and amnion cells. In tumor tissues, Upk3b was detectable in only 17 of 151 (11.3%) of tumor types. Upk3b expression was most frequent in mesotheliomas (82.1% of epithelioid and 30.8% of biphasic) and in urothelial tumors of the urinary bladder, where the positivity rate decreased from 61.9% in pTaG2 (low grade) to 58.0% in pTaG3 (high grade) and 14.6% in pT2-4 cancers. Among pT2-4 urothelial carcinomas, Upk3b staining was unrelated to tumor stage, lymph node status, and patient prognosis. Less commonly, Upk3b expression was also seen in Brenner tumors of the ovary (10.8%), as well as in four other subtypes of ovarian cancer (0.9-10.6%). Four additional tumor entities showed a weak to moderate Upk3b positivity in less than 5% of cases. In summary, Upk3b immunohistochemistry is a useful diagnostic tool for the distinction of mesotheliomas from other thoracic tumors and the visualization of normal mesothelial and umbrella cells.
Collapse
Affiliation(s)
- Maximilian Lennartz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dennis Atug
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | - Viktor Reiswich
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Florian Viehweger
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Franziska Büscheck
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andrea Hinsch
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Bernreuther
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Eike Burandt
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Andreas H. Marx
- Department of Pathology, Academic Hospital Fuerth, 90766 Fuerth, Germany
| | - Till Krech
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sarah Minner
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Till S. Clauditz
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Frank Jacobsen
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Patrick Lebok
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department of Pathology, Clinical Center Osnabrueck, 49076 Osnabrueck, Germany
| | - Natalia Gorbokon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Katharina Möller
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Steurer
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Fraune
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Options for histological study of the structure and ultrastructure of human urinary bladder epithelium. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0090-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
3
|
Wang H, Min G, Glockshuber R, Sun TT, Kong XP. Uropathogenic E. coli adhesin-induced host cell receptor conformational changes: implications in transmembrane signaling transduction. J Mol Biol 2009; 392:352-61. [PMID: 19577575 PMCID: PMC2755582 DOI: 10.1016/j.jmb.2009.06.077] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/22/2009] [Accepted: 06/29/2009] [Indexed: 01/02/2023]
Abstract
Urinary tract infection is the second most common infectious disease and is caused predominantly by type 1-fimbriated uropathogenic Escherichia coli (UPEC). UPEC initiates infection by attaching to uroplakin (UP) Ia, its urothelial surface receptor, via the FimH adhesins capping the distal end of its fimbriae. UP Ia, together with UP Ib, UP II, and UP IIIa, forms a 16-nm receptor complex that is assembled into hexagonally packed, two-dimensional crystals (urothelial plaques) covering >90% of the urothelial apical surface. Recent studies indicate that FimH is the invasin of UPEC as its attachment to the urothelial surface can induce cellular signaling events including calcium elevation and the phosphorylation of the UP IIIa cytoplasmic tail, leading to cytoskeletal rearrangements and bacterial invasion. However, it remains unknown how the binding of FimH to the UP receptor triggers a signal that can be transmitted through the highly impermeable urothelial apical membrane. We show here by cryo-electron microscopy that FimH binding to the extracellular domain of UP Ia induces global conformational changes in the entire UP receptor complex, including a coordinated movement of the tightly bundled transmembrane helices. This movement of the transmembrane helix bundles can cause a corresponding lateral translocation of the UP cytoplasmic tails, which can be sufficient to trigger downstream signaling events. Our results suggest a novel pathogen-induced transmembrane signal transduction mechanism that plays a key role in the initial stages of UPEC invasion and receptor-mediated bacterial invasion in general.
Collapse
Affiliation(s)
- Huaibin Wang
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - Guangwei Min
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | - Rudi Glockshuber
- Institut für Molekularbiologie und Biophysik, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Tung-Tien Sun
- Departments of Cell Biology, Dermatology, Pharmacology, Urology, and New York University Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Xiang-Peng Kong
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
4
|
Abstract
Urothelium covers the inner surfaces of the renal pelvis, ureter, bladder, and prostatic urethra. Although morphologically similar, the urothelia in these anatomic locations differ in their embryonic origin and lineages of cellular differentiation, as reflected in their different uroplakin content, expandability during micturition, and susceptibility to chemical carcinogens. Previously thought to be an inert tissue forming a passive barrier between the urine and blood, urothelia have recently been shown to have a secretory activity that actively modifies urine composition. Urothelial cells express a number of ion channels, receptors, and ligands, enabling them to receive and send signals and communicate with adjoining cells and their broader environment. The urothelial surface bears specific receptors that not only allow uropathogenic E. coli to attach to and invade the bladder mucosa, but also provide a route by which the bacteria ascend through the ureters to the kidney to cause pyelonephritis. Genetic ablation of one or more uroplakin genes in mice causes severe retrograde vesicoureteral reflux, hydronephrosis, and renal failure, conditions that mirror certain human congenital diseases. Clearly, abnormalities of the lower urinary tract can impact the upper tract, and vice versa, through the urothelial connection. In this review, we highlight recent advances in the field of urothelial biology by focusing on the uroplakins, a group of urothelium-specific and differentiation-dependent integral membrane proteins. We discuss these proteins' biochemistry, structure, assembly, intracellular trafficking, and their emerging roles in urothelial biology, function, and pathological processes. We also call attention to important areas where greater investigative efforts are warranted.
Collapse
|
5
|
Peptide-presenting two-dimensional protein matrix on supported lipid bilayers: An efficient platform for cell adhesion. Biointerphases 2007; 2:165-72. [DOI: 10.1116/1.2821954] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Kreplak L, Wang H, Aebi U, Kong XP. Atomic force microscopy of Mammalian urothelial surface. J Mol Biol 2007; 374:365-73. [PMID: 17936789 PMCID: PMC2096708 DOI: 10.1016/j.jmb.2007.09.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 12/22/2022]
Abstract
The mammalian urothelium apical surface plays important roles in bladder physiology and diseases, and it provides a unique morphology for ultrastructural studies. Atomic force microscopy (AFM) is an emerging tool for studying the architecture and dynamic properties of biomolecular structures under near-physiological conditions. However, AFM imaging of soft tissues remains a challenge because of the lack of efficient methods for sample stabilization. Using a porous nitrocellulose membrane as the support, we were able to immobilize large pieces of soft mouse bladder tissue, thus enabling us to carry out the first AFM investigation of the mouse urothelial surface. The submicrometer-resolution AFM images revealed many details of the surface features, including the geometry of the urothelial plaques that cover the entire surface and the membrane interdigitation at the cell borders. This interdigitation creates a membrane zipper, likely contributing to the barrier function of the urothelium. In addition, we were able to image the intracellular bacterial communities of type 1-fimbriated bacteria grown between the intermediate filament bundles of the umbrella cells, shedding light on the bacterial colonization of the urothelium.
Collapse
Affiliation(s)
- Laurent Kreplak
- M.E Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Huaibin Wang
- Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ueli Aebi
- M.E Müller Institute for Structural Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Xiang-Peng Kong
- Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
7
|
Stolz M, Aebi U, Stoffler D. Developing scanning probe–based nanodevices—stepping out of the laboratory into the clinic. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2007; 3:53-62. [PMID: 17379169 DOI: 10.1016/j.nano.2007.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/19/2006] [Indexed: 10/23/2022]
Abstract
This report focuses on nanotools based on the scanning force microscope (SFM) for imaging, measuring, and manipulating biological matter at the sub-micron scale. Because pathophysiological processes often occur at the (sub-) cellular scale, the SFM has opened the exciting possibility to spot diseases at a stage before they become symptomatic and cause functional impairments in the affected part of the body. Such presymptomatic detection will be key to developing effective therapies to slow or halt disease progression.
Collapse
Affiliation(s)
- Martin Stolz
- M.E. Müller Institute for Structural Biology, Biozentrum, University of Basel, Switzerland
| | | | | |
Collapse
|
8
|
Min G, Wang H, Sun TT, Kong XP. Structural basis for tetraspanin functions as revealed by the cryo-EM structure of uroplakin complexes at 6-A resolution. ACTA ACUST UNITED AC 2006; 173:975-83. [PMID: 16785325 PMCID: PMC2063921 DOI: 10.1083/jcb.200602086] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tetraspanin uroplakins (UPs) Ia and Ib, together with their single-spanning transmembrane protein partners UP II and IIIa, form a unique crystalline 2D array of 16-nm particles covering almost the entire urothelial surface. A 6 Å–resolution cryo-EM structure of the UP particle revealed that the UP tetraspanins have a rod-shaped structure consisting of four closely packed transmembrane helices that extend into the extracellular loops, capped by a disulfide-stabilized head domain. The UP tetraspanins form the primary complexes with their partners through tight interactions of the transmembrane domains as well as the extracellular domains, so that the head domains of their tall partners can bridge each other at the top of the heterotetramer. The secondary interactions between the primary complexes and the tertiary interaction between the 16-nm particles contribute to the formation of the UP tetraspanin network. The rod-shaped tetraspanin structure allows it to serve as stable pilings in the lipid sea, ideal for docking partner proteins to form structural/signaling networks.
Collapse
Affiliation(s)
- Guangwei Min
- Department of Biochemistry, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
9
|
Xie B, Zhou G, Chan SY, Shapiro E, Kong XP, Wu XR, Sun TT, Costello CE. Distinct glycan structures of uroplakins Ia and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. J Biol Chem 2006; 281:14644-53. [PMID: 16567801 DOI: 10.1074/jbc.m600877200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although it has been shown that mouse uroplakin (UP) Ia, a major glycoprotein of urothelial apical surface, can serve as the receptor for the FimH lectin adhesin of type 1-fimbriated Escherichia coli, the organism that causes a great majority of urinary tract infections, the glycan structure of this native receptor was unknown. Using a sensitive approach that combines in-gel glycosidase and protease digestions, permethylation of released glycans, and mass spectrometry, we have elucidated for the first time the native glycoform structures of the mouse UPIa receptor and those of its non-binding homolog, UPIb, and have determined the glycosylation site occupancy. UPIa presents a high level of terminally exposed mannose residues (located on Man(6)GlcNAc(2) to Man(9)GlcNAc(2)) that are capable of specifically interacting with FimH. We have shown that this property is conserved not only in the mouse uroplakins but also in cattle and, even more importantly, in human UPIa, thus establishing the concept that UPIa is a major urothelial receptor in humans and other mammals for the mannose-specific FimH variant. In contrast, our results indicate that most terminally exposed glycans of mouse UPIb are non-mannose residues, thus explaining the failure of FimH to bind to this UPIb. In cattle, on the other hand, complex carbohydrates constituted only about 20% of the UPIb N-linked glycans. Human UPIa contained exclusively high mannose glycans, and human UPIb contained only complex glycans. The drastically different carbohydrate processing of the UPIa and UPIb proteins, two closely related members of the tetraspanin family, may reflect differences in their folding and masking due to their interactions with their associated proteins, UPII and UPIIIa, respectively. Results from this study shed light on the molecular pathogenesis of urinary tract infections and may aid in the design of glyco-mimetic inhibitors for preventing and treating this disease.
Collapse
Affiliation(s)
- Bo Xie
- Mass Spectrometry Resource, Boston University School of Medicine, 670 Albany Street, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Cell-surface proteins of the tetraspanin family are small, and often hidden by a canopy of tall glycoprotein neighbours in the cell membrane. Consequently, tetraspanins have been understudied and underappreciated, despite their presence on nearly all cell and tissue types. Important new genetic evidence has now emerged, and is bolstered by new insights into the cell biology, signalling and biochemistry of tetraspanins. These new findings provide a framework for better understanding of these mysterious molecules in the regulation of cellular processes, from signalling to motility.
Collapse
Affiliation(s)
- Martin E Hemler
- Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, Massachusetts 02115, USA.
| |
Collapse
|
11
|
Hu CCA, Liang FX, Zhou G, Tu L, Tang CHA, Zhou J, Kreibich G, Sun TT. Assembly of urothelial plaques: tetraspanin function in membrane protein trafficking. Mol Biol Cell 2005; 16:3937-50. [PMID: 15958488 PMCID: PMC1196309 DOI: 10.1091/mbc.e05-02-0136] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The apical surface of mammalian urothelium is covered by 16-nm protein particles packed hexagonally to form 2D crystals of asymmetric unit membranes (AUM) that contribute to the remarkable permeability barrier function of the urinary bladder. We have shown previously that bovine AUMs contain four major integral membrane proteins, i.e., uroplakins Ia, Ib, II, and IIIa, and that UPIa and Ib (both tetraspanins) form heterodimers with UPII and IIIa, respectively. Using a panel of antibodies recognizing different conformational states of uroplakins, we demonstrate that the UPIa-dependent, furin-mediated cleavage of the prosequence of UPII leads to global conformational changes in mature UPII and that UPIb also induces conformational changes in its partner UPIIIa. We further demonstrate that tetraspanins CD9, CD81, and CD82 can stabilize their partner protein CD4. These results indicate that tetraspanin uroplakins, and some other tetraspanin proteins, can induce conformational changes leading to the ER-exit, stabilization, and cell surface expression of their associated, single-transmembrane-domained partner proteins and thus can function as "maturation-facilitators." We propose a model of AUM assembly in which conformational changes in integral membrane proteins induced by uroplakin interactions, differentiation-dependent glycosylation, and the removal of the prosequence of UPII play roles in regulating the assembly of uroplakins to form AUM.
Collapse
Affiliation(s)
- Chih-Chi Andrew Hu
- Epithelial Biology Unit, The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT. Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. ACTA ACUST UNITED AC 2005; 167:1195-204. [PMID: 15611339 PMCID: PMC2172608 DOI: 10.1083/jcb.200406025] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The apical surface of mouse urothelium is covered by two-dimensional crystals (plaques) of uroplakin (UP) particles. To study uroplakin function, we ablated the mouse UPII gene. A comparison of the phenotypes of UPII- and UPIII-deficient mice yielded new insights into the mechanism of plaque formation and some fundamental features of urothelial differentiation. Although UPIII knockout yielded small plaques, UPII knockout abolished plaque formation, indicating that both uroplakin heterodimers (UPIa/II and UPIb/III or IIIb) are required for plaque assembly. Both knockouts had elevated UPIb gene expression, suggesting that this is a general response to defective plaque assembly. Both knockouts also had small superficial cells, suggesting that continued fusion of uroplakin-delivering vesicles with the apical surface may contribute to umbrella cell enlargement. Both knockouts experienced vesicoureteral reflux, hydronephrosis, renal dysfunction, and, in the offspring of some breeding pairs, renal failure and neonatal death. These results highlight the functional importance of uroplakins and establish uroplakin defects as a possible cause of major urinary tract anomalies and death.
Collapse
Affiliation(s)
- Xiang-Tian Kong
- Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Jiang S, Gitlin J, Deng FM, Liang FX, Lee A, Atala A, Bauer SB, Ehrlich GD, Feather SA, Goldberg JD, Goodship JA, Goodship THJ, Hermanns M, Hu FZ, Jones KE, Malcolm S, Mendelsohn C, Preston RA, Retik AB, Schneck FX, Wright V, Ye XY, Woolf AS, Wu XR, Ostrer H, Shapiro E, Yu J, Sun TT. Lack of major involvement of human uroplakin genes in vesicoureteral reflux: implications for disease heterogeneity. Kidney Int 2005; 66:10-9. [PMID: 15200408 DOI: 10.1111/j.1523-1755.2004.00703.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Primary vesicoureteral reflux (VUR) is a hereditary disorder characterized by the retrograde flow of urine into the ureters and kidneys. It affects about 1% of the young children and is thus one of the most common hereditary diseases. Its associated nephropathy is an important cause of end-stage renal failure in children and adults. Recent studies indicate that genetic ablation of mouse uroplakin (UP) III gene, which encodes a 47 kD urothelial-specific integral membrane protein forming urothelial plaques, causes VUR and hydronephrosis. METHODS To begin to determine whether mutations in UP genes might play a role in human VUR, we genotyped all four UP genes in 76 patients with radiologically proven primary VUR by polymerase chain reaction (PCR) amplification and sequencing of all their exons plus 50 to 150 bp of flanking intronic sequences. RESULTS Eighteen single nucleotide polymorphisms (SNPs) were identified, seven of which were missense, with no truncation or frame shift mutations. Since healthy relatives of the VUR probands are not reliable negative controls for VUR, we used a population of 90 race-matched, healthy individuals, unrelated to the VUR patients, as controls to perform an association study. Most of the SNPs were not found to be significantly associated with VUR. However, SNP1 of UP Ia gene affecting a C to T conversion and an Ala7Val change, and SNP7 of UP III affecting a C to G conversion and a Pro154Ala change, were marginally associated with VUR (both P= 0.08). Studies of additional cases yielded a second set of data that, in combination with the first set, confirmed a weak association of UP III SNP7 in VUR (P= 0.036 adjusted for both subsets of cases vs. controls). CONCLUSION Such a weak association and the lack of families with simple dominant Mendelian inheritance suggest that missense changes of uroplakin genes cannot play a dominant role in causing VUR in humans, although they may be weak risk factors contributing to a complex polygenic disease. The fact that no truncation or frame shift mutations have been found in any of the VUR patients, coupled with our recent finding that some breeding pairs of UP III knockout mice yield litters that show not only VUR, but also severe hydronephrosis and neonatal death, raises the possibility that major uroplakin mutations could be embryonically or postnatally lethal in humans.
Collapse
Affiliation(s)
- Songshan Jiang
- Epithelial Biology Unit, Ronald O. Perelman Department of Dermatology, Kaplan Comprehensive Cancer Center, New York University Medical School, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 2004; 19:397-422. [PMID: 14570575 DOI: 10.1146/annurev.cellbio.19.111301.153609] [Citation(s) in RCA: 661] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review summarizes key aspects of tetraspanin proteins, with a focus on the functional relevance and structural features of these proteins and how they are organized into a novel type of membrane microdomain. Despite the size of the tetraspanin family and their abundance and wide distribution over many cell types, most have not been studied. However, from studies of prototype tetraspanins, information regarding functions, cell biology, and structural organization has begun to emerge. Genetic evidence points to critical roles for tetraspanins on oocytes during fertilization, in fungi during leaf invasion, in Drosophila embryos during neuromuscular synapse formation, during T and B lymphocyte activation, in brain function, and in retinal degeneration. From structure and mutagenesis studies, we are beginning to understand functional subregions within tetraspanins, as well as the levels of connections among tetraspanins and their many associated proteins. Tetraspanin-enriched microdomains (TEMs) are emerging as entities physically and functionally distinct from lipid rafts. These microdomains now provide a context in which to evaluate tetraspanins in the regulation of growth factor signaling and in the modulation of integrin-mediated post-cell adhesion events. Finally, the enrichment of tetraspanins within secreted vesicles called exosomes, coupled with hints that tetraspanins may regulate vesicle fusion and/or fission, suggests exciting new directions for future research.
Collapse
Affiliation(s)
- Martin E Hemler
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
| |
Collapse
|
15
|
Min G, Zhou G, Schapira M, Sun TT, Kong XP. Structural basis of urothelial permeability barrier function as revealed by Cryo-EM studies of the 16 nm uroplakin particle. J Cell Sci 2003; 116:4087-94. [PMID: 12972502 DOI: 10.1242/jcs.00811] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The apical surface of terminally differentiated mammalian urothelial umbrella cells is covered by numerous plaques consisting of two-dimensional (2D) crystals of hexagonally packed 16 nm uroplakin particles, and functions as a remarkable permeability barrier. To determine the structural basis of this barrier function, we generated, by electron cryo microscopy, a projection map of the isolated mouse urothelial plaques at 7 A and a 3D structure at 10 A resolution. Our results indicate that each 16 nm particle has a central 6 nm lipid-filled 'hole' surrounded by 6 inverted U-shaped subunits, each consisting of an inner and an outer subdomain connected via a distal joint. The transmembrane portion of each subdomain can fit about 5 helices. This finding, coupled with our STEM and EM data, suggests that uroplakin pairs Ia/II and Ib/III are associated with the inner and outer subdomains, respectively. Since the inner subdomains interconnect to form a ring, which can potentially segregate the lipids of the central hole from those outside, the 2D crystalline uroplakin network may impose an organized state and a severely restricted freedom of movement on the lipid components, thus reducing membrane fluidity and contributing to the barrier function of urothelial plaques. Our finding that distinct uroplakin substructures are in contact with the cytoplasmic and exoplasmic leaflets of the plaque suggests that the two leaflets may have different lipid composition and contribute asymmetrically to the barrier function. We propose that the crystalline lattice structure of uroplakin, through its interactions with specialized lipids, plays a major role in the remarkable permeability barrier function of urothelial apical surface. Our results also have implications for the transmembrane signal transduction in urothelial cells as induced by the binding of uropathogenic E. coli to its uroplakin receptor.
Collapse
Affiliation(s)
- Guangwei Min
- Structural Biology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Exciting new findings have emerged about the structure, function and biochemistry of tetraspanin proteins. Five distinct tetraspanin regions have now been delineated linking structural features to specific functions. Within the large extracellular loop of tetraspanins, there is a variable region that mediates specific interactions with other proteins, as well as a more highly conserved region that has been suggested to mediate homodimerization. Within the transmembrane region, the four tetraspanin transmembrane domains are probable sites of both intra- and inter-molecular interactions that are crucial during biosynthesis and assembly of the network of tetraspanin-linked membrane proteins known as the 'tetraspanin web'. In the intracellular juxtamembrane region, palmitoylation of cysteine residues also contributes to tetraspanin web assembly, and the C-terminal cytoplasmic tail region could provide specific functional links to cytoskeletal or signaling proteins.
Collapse
Affiliation(s)
- Christopher S Stipp
- Dana-Farber Cancer Institute and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|