1
|
Ferreira G, Cardozo R, Sastre S, Costa C, Santander A, Chavarría L, Guizzo V, Puglisi J, Nicolson GL. Bacterial toxins and heart function: heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys Rev 2023; 15:447-473. [PMID: 37681088 PMCID: PMC10480140 DOI: 10.1007/s12551-023-01100-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/11/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial toxins can cause cardiomyopathy, though it is not its most common cause. Some bacterial toxins can form pores in the membrane of cardiomyocytes, while others can bind to membrane receptors. Enterotoxigenic E. coli can secrete enterotoxins, including heat-resistant (ST) or labile (LT) enterotoxins. LT is an AB5-type toxin that can bind to specific cell receptors and disrupt essential host functions, causing several common conditions, such as certain diarrhea. The pentameric B subunit of LT, without A subunit (LTB), binds specifically to certain plasma membrane ganglioside receptors, found in lipid rafts of cardiomyocytes. Isolated guinea pig hearts and cardiomyocytes were exposed to different concentrations of purified LTB. In isolated hearts, mechanical and electrical alternans and an increment of heart rate variability, with an IC50 of ~0.2 μg/ml LTB, were observed. In isolated cardiomyocytes, LTB promoted significant decreases in the amplitude and the duration of action potentials. Na+ currents were inhibited whereas L-type Ca2+ currents were augmented at their peak and their fast inactivation was promoted. Delayed rectifier K+ currents decreased. Measurements of basal Ca2+ or Ca2+ release events in cells exposed to LTB suggest that LTB impairs Ca2+ homeostasis. Impaired calcium homeostasis is linked to sudden cardiac death. The results are consistent with the recent view that the B subunit is not merely a carrier of the A subunit, having a role explaining sudden cardiac death in children (SIDS) infected with enterotoxigenic E. coli, explaining several epidemiological findings that establish a strong relationship between SIDS and ETEC E. coli. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-023-01100-6.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Romina Cardozo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Santiago Sastre
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics and Centro de Investigaciones Biomédicas (CeInBio), Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Carlos Costa
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Axel Santander
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Luisina Chavarría
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - Valentina Guizzo
- Ion Channels, Biological Membranes and Cell Signaling Laboratory, Dept. Of Biophysics, Facultad de Medicina, Universidad de la Republica, Gral Flores 2125, 11800 Montevideo, CP Uruguay
| | - José Puglisi
- College of Medicine, California North State University, 9700 West Taron Drive, Elk Grove, CA 95757 USA
| | - G. L. Nicolson
- Institute for Molecular Medicine, Beach, Huntington, CA USA
| |
Collapse
|
2
|
Swift LM, Kay MW, Ripplinger CM, Posnack NG. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research. Am J Physiol Heart Circ Physiol 2021; 321:H1005-H1013. [PMID: 34623183 DOI: 10.1152/ajpheart.00477.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this "Getting It Right" perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue.
Collapse
Affiliation(s)
- Luther M Swift
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | | | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
3
|
Functional culture and in vitro genetic and small-molecule manipulation of adult mouse cardiomyocytes. Commun Biol 2020; 3:229. [PMID: 32393743 PMCID: PMC7214405 DOI: 10.1038/s42003-020-0946-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/17/2020] [Indexed: 11/28/2022] Open
Abstract
Primary adult cardiomyocyte (aCM) represent the mature form of myocytes found in the adult heart. However, culture of aCMs in particular is challenged by poor survival and loss of phenotype, rendering extended in vitro experiments unfeasible. Here, we establish murine aCM culture methods that enhance survival and maintain sarcomeric structure and Ca2+ cycling to enable physiologically relevant contractile force measurements. We also demonstrate genetic and small-molecule manipulations that probe mechanisms underlying myocyte functional performance. Together, these refinements to aCM culture present a toolbox with which to advance our understanding of myocardial physiology. Callaghan et al. present a combinatory approach to culturing harvested adult mouse cardiomyocytes (aCMs). Under traditional culture protocols, aCMs rapidly lose their phenotype and undergo cell death. With their protocol, the authors show aCMs remain viable and retain their phenotype for 7 days, enough time to do genetic manipulation and small molecule screening.
Collapse
|
4
|
Small Molecule Effectors of Myosin Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:61-84. [DOI: 10.1007/978-3-030-38062-5_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Lead poisoning: acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys Rev 2017; 9:807-825. [PMID: 28836190 DOI: 10.1007/s12551-017-0303-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/28/2017] [Indexed: 01/02/2023] Open
Abstract
Lead ions (Pb2+) possess characteristics similar to Ca2+. Because of this and its redox capabilities, lead causes different toxic effects. The neurotoxic effects have been well documented; however, the toxic effects on cardiac tissues remain allusive. We utilized isolated guinea pig hearts and measured the effects of Pb2+ on their contractility and excitability. Acute exposure to extracellular Pb2+ had a negative inotropic effect and increased diastolic tension. The speed of contraction and relaxation were affected, though the effects were more dramatic on the speed of contraction. Excitability was also altered. Heart beat frequency increased and later diminished after lead ion exposure. Pro-arrhytmic events, such as early after-depolarization and a reduction of the action potential plateau, were also observed. In isolated cardiomyocytes and tsA 201 cells, extracellular lead blocked currents through Cav1.2 channels, diminished their activation, and enhanced their fast inactivation, negatively affecting their gating currents. Thus, Pb2+ was cardiotoxic and reduced cardiac contractility, making the heart prone to arrhythmias. This was due, in part, to Pb2+ effects on the Cav1.2 channels; however, other channels, transporters or pathways may also be involved. Acute cardiotoxic effects were observed at Pb2+ concentrations achievable during acute lead poisoning. The results suggest how Cav1.2 gating can be affected by divalent cations, such as Pb2, and also suggest a more thorough evaluation of heart function in individuals affected by lead poisoning.
Collapse
|
6
|
Fame RM, Chang JT, Hong A, Aponte-Santiago NA, Sive H. Directional cerebrospinal fluid movement between brain ventricles in larval zebrafish. Fluids Barriers CNS 2016; 13:11. [PMID: 27329482 PMCID: PMC4915066 DOI: 10.1186/s12987-016-0036-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) contained within the brain ventricles contacts neuroepithelial progenitor cells during brain development. Dynamic properties of CSF movement may limit locally produced factors to specific regions of the developing brain. However, there is no study of in vivo CSF dynamics between ventricles in the embryonic brain. We address CSF movement using the zebrafish larva, during the major period of developmental neurogenesis. METHODS CSF movement was monitored at two stages of zebrafish development: early larva [pharyngula stage; 27-30 h post-fertilization (hpf)] and late larva (hatching period; 51-54 hpf) using photoactivatable Kaede protein to calculate average maximum CSF velocity between ventricles. Potential roles for heartbeat in early CSF movement were investigated using tnnt2a mutant fish (tnnt2a (-/-)) and chemical [2,3 butanedione monoxime (BDM)] treatment. Cilia motility was monitored at these stages using the Tg(βact:Arl13b-GFP) transgenic fish line. RESULTS In wild-type early larva there is net CSF movement from the telencephalon to the combined diencephalic/mesencephalic superventricle. This movement directionality reverses at late larval stage. CSF moves directionally from diencephalic to rhombencephalic ventricles at both stages examined, with minimal movement from rhombencephalon to diencephalon. Directional movement is partially dependent on heartbeat, as indicated in assays of tnnt2a (-/-) fish and after BDM treatment. Brain cilia are immotile at the early larval stage. CONCLUSION These data demonstrate directional movement of the embryonic CSF in the zebrafish model during the major period of developmental neurogenesis. A key conclusion is that CSF moves preferentially from the diencephalic into the rhombencephalic ventricle. In addition, the direction of CSF movement between telencephalic and diencephalic ventricles reverses between the early and late larval stages. CSF movement is partially dependent on heartbeat. At early larval stage, the absence of motile cilia indicates that cilia likely do not direct CSF movement. These data suggest that CSF components may be compartmentalized and could contribute to specialization of the early brain. In addition, CSF movement may also provide directional mechanical signaling.
Collapse
Affiliation(s)
- Ryann M Fame
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, 02142, USA
| | - Jessica T Chang
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, 02142, USA.,Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
| | - Alex Hong
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA
| | | | - Hazel Sive
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA, 02142, USA. .,Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139-4307, USA.
| |
Collapse
|
7
|
Kuzmiak-Glancy S, Jaimes R, Wengrowski AM, Kay MW. Oxygen demand of perfused heart preparations: how electromechanical function and inadequate oxygenation affect physiology and optical measurements. Exp Physiol 2016; 100:603-16. [PMID: 25865254 DOI: 10.1113/ep085042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/09/2015] [Indexed: 01/22/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses how the function and electrophysiology of isolated perfused hearts are affected by oxygenation and energy utilization. The impact of oxygenation on fluorescence measurements in perfused hearts is also discussed. What advances does it highlight? Recent studies have illuminated the inherent differences in electromechanical function, energy utilization rate and oxygen requirements between the primary types of excised heart preparations. A summary and analysis of how these variables affect experimental results are necessary to elevate the physiological relevance of these approaches in order to advance the field of whole-heart research. The ex vivo perfused heart recreates important aspects of in vivo conditions to provide insight into whole-organ function. In this review we discuss multiple types of ex vivo heart preparations, explain how closely each mimic in vivo function, and discuss how changes in electromechanical function and inadequate oxygenation of ex vivo perfused hearts may affect measurements of physiology. Hearts that perform physiological work have high oxygen demand and are likely to experience hypoxia when perfused with a crystalloid perfusate. Adequate myocardial oxygenation is critically important for obtaining physiologically relevant measurements, so when designing experiments the type of ex vivo preparation and the capacity of perfusate to deliver oxygen must be carefully considered. When workload is low, such as during interventions that inhibit contraction, oxygen demand is also low, which could dramatically alter a physiological response to experimental variables. Changes in oxygenation also alter the optical properties of cardiac tissue, an effect that may influence optical signals measured from both endogenous and exogenous fluorophores. Careful consideration of oxygen supply, working condition, and wavelengths used to acquire optical signals is critical for obtaining physiologically relevant measurements during ex vivo perfused heart studies.
Collapse
Affiliation(s)
- Sarah Kuzmiak-Glancy
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Rafael Jaimes
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Anastasia M Wengrowski
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.,Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| |
Collapse
|
8
|
Brines L, Such-Miquel L, Gallego D, Trapero I, del Canto I, Zarzoso M, Soler C, Pelechano F, Cánoves J, Alberola A, Such L, Chorro FJ. Modifications of mechanoelectric feedback induced by 2,3-butanedione monoxime and Blebbistatin in Langendorff-perfused rabbit hearts. Acta Physiol (Oxf) 2012; 206:29-41. [PMID: 22497862 DOI: 10.1111/j.1748-1716.2012.02441.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/16/2011] [Accepted: 03/26/2012] [Indexed: 11/30/2022]
Abstract
AIM Myocardial stretching is an arrhythmogenic factor. Optical techniques and mechanical uncouplers are used to study the mechanoelectric feedback. The aim of this study is to determine whether the mechanical uncouplers 2,3-butanedione monoxime and Blebbistatin hinder or modify the electrophysiological effects of acute mechanical stretch. METHODS The ventricular fibrillation (VF) modifications induced by acute mechanical stretch were studied in 27 Langendorff-perfused rabbit hearts using epicardial multiple electrodes and mapping techniques under control conditions (n = 9) and during the perfusion of 2,3-butanedione monoxime (15 mM) (n = 9) or Blebbistatin (10 μm) (n = 9). RESULTS In the control series, myocardial stretch increased the complexity of the activation maps and the dominant frequency (DF) of VF from 13.1 ± 2.0 Hz to 19.1 ± 3.1 Hz (P < 0.001, 46% increment). At baseline, the activation maps showed less complexity in both the 2,3-butanedione monoxime and Blebbistatin series, and the DF was lower in the 2,3-butanedione monoxime series (11.4 ± 1.2 Hz; P < 0.05). The accelerating effect of mechanical stretch was abolished under 2,3-butanedione monoxime (maximum DF = 11.7 ± 2.4 Hz, 5% increment, ns vs baseline, P < 0.0001 vs. control series) and reduced under Blebbistatin (maximum DF = 12.9 ± 0.7 Hz, 8% increment, P < 0.01 vs. baseline, P < 0.0001 vs. control series). The variations in complexity of the activation maps under stretch were not significant in the 2,3-butanedione monoxime series and were significantly attenuated under Blebbistatin. CONCLUSION The accelerating effect and increased complexity of myocardial activation during VF induced by acute mechanical stretch are abolished under the action of 2,3-butanedione monoxime and reduced under the action of Blebbistatin.
Collapse
Affiliation(s)
- L. Brines
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - L. Such-Miquel
- Department of Physiotherapy; Valencia University, Estudi General; Valencia; Spain
| | - D. Gallego
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - I. Trapero
- Department of Infirmary; Valencia University, Estudi General; Valencia; Spain
| | - I. del Canto
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - M. Zarzoso
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - C. Soler
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - F. Pelechano
- Department of Medicine; Valencia University, Estudi General; Valencia; Spain
| | - J. Cánoves
- Service of Cardiology; Valencia University Clinic Hospital; INCLIVA, Valencia; Spain
| | - A. Alberola
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | - L. Such
- Department of Physiology; Valencia University, Estudi General; Valencia; Spain
| | | |
Collapse
|
9
|
Radford JE, White RG. Inhibitors of myosin, but not actin, alter transport through Tradescantia plasmodesmata. PROTOPLASMA 2011; 248:205-16. [PMID: 21113638 DOI: 10.1007/s00709-010-0244-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Accepted: 11/10/2010] [Indexed: 05/13/2023]
Abstract
Actin and myosin are components of plasmodesmata, the cytoplasmic channels between plant cells, but their role in regulating these channels is unclear. Here, we investigated the role of myosin in regulating plasmodesmata in a well-studied, simple system comprising single filaments of cells which form stamen hairs in Tradescantia virginiana flowers. Effects of myosin inhibitors were assessed by analysing cell-to-cell movement of fluorescent tracers microinjected into treated cells. Incubation in the myosin inhibitor, 2,3-butanedione monoxime (BDM) or injection of anti-myosin antibodies increased cell-cell transport of fluorescent dextrans, while treatment with the myosin inhibitor N-ethylmaleimide (NEM) decreased cell-cell transport. Pretreatment with the callose synthesis inhibitor, deoxy-D: -glucose (DDG), enhanced transport induced by BDM treatment or injection of myosin antibodies but did not relieve NEM-induced reduction in transport. In contrast to the myosin inhibitors, cell-to-cell transport was unaffected by treatment with the actin polymerisation inhibitor, latrunculin B, after controlling for callose synthesis with DDG. Transport was increased following azide treatment, and reduced after injection of ATP, as in previous studies. We propose that myosin detachment from actin, induced by BDM, opens T. virginiana plasmodesmata whereas the firm attachment of myosin to actin, promoted by NEM, closes them.
Collapse
Affiliation(s)
- Janine E Radford
- Department of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | | |
Collapse
|
10
|
Increase of atrial ANP release by 2,3-butanedione monoxime in beating rabbit atria. ACTA ACUST UNITED AC 2009; 158:91-6. [DOI: 10.1016/j.regpep.2009.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/22/2009] [Accepted: 06/03/2009] [Indexed: 11/23/2022]
|
11
|
Vlasblom R, Muller A, Beckers CML, van Nieuw Amerongen GP, Zuidwijk MJ, van Hardeveld C, Paulus WJ, Simonides WS. RhoA-ROCK signaling is involved in contraction-mediated inhibition of SERCA2a expression in cardiomyocytes. Pflugers Arch 2009; 458:785-93. [PMID: 19294414 PMCID: PMC2704291 DOI: 10.1007/s00424-009-0659-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 02/17/2009] [Accepted: 02/24/2009] [Indexed: 12/18/2022]
Abstract
In neonatal ventricular cardiomyocytes (NVCM), decreased contractile activity stimulates sarco-endoplasmic reticulum Ca(2+)-ATPase2a (SERCA2a), analogous to reduced myocardial load in vivo. This study investigated in contracting NVCM the role of load-dependent RhoA-ROCK signaling in SERCA2a regulation. Contractile arrest of NVCM resulted in low peri-nuclear localized RhoA levels relative to contracting NVCM. In arrested NVCM, ROCK activity was decreased (59%) and paralleled a loss in F-actin levels. Y-27632-induced ROCK inhibition in contracting NVCM increased SERCA2a messenger RNA expression by 150%. This stimulation was transcriptional, as evident from transfections with the SERCA2a promoter. A reciprocal effect of Y-27632 treatment on the promoter activity of atrial natriuretic factor was observed. SERCA2a transcription was not altered by co-transfection of the RhoA-ROCK-dependent serum response factor (SRF) alone or in combination with myocardin. Furthermore, GATA4, another ROCK-dependent transcription factor, induced rather than repressed SERCA2a transcription. This study shows that contractile activity suppresses SERCA2a gene expression via RhoA-ROCK-dependent transcription modulation. This modulation is likely to be accomplished by a transcription factor other than SRF, myocardin, or GATA4.
Collapse
Affiliation(s)
- Ronald Vlasblom
- Laboratory for Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen X, Zhang X, Harris DM, Piacentino V, Berretta RM, Margulies KB, Houser SR. Reduced effects of BAY K 8644 on L-type Ca2+ current in failing human cardiac myocytes are related to abnormal adrenergic regulation. Am J Physiol Heart Circ Physiol 2008; 294:H2257-67. [PMID: 18359894 DOI: 10.1152/ajpheart.01335.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abnormal L-type Ca(2+) channel (LTCC, also named Cav1.2) density and regulation are important contributors to depressed contractility in failing hearts. The LTCC agonist BAY K 8644 (BAY K) has reduced inotropic effects on failing myocardium. We hypothesized that BAY K effects on the LTCC current (I(CaL)) in failing myocytes would be reduced because of increased basal activity. Since support of the failing heart with a left ventricular assist device (LVAD) improves contractility and adrenergic responses, we further hypothesized that BAY K effects on I(CaL) would be restored in LVAD-supported failing hearts. We tested our hypotheses in human ventricular myocytes (HVMs) isolated from nonfailing (NF), failing (F), and LVAD-supported failing hearts. We found that 1) BAY K had smaller effects on I(CaL) in F HVMs compared with NF HVMs; 2) BAY K had diminished effects on I(CaL) in NF HVM pretreated with isoproterenol (Iso) or dibutyryl cyclic AMP (DBcAMP); 3) BAY K effects on I(CaL) in F HVMs pretreated with acetylcholine (ACh) were normalized; 4) Iso had no effect on NF HVMs pretreated with BAY K; 5) BAY K effects on I(CaL) in LVAD HVMs were similar to those in NF HVMs; 6) BAY K effects were reduced in LVAD HVMs pretreated with Iso or DBcAMP; 7) Iso had no effect on I(CaL) in LVAD HVMs pretreated with BAY K. Collectively, these results suggest that the decreased BAY K effects on LTCC in F HVMs are caused by increased basal channel activity, which should contribute to abnormal contractility reserve.
Collapse
Affiliation(s)
- Xiongwen Chen
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Kabaeva Z, Zhao M, Michele DE. Blebbistatin extends culture life of adult mouse cardiac myocytes and allows efficient and stable transgene expression. Am J Physiol Heart Circ Physiol 2008; 294:H1667-74. [PMID: 18296569 DOI: 10.1152/ajpheart.01144.2007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The characterization of cellular phenotypes of heart disorders can be achieved by isolating cardiac myocytes from mouse models or genetically modifying wild-type cells in culture. However, adult mouse cardiac myocytes show extremely low tolerance to isolation and primary culture conditions. Previous studies indicate that 2,3-butanedione monoximine (BDM), a nonspecific excitation-contraction coupling inhibitor, can improve the viability of isolated adult mouse cardiac myocytes. The mechanisms of the beneficial and unwanted nonspecific actions of BDM on cardiac myocytes are not understood. To understand what contributes to murine adult cardiac myocyte stability in primary culture and improve this model system for experimental use, the specific myosin II inhibitor blebbistatin was explored as a media supplement to inhibit mouse myocyte contraction. Enzymatically isolated adult mouse cardiac myocytes were cultured with blebbistatin or BDM as a media supplement. Micromolar concentrations of blebbistatin significantly increased the viability, membrane integrity, and morphology of adult cardiac myocytes compared with cells treated with previously described 10 mM BDM. Cells treated with blebbistatin also showed efficient adenovirus gene transfer and stable transgene expression, and unlike BDM, blebbistatin does not appear to interfere with cell adhesion. Higher concentrations of BDM actually worsened myocyte membrane integrity and transgene expression. Therefore, the specific inhibition of myosin II activity by blebbistatin has significant beneficial effects on the long-term viability of adult mouse cardiac myocytes. Furthermore, the unwanted effects of BDM on adult mouse cardiac myocytes, perhaps due to its nonspecific activities or action as a chemical phosphatase, can be avoided by using blebbistatin.
Collapse
Affiliation(s)
- Zhyldyz Kabaeva
- Dept. of Molecular and Integrative Physiology, University of Michigan, 7623A Medical Science II, Ann Arbor, MI 48109-0622, USA
| | | | | |
Collapse
|
14
|
Sheahan MB, Rose RJ, McCurdy DW. Actin-filament-dependent remodeling of the vacuole in cultured mesophyll protoplasts. PROTOPLASMA 2007; 230:141-52. [PMID: 17458629 DOI: 10.1007/s00709-006-0236-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/14/2006] [Indexed: 05/08/2023]
Abstract
The ability of plant cells to dedifferentiate represents an important survival strategy invoked in a range of situations from repair mechanisms following wounding to apomixis. Dedifferentiation requires that somatic cells reprogram and enter the cell division cycle. This in turn necessitates the accurate partitioning of nuclear content and organelles, such as chloroplasts, to daughter cells, thereby ensuring continuity of cellular information systems. The distribution of cytoplasm and its organelle content in mature plant cells is governed by a large, central vacuole, with connections between distant cortical and perinuclear cytoplasmic domains mediated by transvacuolar strands. Here we examined the changes to vacuolar architecture in Arabidopsis thaliana protoplasts expressing a green-fluorescent protein fusion to a delta-tonoplast-intrinsic protein (deltaTIP). We found that vacuolar architecture became increasingly intricate during protoplast culture with the development of numerous transvacuolar strands. The development of an intricate vacuolar architecture was an actin filament- and not microtubule-dependent process, as is the case in interphase plant cells. Furthermore, we show that myosin is required for this increased complexity of vacuolar architecture and the formation of subcortical actin filament arrays. Despite the likelihood that increased vacuolar invagination would allow better redistribution of cytoplasmic organelles, we found that repositioning of chloroplasts from cortical to perinuclear cytoplasm was not dependent on transvacuolar strands. Our findings indicate that the vacuole is a dynamic entity that develops a complex architecture before dedifferentiating plant cells enter cell division.
Collapse
Affiliation(s)
- Michael B Sheahan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | | | | |
Collapse
|
15
|
Artigas P, Al'aref SJ, Hobart EA, Díaz LF, Sakaguchi M, Straw S, Andersen OS. 2,3-butanedione monoxime affects cystic fibrosis transmembrane conductance regulator channel function through phosphorylation-dependent and phosphorylation-independent mechanisms: the role of bilayer material properties. Mol Pharmacol 2006; 70:2015-26. [PMID: 16966478 DOI: 10.1124/mol.106.026070] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3-Butanedione monoxime (BDM) is widely believed to act as a chemical phosphatase. We therefore examined the effects of BDM on the cystic fibrosis transmembrane regulator (CFTR) Cl(-) channel, which is regulated by phosphorylation in a complex manner. In guinea pig ventricular myocytes, forskolin-activated whole-cell CFTR currents responded biphasically to external 20 mM BDM: a rapid approximately 2-fold current activation was followed by a slower (tau approximately 20 s) inhibition (to approximately 20% of control). The inhibitory response was abolished by intracellular dialysis with the phosphatase inhibitor microcystin, suggesting involvement of endogenous phosphatases. The BDM-induced activation was studied further in Xenopus laevis oocytes expressing human epithelial CFTR. The concentration for half-maximal BDM activation (K(0.5)) was state-dependent, approximately 2 mM for highly and approximately 20 mM for partially phosphorylated channels, suggesting a modulated receptor mechanism. Because BDM modulates many different membrane proteins with similar K(0.5) values, we tested whether BDM could alter protein function by altering lipid bilayer properties rather than by direct BDM-protein interactions. Using gramicidin channels of different lengths (different channel-bilayer hydrophobic mismatch) as reporters of bilayer stiffness, we found that BDM increases channel appearance rates and lifetimes (reduces bilayer stiffness). At 20 mM BDM, the appearance rates increase approximately 4-fold (for the longer, 15 residues/monomer, channels) to approximately 10-fold (for the shorter, 13 residues/monomer channels); the lifetimes increase approximately 50% independently of channel length. BDM thus reduces the energetic cost of bilayer deformation, an effect that may underlie the effects of BDM on CFTR and other membrane proteins; the state-dependent changes in K(0.5) are consistent with such a bilayer-mediated mechanism.
Collapse
Affiliation(s)
- Pablo Artigas
- Laboratory of Cardiac/Membrane Physiology, The Rockefeller University, 1230 York Ave., New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Nakayama Y, Kawahara K, Yoneyama M, Hachiro T. Rhythmic contraction and intracellular Ca2 + oscillatory rhythm in spontaneously beating cultured cardiac myocytes. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010500124597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Funaki K, Nagata A, Akimoto Y, Shimada K, Ito K, Yamamoto K. The motility of Chara corallina myosin was inhibited reversibly by 2,3-butanedione monoxime (BDM). PLANT & CELL PHYSIOLOGY 2004; 45:1342-1345. [PMID: 15509860 DOI: 10.1093/pcp/pch154] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We studied the effects of 2,3-butanedione monoxime (BDM) on the cytoplasmic streaming of Chara corallina and on the motility of myosin prepared from the same plant to examine whether this reagent really affects the plant class XI myosin. It was found that BDM inhibited both cytoplasmic streaming and the motility of myosin at a very similar concentration range (10-100 mM). BDM introduced directly into tonoplast-free cells also inhibited cytoplasmic streaming. These results suggested that effect of BDM on cytoplasmic streaming was exerted through myosin and not through ion channels at least in Chara corallina, though a very high concentration of BDM was required.
Collapse
Affiliation(s)
- Keisuke Funaki
- Department of Biology, Chiba University, Inage-ku, Chiba, 263-8522 Japan
| | | | | | | | | | | |
Collapse
|
18
|
Dhawan J, Helfman DM. Modulation of acto-myosin contractility in skeletal muscle myoblasts uncouples growth arrest from differentiation. J Cell Sci 2004; 117:3735-48. [PMID: 15252113 DOI: 10.1242/jcs.01197] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell-substratum interactions trigger key signaling pathways that modulate growth control and tissue-specific gene expression. We have previously shown that abolishing adhesive interactions by suspension culture results in G0 arrest of myoblasts. We report that blocking intracellular transmission of adhesion-dependent signals in adherent cells mimics the absence of adhesive contacts. We investigated the effects of pharmacological inhibitors of acto-myosin contractility on growth and differentiation of C2C12 myogenic cells. ML7 (5-iodonaphthalene-1-sulfonyl homopiperazine) and BDM (2,3, butanedione monoxime) are specific inhibitors of myosin light chain kinase, and myosin heavy chain ATPase, respectively. ML7 and BDM affected cell shape by reducing focal adhesions and stress fibers. Both inhibitors rapidly blocked DNA synthesis in a dose-dependent, reversible fashion. Furthermore, both ML7 and BDM suppressed expression of MyoD and myogenin, induced p27kip1 but not p21cip1, and inhibited differentiation. Thus, as with suspension-arrest, inhibition of acto-myosin contractility in adherent cells led to arrest uncoupled from differentiation. Over-expression of inhibitors of the small GTPase RhoA (dominant negative RhoA and C3 transferase) mimicked the effects of myosin inhibitors. By contrast, wild-type RhoA induced arrest, maintained MyoD and activated myogenin and p21 expression. The Rho effector kinase ROCK did not appear to mediate Rho's effects on MyoD. Thus, ROCK and MLCK play different roles in the myogenic program. Signals regulated by MLCK are critical, since inhibition of MLCK suppressed MyoD expression but inhibition of ROCK did not. Inhibition of contractility suppressed MyoD but did not reduce actin polymer levels. However, actin depolymerization with latrunculin B inhibited MyoD expression. Taken together, our observations indicate that actin polymer status and contractility regulate MyoD expression. We suggest that in myoblasts, the Rho pathway and regulation of acto-myosin contractility may define a control point for conditional uncoupling of differentiation and the cell cycle.
Collapse
Affiliation(s)
- Jyotsna Dhawan
- Center for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India.
| | | |
Collapse
|
19
|
Kettlewell S, Walker NL, Cobbe SM, Burton FL, Smith GL. The electrophysiological and mechanical effects of 2,3-butane-dione monoxime and cytochalasin-D in the Langendorff perfused rabbit heart. Exp Physiol 2004; 89:163-72. [PMID: 15123545 DOI: 10.1113/expphysiol.2003.026732] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
UNLABELLED Procedures that reduce contraction are used to facilitate optical measurements of membrane potential, but it is unclear to what extent they affect the excitability of the heart. This study has examined the electrophysiological consequences of a range of extracellular [Ca2+] (0.7-2.5 mmol l(-1)), 2,3-butane-dione monoxime (BDM; 1-20 mmol l(-1)) and cytochalasin-D (Cyto-D; 1-5 micromol l(-1)). METHODS Monophasic action potentials (MAPs) were recorded from the basal epicardial surface of the left ventricle of isolated rabbit hearts. Conduction delay (CD) and time to 90% repolarisation of the monophasic action potential (MAPD90) were measured. The effects of BDM and Cyto-D on restitution were studied at a [Ca2+] of 1.9 mmol l(-1). Restitution curves for MAPD90 were generated using a standard S1-S2 protocol. RESULTS All manoeuvres decreased left ventricular developed pressure (LVDP): 0.7 mmol l(-1) Ca2+ to 74.0 +/- 6.1%, 20 mmol l(-1) BDM to 4.5 +/- 1.0%, and 5 micromol l(-1) Cyto-D to 12.8 +/- 3.5% of control value. CD decreased from a control value (33.3 +/- 1.0 ms, n= 16) to 93.0 +/- 2.2% in 0.7 mmol l(-1) Ca2+, but increased to 133.7 +/- 10.5% in 20 mmol l(-1) BDM and 127.4 +/- 10.6% in 5 micromol l(-1) Cyto-D. At 350 ms pacing cycle length, MAPD90 (control = 119.6 +/- 1.7 ms n= 16) was prolonged by reduced extracellular [Ca2+]. BDM had no effects on MAPD90 at control pacing rates. Cyto-D caused a significant prolongation (to 115.0 +/- 3.0% of control, n= 6) at the highest concentration studied (5 micromol l(-1)). Both BDM (20 mmol l(-1)) and Cyto-D (3 micromol l(-1)) flattened the restitution curves but neither agent altered maximum MAPD90. CONCLUSIONS Extracellular [Ca2+] of 1.9 mmol l(-1) in conjunction with a moderate dose of Cyto-D (3 micromol l(-1)) reduced contractility with minimal effects on action potential duration and conduction at a fixed pacing cycle length. However, both BDM and Cyto-D had pronounced effects on electrical restitution.
Collapse
Affiliation(s)
- S Kettlewell
- Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | | | | | | | | |
Collapse
|
20
|
Abstract
2,3-Butanedione monoxime (BDM) is the well-characterized, low-affinity, non-competitive inhibitor of skeletal muscle myosin-II. It has been widely used at millimolar concentrations in cell biological experiments with the assumption that it is an ATPase inhibitor of the myosin superfamily. To determine the usefulness of BDM as a general myosin inhibitor, the ATPase activities of the motor domains of skeletal muscle myosin-II, Acanthamoeba myosin-IC, human myole, chicken myosin-V, and porcine myosin-VI were measured in the presence of 0-40 mM BDM. BDM inhibits skeletal muscle myosin-II, but it does not inhibit the ATPase activity of the other myosins. Therefore, BDM is not a general inhibitor of the myosin ATPase. BDM has a broad effect on many non-myosin proteins (many uncharacterized), and thus should not be used in whole-cell experiments as a myosin inhibitor.
Collapse
Affiliation(s)
- E Michael Ostap
- The Pennsylvania Muscle Institute, Department of Physiology, University of Pennsylvania School of Medicine, B400 Richards Building, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
21
|
Ferreira G, Ríos E, Reyes N. Two components of voltage-dependent inactivation in Ca(v)1.2 channels revealed by its gating currents. Biophys J 2003; 84:3662-78. [PMID: 12770874 PMCID: PMC1302950 DOI: 10.1016/s0006-3495(03)75096-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2002] [Accepted: 12/26/2002] [Indexed: 11/28/2022] Open
Abstract
Voltage-dependent inactivation (VDI) was studied through its effects on the voltage sensor in Ca(v)1.2 channels expressed in tsA 201 cells. Two kinetically distinct phases of VDI in onset and recovery suggest the presence of dual VDI processes. Upon increasing duration of conditioning depolarizations, the half-distribution potential (V(1/2)) of intramembranous mobile charge was negatively shifted as a sum of two exponential terms, with time constants 0.5 s and 4 s, and relative amplitudes near 50% each. This kinetics behavior was consistent with that of increment of maximal charge related to inactivation (Qn). Recovery from inactivation was also accompanied by a reduction of Qn that varied with recovery time as a sum of two exponentials. The amplitudes of corresponding exponential terms were strongly correlated in onset and recovery, indicating that channels recover rapidly from fast VDI and slowly from slow VDI. Similar to charge "immobilization," the charge moved in the repolarization (OFF) transient became slower during onset of fast VDI. Slow VDI had, instead, hallmarks of interconversion of charge. Confirming the mechanistic duality, fast VDI virtually disappeared when Li(+) carried the current. A nine-state model with parallel fast and slow inactivation pathways from the open state reproduces most of the observations.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Departmento Biofísica, Facultad de Medicina, Montevideo, Uruguay.
| | | | | |
Collapse
|
22
|
Artigas P, Ferreira G, Reyes N, Brum G, Pizarro G. Effects of the enantiomers of BayK 8644 on the charge movement of L-type Ca channels in guinea-pig ventricular myocytes. J Membr Biol 2003; 193:215-27. [PMID: 12962282 DOI: 10.1007/s00232-003-2020-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Indexed: 10/26/2022]
Abstract
The effects of the agonist enantiomer S(-)Bay K 8644 on gating charge of L-type Ca channels were studied in single ventricular myocytes. From a holding potential (Vh) of -40 mV, saturating (250 nm) S(-)Bay K shifted the half-distribution voltage of the activation charge (Q1) vs. V curve -7.5 +/- 0.8 mV, almost identical to the shift produced in the Ba conductance vs. V curve (-7.7 +/- 2 mV). The maximum Q1 was reduced by 1.7 +/- 0.2 nC/microF, whereas Q2 (charge moved in inactivated channels) was increased in a similar amount (1.4 +/- 0.4 nC/microF). The steady-state availability curves for Q1, Q2, and Ba current showed almost identical negative shifts of -14.8 +/- 1.7 mV, -18.6 +/- 5.8 mV, and -15.2 +/- 2.7 mV, respectively. The effects of the antagonist enantiomer R(+)BayK 8644 were also studied, the Q1 vs. V curve was not significantly shifted, but Q1max (Vh = -40 mV) was reduced and the Q1 availability curve shifted by -24.6 +/- 1.2 mV. We concluded that: a) the left shift in the Q1 vs. V activation curve produced by S(-)BayK is a purely agonistic effect; b) S(-)BayK induced a significantly larger negative shift in the availability curve than in the Q1 vs. V relation, consistent with a direct promotion of inactivation; c) as expected for a more potent antagonist, R(+)Bay K induced a significantly larger negative shift in the availability curve than did S(-)Bay K.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/chemistry
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/physiology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Guinea Pigs
- Heart Ventricles/drug effects
- Ion Channel Gating/drug effects
- Ion Channel Gating/physiology
- Isomerism
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Static Electricity
- Structure-Activity Relationship
- Ventricular Function
Collapse
Affiliation(s)
- P Artigas
- Laboratorio de Biofísica del Músculo, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | | | | | | | | |
Collapse
|
23
|
Bendjelid K, Canet E, Rayan E, Casali C, Revel D, Janier M. Role of glycolysis in the energy production for the non-mechanical myocardial work in isolated pig hearts. Curr Med Res Opin 2003; 19:51-58. [PMID: 12661781 DOI: 10.1185/030079902125001281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The dissociation of mechanical from non-mechanical energy utilisation can be studied using BDM (2,3-butanedione monoxime), which inhibits the actin-myosin interaction without inhibiting Ca2+ transport. The objective of the present study was to establish if increasing the non-mechanical energy demand of perfused isolated pig hearts by dobutamine stimulation requires glycolysis with increased exogenous glucose uptake. METHODS Five isolated pig hearts (CTRL) were perfused for 90 min at constant flow (1 ml g(-1) min(-1)) with non-recirculating blood containing 30 mM BDM and 26 MBq/l of fluorine-18 2-fluoro-2-deoxyglucose (IFDG). This was compared with five hearts (DOBU) subjected to the same protocol for the first 30 min and then to dobutamine (1.5 microM) for the following 30 min and dobutamine (4 microM) for the last 30 min. Five other isolated hearts were perfused as for the DOBU group but without BDM (CTRLDOBU). Using a clinical PET scanner, glucose uptake was assessed by estimating 18FDG uptake using linear regression. The slope variations were compared using a global test of coincidence. RESULTS Heart rate was at 100 +/- 2 b.p.m. in the CTRL group and at 180 +/- 7 b.p.m. in the DOBU group. 18FDG uptake was homogeneous within the whole myocardium and we observed a linear and regular increase in both the CTRL and DOBU groups (p, NS). In the CTRLDOBU group, 18FDG uptake was also homogeneous within the whole myocardium, but slopes of 18FDG uptake during dobutamine perfusion were higher than without dobutamine. CONCLUSION In blood-perfused isolated pig hearts, exogenous glucose is not necessarily required when non-mechanical energy is increased by dobutamine stimulation. These findings suggest that ATP derived from glycolysis is not necessary to preserve myocardial Ca2+ transport during beta-adrenergic stimulation.
Collapse
Affiliation(s)
- K Bendjelid
- Surgical Intensive Care Division, Geneva University Hospitals, Switzerland.
| | | | | | | | | | | |
Collapse
|
24
|
Florian P, Schöneberg T, Schulzke JD, Fromm M, Gitter AH. Single-cell epithelial defects close rapidly by an actinomyosin purse string mechanism with functional tight junctions. J Physiol 2002; 545:485-99. [PMID: 12456828 PMCID: PMC2290693 DOI: 10.1113/jphysiol.2002.031161] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Restitution of single-cell defects, a frequent event in epithelia with high turnover, is poorly understood. Morphological and functional changes were recorded, using intravital time-lapse video microscopy, confocal fluorescence microscopy, and conductance scanning techniques. After artificial single-cell loss from an HT-29/B6 colonic cell monolayer, the basal ends of adjacent cells extended. Concurrently, the local conductive leak associated with the defect sealed with an exponential time course (from 0.48 +/- 0.05 microS 2 min post lesion to 0.17 +/- 0.02 microS 8 min post lesion, n = 17). Between 3 and 10 min post lesion, a band of actin arose around the gap, which colocalized with a ring of ZO-1 and occludin. Hence, tight junction proteins bound to the actin band facing the gap, and competent tight junctions assembled in the adjoining cell membranes. Closure and sealing were inhibited when actin polymerization was blocked by cytochalasin D, delayed following decrease of myosin-ATPase activity by butanedione monoxime, and blocked after myosin light chain kinase inhibition by ML-7. The Rho-associated protein kinase inhibitor Y-27632 did not affect restitution. After loosening of intercellular contacts in low Ca(2+) Ringer solution, the time course of restitution was not significantly altered. Albeit epithelial conductivity was 12-fold higher in low Ca(2+) Ringer solution than in controls, under both conditions the repaired epithelium assumed the same conductivity as distant intact epithelium. In conclusion, epithelial restitution of single-cell defects comprises rapid closure by an actinomyosin 'purse-string' mechanism and simultaneous formation of a functional barrier from tight junction proteins also associated with the purse string.
Collapse
Affiliation(s)
- P Florian
- Institut für Klinische Physiologie, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, 12200 Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Futagawa H, Takahashi H, Nagao T, Adachi-Akahane S. A carbamate-type cholinesterase inhibitor 2-sec-butylphenyl N-methylcarbamate insecticide blocks L-type Ca2+ channel in guinea pig ventricular myocytes. JAPANESE JOURNAL OF PHARMACOLOGY 2002; 90:12-20. [PMID: 12396023 DOI: 10.1254/jjp.90.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
2-sec-Butylphenyl N-methylcarbamate (BPMC) is a carbamate-type cholinesterase (ChE) inhibitor with unique toxicological properties such as noncholinergic cardiovascular collapse. Effects of BPMC on L-type Ca2+ channel currents (ICa(L)) were studied in isolated guinea pig ventricular myocytes using the whole-cell patch-clamp technique, since the examination of cardiovascular responses indicated its Ca2+ antagonistic action. BPMC induced bradycardic and hypotensive responses in vivo and inhibited contraction of isolated papillary muscles (IC50 = 1.3 x 10(-4) M) in guinea pigs. BPMC produced reversible block of ICa(L) in the concentration range of 10(-4) - 10(-3) M. At test potentials between -30 mV and +20 mV, BPMC at 3 x 10(-4) M caused marked acceleration of decay rate of ICa(L) with moderate reduction of peak ICa(L) amplitude. BPMC (3 x 10(-4) M) shifted the steady-state inactivation curve to the hyperpolarizing direction by 12.7 mV. Decay rate of Ba2+ currents (IBa(L)) was also accelerated by BPMC. Fitting analysis of inactivation kinetics of IBa(L) with a two-exponential equation revealed that BPMC accelerates the slow inactivation component. At concentrations for blocking peak IBa(L) by ca. 30%, the inactivation kinetics of IBa(L) were significantly accelerated by BPMC, but merely slightly accelerated by Ca2+ channel antagonists such as diltiazem, nifedipine, or verapamil. These results indicate that BPMC, in addition to the inhibition of ChE, blocks L-type Ca2+ channels by accelerating voltage-dependent inactivation.
Collapse
Affiliation(s)
- Haruko Futagawa
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | |
Collapse
|
26
|
Frolenkov GI, Mammano F, Kachar B. Action of 2,3-butanedione monoxime on capacitance and electromotility of guinea-pig cochlear outer hair cells. J Physiol 2001; 531:667-76. [PMID: 11251049 PMCID: PMC2278492 DOI: 10.1111/j.1469-7793.2001.0667h.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Whole-cell patch-clamp recordings were obtained from isolated cochlear outer hair cells (OHCs) while applying 2,3-butanedione monoxime (BDM) by pressure. BDM (5 mM) shifted the range of voltage sensitivity of membrane capacitance and cell length in the hyperpolarised direction by -49.6 +/- 4.0 mV (n = 12; mean +/- S.E.M.), without appreciable effects on membrane conductance. The shift was completely reversible and dose dependent, with a Hill coefficient of 1.8 /- 0.4 and a half-maximal dose of 3.0 +/- 0.8 mM (values +/- S.D). 2. The shift of the capacitance curve was also reproducible in cells whose natural turgor had been removed. BDM had no detectable effect on the capacitance of Deiters' cells, a non-sensory cell type of the organ of Corti. 3. The effect of BDM on membrane capacitance was faster than that of salicylate. At similar saturating concentrations (20 mM), the time constant of the capacitance changes was 1.8 +/- 0.3 s (n = 3) for salicylate and 0.75 +/- 0.06 s (n = 3) for BDM. The recovery periods were 13 +/- 1 s and 1.7 +/- 0.4 s, respectively (means +/- S.E.M.). 4. The effect of BDM, a known inorganic phosphatase, was compared to the effects of okadaic acid, trifluoperazine and W-7, which are commonly used in studies of protein phosphorylation. Incubation of OHCs with okadaic acid (1 microM, 30-60 min) shifted the voltage sensitivity of the membrane capacitance in the hyperpolarised direction. Incubation with trifluoperazine (30 microM) and W-7 (150 microM) shifted it in the opposite, depolarised direction. BDM induced hyperpolarising shifts even in the presence of W-7. 5. Simultaneous measurement of membrane capacitance and intracellular free Ca2+ concentration ([Ca2+]i) showed that BDM action on OHC voltage-dependent capacitance and electromotility is not mediated by changes of [Ca2+]i. 6. Our results suggest that: (a) the effects of BDM are unrelated to its inorganic phosphatase properties, cell turgor conditions or Ca2+ release from intracellular stores; and (b) BDM may target directly the voltage sensor of the OHC membrane motor protein.
Collapse
Affiliation(s)
- G I Frolenkov
- Section on Structural Cell Biology, Laboratory of Cellular Biology, NIDCD-NIH, Bethesda, MD 20892-4163, USA
| | | | | |
Collapse
|
27
|
Watanabe Y, Iwamoto T, Matsuoka I, Ohkubo S, Ono T, Watano T, Shigekawa M, Kimura J. Inhibitory effect of 2,3-butanedione monoxime (BDM) on Na(+)/Ca(2+) exchange current in guinea-pig cardiac ventricular myocytes. Br J Pharmacol 2001; 132:1317-25. [PMID: 11250883 PMCID: PMC1572662 DOI: 10.1038/sj.bjp.0703926] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effect of 2,3-butanedione monoxime (BDM), a 'chemical phosphatase', on Na(+)/Ca(2+) exchange current (I(NCX)) was investigated using the whole-cell voltage-clamp technique in single guinea-pig cardiac ventricular myocytes and in CCL39 fibroblast cells expressing canine NCX1. 2. I(NCX) was identified as a current sensitive to KB-R7943, a relatively selective NCX inhibitor, at 140 mM Na(+) and 2 mM Ca(2+) in the external solution and 20 mM Na(+) and 433 nM free Ca(2+) in the pipette solution. 3. In guinea-pig ventricular cells, BDM inhibited I(NCX) in a concentration-dependent manner. The IC(50) value was 2.4 mM with a Hill coefficients of 1. The average time for 50% inhibition by 10 mM BDM was 124+/-31 s (n=5). 4. The effect of BDM was not affected by 1 microM okadaic acid in the pipette solution, indicating that the inhibition was not via activation of okadaic acid-sensitive protein phosphatases. 5. Intracellular trypsin treatment via the pipette solution significantly suppressed the inhibitory effect of BDM, implicating an intracellular site of action of BDM. 6. PAM (pralidoxime), another oxime compound, also inhibited I(NCX) in a manner similar to BDM. 7. Isoprenaline at 50 microM and phorbol 12-myristate 13-acetate (PMA) at 8 microM did not reverse the inhibition of I(NCX) by BDM. 8. BDM inhibited I(NCX) in CCL39 cells expressing NCX1 and in its mutant in which its three major phosphorylatable serine residues were replaced with alanines. 9. We conclude that BDM inhibits I(NCX) but the mechanism of inhibition is not by dephosphorylation of the Na(+)/Ca(2+) exchanger as a 'chemical phosphatase'.
Collapse
Affiliation(s)
- Yasuhide Watanabe
- Department of Ecology and Clinical Therapeutics, School of Nursing, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Takahiro Iwamoto
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Isao Matsuoka
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | | | - Tomoyuki Ono
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomokazu Watano
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Munekazu Shigekawa
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Osaka 565-8565, Japan
| | - Junko Kimura
- Department of Pharmacology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
- Author for correspondence:
| |
Collapse
|
28
|
Thum T, Borlak J. Reprogramming of gene expression in cultured cardiomyocytes and in explanted hearts by the myosin ATPase inhibitor butanedione monoxime. Transplantation 2001; 71:543-52. [PMID: 11258434 DOI: 10.1097/00007890-200102270-00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Butanedione monoxime (BDM) is a reversible myosin ATPase inhibitor. Its use in transplantation medicine may be of benefit in the preservation of hearts. As little is known about its ability to prevent stress and metabolic deregulation, we wanted to investigate the genomic response in cultured cardiomyocytes and explanted, preserved hearts at the transcriptional level. METHODS We thus investigated the gene expression of the transcription factors GATA-4, Nkx2.5, MEF-2c, and Oct-1 and of the downstream target genes atrial and brain natriuretic peptide, alpha- and beta-myosin heavy chain, alpha-cardiac actin, and alpha-skeletal actin. Additionally, lactate dehydrogenase and creatine kinase enzyme activities were measured as markers for membrane integrity and metabolic deregulation of cardiomyocytes. RESULTS In untreated cardiomyocyte cultures, expression of GATA-4 and Nkx2.5 was increased 7- and 4-fold, 72 hr after isolation, but the gene expression of MEF-2c and Oct-1 was reduced to 10% and 70%, at day 3 in culture. We show atrial natriuretic peptide and brain natriuretic peptide gene expression to be maximal 24 and 72 hr after isolation, the level being 3- and 2-fold, when compared with freshly isolated cells. The gene expression of alpha- and beta-myosin heavy chain was reduced to approximately 30% at day 3 in culture and similar observations were made for alpha-cardiac and alpha-skeletal actin, which declined to approximately 20% and 10% of control values, 72 hr after isolation. BDM prevented at the transcriptional level enhanced expression of markers for stress and metabolic deregulation, and the activities of lactate dehydrogenase and creatine kinase were highly significantly reduced. Similar results were obtained when explanted hearts were stored in BDM-containing organ preservation solution. CONCLUSIONS Preservation of metabolic function in donor organs is of critical importance in transplantation medicine, and we show gene markers for stress and metabolic deregulation in cultures of cardiomyocytes and explanted hearts to be significantly reduced by BDM. Reprogramming of gene expression of nuclear transcription factors and downstream target genes may prolong the acceptable storage time between explantation and transplantation.
Collapse
Affiliation(s)
- T Thum
- Centre of Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Aerosol Research, Hannover, Germany
| | | |
Collapse
|
29
|
Abstract
Recently, Xenopus oocytes have been shown to repair wounds using a contractile system composed of actin and myosin-II. The work underscores the importance of actin-based myosin-II contractility in cellular and supracellular 'purse strings' that function in diverse biological processes.
Collapse
Affiliation(s)
- D P Kiehart
- Department of Cell Biology, University Program in Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
30
|
Steinberg G, McIntosh JR. Effects of the myosin inhibitor 2,3-butanedione monoxime on the physiology of fission yeast. Eur J Cell Biol 1998; 77:284-93. [PMID: 9930653 DOI: 10.1016/s0171-9335(98)80087-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
F-actin and associated myosins are thought to take part in a wide range of cellular processes, like motility and contraction, polarized growth, and secretion. The reagent 2,3-butanedione monoxime (BDM) is a well characterized inhibitor of the contraction of vertebrate muscle that reversibly affects myosin function and influences the intracellular concentration of Ca2+. Here we describe the influence of BDM on growth and division of the fission yeast Schizosaccharomyces pombe. At concentrations from 1-30 mM, BDM gradually inhibited formation and growth of S. pombe colonies on agar plates, with a lethal effect at > or = 15 mM. In strains of S. pombe that were blocked by elevated temperature from entry into mitosis, drug treatment reversibly decreased microtubule-independent tip growth and septation, with an IC50 value around 12 mM; nuclear division, on the other hand, was essentially unaffected by up to 15 mM BDM. At 30 mM BDM the secretion of invertase, which required both F-actin and microtubules, was decreased to the same extent as that seen when cytochalasin D was used to disrupt F-actin. However, the actin cytoskeleton was insensitive to up to 10 mM BDM, while the actin patches lost their polar distribution at 20-30 mM BDM. Cells treated with 5-20 mM BDM for 3 hours and then high pressure frozen did not show an accumulation of secretory vesicles. However, 10 mM BDM treatment disorganized the fungal cell wall, resulting in some unusually thick parts lying next to regions were the wall was almost absent. These defects could be rescued by incubating the cells in inhibitors of glucanases. Osmolytic stabilization with sorbitol rescued the effect of 15 mM BDM on colony survival, indicating that the secretion of wall components and/or wall-modifying enzymes may be the principal reason for cell death caused by BDM. Our results are consistent with the hypothesis that BDM influences actin-dependent processes in fission yeast and that actomyosin-dependent motility contributes to the secretory process of tip growth.
Collapse
Affiliation(s)
- G Steinberg
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA.
| | | |
Collapse
|
31
|
Wu J, Biermann M, Rubart M, Zipes DP. Cytochalasin D as excitation-contraction uncoupler for optically mapping action potentials in wedges of ventricular myocardium. J Cardiovasc Electrophysiol 1998; 9:1336-47. [PMID: 9869533 DOI: 10.1111/j.1540-8167.1998.tb00109.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Cytochalasin D in tissue bath superfusate inhibits the contraction of isolated thin trabeculae from canine right ventricle without affecting the intracellular action potential recorded with glass microelectrode. The purpose of this study was to test whether cytochalasin D could also be used to immobilize perfused wedges of ventricular muscle without affecting the action potential duration or propagation, and also to determine the optimal concentration and time duration of drug in the perfusate. METHODS AND RESULTS Using a membrane potential sensitive dye, di-4-ANEPPS, and a high-resolution photodiode optical mapping system at a rate of 1,000 frames/sec, we recorded action potentials on the transmural surface of arterially perfused wedges of muscle from the canine left ventricular free wall. We also recorded arterial pulse pressure as a surrogate for tissue contraction. Cytochalasin D at > or = 20 micromol/L in the perfusate for > or = 6 minutes reduced the arterial pulse pressure to approximately one tenth of its initial value and significantly reduced or eliminated motion artifacts in the action potentials. A sustained concentration of 10 micromol/L cytochalasin D in the perfusate prevented contraction from recurring after the tissue was immobilized with an initial concentration of 25 micromol/L. Cytochalasin D had little effect on the action potential duration and on its transmural gradient, and did not slow the transmural velocity of excitation propagation. CONCLUSION Cytochalasin D can be used to uncouple excitation and contraction in perfused canine cardiac muscle for the fluorescent-optical mapping of action potentials without affecting action potential duration or slowing transmural propagation.
Collapse
Affiliation(s)
- J Wu
- Krannert Institute of Cardiology, Indiana University Medical School, Indianapolis, USA.
| | | | | | | |
Collapse
|
32
|
Eble DM, Qi M, Waldschmidt S, Lucchesi PA, Byron KL, Samarel AM. Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1226-37. [PMID: 9612209 DOI: 10.1152/ajpcell.1998.274.5.c1226] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Agonist-induced hypertrophy of cultured neonatal rat ventricular myocytes (NRVM) has been attributed to biochemical signals generated during receptor activation. However, NRVM hypertrophy can also be induced by spontaneous or electrically stimulated contractile activity in the absence of exogenous neurohormonal stimuli. Using single-cell imaging of fura 2-loaded myocytes, we found that low-density, noncontracting NRVM begin to generate intracellular Ca2+ concentration ([Ca2+]i) transients and contractile activity within minutes of exposure to the alpha 1-adrenergic agonist phenylephrine (PE; 50 microM). However, NRVM pretreated with verapamil and then stimulated with PE failed to elicit [Ca2+]i transients and beating. We therefore examined whether PE-induced [Ca2+]i transients and contractile activity were required to elicit specific aspects of the hypertrophic phenotype. PE treatment (48-72 h) increased cell size, total protein content, total protein-to-DNA ratio, and myosin heavy chain (MHC) isoenzyme content. PE also stimulated sarcomeric protein assembly and prolonged MHC half-life. However, blockade of voltage-gated L-type Ca2+ channels with verapamil, diltiazem, or nifedipine (10 microM) blocked PE-induced total protein and MHC accumulation and prevented the time-dependent assembly of myofibrillar proteins into sarcomeres. Inhibition of actin-myosin cross-bridge cycling with 2,3-butanedione monoxime (7.5 mM) also prevented PE-induced total protein and MHC accumulation, indicating that mechanical activity, rather than [Ca2+]i transients per se, was required. In contrast, blockade of [Ca2+]i transients and contractile activity did not prevent the PE-induced increase in cell surface area, activation of the mitogen-activated protein kinases ERK1 and ERK2, or upregulation of atrial natriuretic factor gene expression. Thus contractile activity is required to elicit some but not all aspects of the the hypertrophic phenotype induced by alpha 1-adrenergic receptor activation.
Collapse
Affiliation(s)
- D M Eble
- Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | | | |
Collapse
|
33
|
Allen TJ, Mikala G, Wu X, Dolphin AC. Effects of 2,3-butanedione monoxime (BDM) on calcium channels expressed in Xenopus oocytes. J Physiol 1998; 508 ( Pt 1):1-14. [PMID: 9490807 PMCID: PMC2230853 DOI: 10.1111/j.1469-7793.1998.001br.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. We examine the actions of a chemical phosphatase, 2,3-butanedione monoxime (BDM), on endogenous and expressed Ca2+ channel currents in Xenopus oocytes. In previous studies on L-type Ca2+ channel currents in cardiomyocytes and dorsal root ganglia, the inhibitory effects of BDM were attenuated by activation of protein kinase A. 2. Ba2+ currents (IBa) through a human wild-type L-type Ca2+ channel complex (i.e. halpha1C, alpha2-deltaa and hbeta1b) are inhibited by BDM with an IC50 of 16 mM, with 10 mM producing a 36.1 +/- 2.2 % inhibition. IBa through endogenous oocyte N-type Ca2+ channels, upregulated by exogenous alpha2-deltaa and hbeta1b subunits, are inhibited to a similar degree by BDM. 3. To examine whether the action of BDM is dependent on PKA-dependent phosphorylation, a clone of halpha1C deficient in all five serine PKA consensus sites (halpha1C-SA5) was co-expressed with alpha2-deltaa and the human cardiac hbeta3 subunit, which naturally lacks PKA consensus sites. This complex exhibited a sensitivity to BDM that was similar to the wild-type complex, with 10 mM BDM producing 31.6 +/- 1.5 % inhibition. 4. As limited proteolysis upregulates Ca2+ channels in cardiomyocytes and renders them less sensitive to BDM, experiments were performed with a carboxyl terminus deletion mutant, halpha1C-Delta1633. IBa through this subunit showed a sensitivity to BDM that was similar to the wild-type complex, with 10 mM BDM producing 31.3 +/- 1.4 % inhibition. However, co-expression with alpha2-deltaa and hbeta3 subunits reduced potency, and is reflected by an increased IC50 of 22.7 mM. 5. The actions of BDM were examined on a rat brain rbA-1 Ca2+ channel clone, alpha1A, co-expressed with alpha2-deltab and beta1b subunit homologues from rat brain. BDM inhibited the current through this channel complex to a similar degree to that seen for cardiac wild-type channels, with 10 mM BDM causing a 33.1 +/- 3.5 % inhibition. 6. The effects of BDM were compared at two holding potentials, -80 and -30 mV, using the halpha1C-Delta1633, alpha2-deltaa and hbeta3 subunit combination. At -30 mV BDM is more potent with 10 mM BDM reducing IBa by 39.8 +/- 2.7 %, compared with 20.8 +/- 2.2 % at -80 mV. 7. The data suggest that BDM may not exert its inhibitory action by means of a chemical phosphatase effect, but by channel block. The similar potency observed between alpha1C, alpha1A and endogenous (N-type) channels may help point towards a possible site of action; differences with the carboxyl deletion mutant may help further to define a locus of interaction.
Collapse
Affiliation(s)
- T J Allen
- Department of Pharmacology, Royal Free Hospital School of Medicine, London NW3 2PF, UK.
| | | | | | | |
Collapse
|