1
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 460] [Impact Index Per Article: 230.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
2
|
All-Trans Retinoic Acid Modulates TLR4/NF- κB Signaling Pathway Targeting TNF- α and Nitric Oxide Synthase 2 Expression in Colonic Mucosa during Ulcerative Colitis and Colitis Associated Cancer. Mediators Inflamm 2017; 2017:7353252. [PMID: 28408791 PMCID: PMC5376956 DOI: 10.1155/2017/7353252] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/05/2017] [Accepted: 02/19/2017] [Indexed: 12/24/2022] Open
Abstract
Colitis associated cancer (CAC) is the colorectal cancer (CRC) subtype that is associated with bowel disease such as ulcerative colitis (UC). The data on role of NF-κB signaling in development and progression of CAC were derived from preclinical studies, whereas data from human are rare. The aim of this work was to study the contribution of NF-κB pathway during UC and CAC, as well as the immunomodulatory effect of all-trans retinoic acid (AtRA). We analyzed the expression of NOS2, TNF-α, TLR4, and NF-κB, in colonic mucosa. We also studied NO/TNF-α modulation by LPS in colonic mucosa pretreated with AtRA. A marked increase in TLR4, NF-κB, TNF-α, and NOS2 expression was reported in colonic mucosa. The relationship between LPS/TLR4 and TNF-α/NO production, as well as the role of NF-κB signaling, was confirmed by ex vivo experiments and the role of LPS/TLR4 in NOS2/TNF-α induction through NF-κB pathway was suggested. AtRA downregulates NOS2 and TNF-α expression. Collectively, our study indicates that AtRA modulates in situ LPS/TLR4/NF-κB signaling pathway targeting NOS2 and TNF-α expression. Therefore, we suggest that AtRA has a potential value in new strategies to improve the current therapy, as well as in the clinical prevention of CAC development and progression.
Collapse
|
3
|
Goszcz K, Deakin SJ, Duthie GG, Stewart D, Leslie SJ, Megson IL. Antioxidants in Cardiovascular Therapy: Panacea or False Hope? Front Cardiovasc Med 2015; 2:29. [PMID: 26664900 PMCID: PMC4671344 DOI: 10.3389/fcvm.2015.00029] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress is a key feature of the atherothrombotic process involved in the etiology of heart attacks, ischemic strokes, and peripheral arterial disease. It stands to reason that antioxidants represent a credible therapeutic option to prevent disease progression and thereby improve outcome, but despite positive findings from in vitro studies, clinical trials have failed to consistently show benefit. The aim of this review is to re-appraise the concept of antioxidants in the prevention and management of cardiovascular disease. In particular, the review will explore the reasons behind failed antioxidant strategies with vitamin supplements and will evaluate how flavonoids might improve cardiovascular function despite bioavailability that is not sufficiently high to directly influence antioxidant capacity. As well as reaching conclusions relating to those antioxidant strategies that might hold merit, the major myths, limitations, and pitfalls associated with this research field are explored.
Collapse
Affiliation(s)
- Katarzyna Goszcz
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; James Hutton Institute , Dundee , UK
| | - Sherine J Deakin
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| | - Garry G Duthie
- Rowett Institute of Health and Nutrition , Aberdeen , UK
| | - Derek Stewart
- James Hutton Institute , Dundee , UK ; School of Life Sciences, Heriot Watt University , Edinburgh , UK
| | - Stephen J Leslie
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK ; Cardiology Unit, Raigmore Hospital , Inverness , UK
| | - Ian L Megson
- Department of Diabetes and Cardiovascular Science, Centre for Health Science, University of the Highlands and Islands , Inverness , UK
| |
Collapse
|
4
|
Rafa H, Saoula H, Belkhelfa M, Medjeber O, Soufli I, Toumi R, de Launoit Y, Moralès O, Nakmouche M, Delhem N, Touil-Boukoffa C. IL-23/IL-17A axis correlates with the nitric oxide pathway in inflammatory bowel disease: immunomodulatory effect of retinoic acid. J Interferon Cytokine Res 2013; 33:355-68. [PMID: 23472658 DOI: 10.1089/jir.2012.0063] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory diseases of the gastrointestinal tract, which are clinically present as 1 of the 2 disorders, Crohn's disease (CD) or ulcerative colitis (UC) (Rogler 2004). The immune dysregulation in the intestine plays a critical role in the pathogenesis of IBD, involving a wide range of molecules, including cytokines. The aim of this work was to study the involvement of T-helper 17 (Th17) subset in the bowel disease pathogenesis by the nitric oxide (NO) pathway in Algerian patients with IBD. We investigated the correlation between the proinflammatory cytokines [(interleukin (IL)-17, IL-23, and IL-6] and NO production in 2 groups of patients. We analyzed the expression of messenger RNAs (mRNAs) encoding Th17 cytokines, cytokine receptors, and NO synthase 2 (NOS2) in plasma of the patients. In the same way, the expression of p-signal transducer and activator of transcription 3 (STAT3) and NOS2 was measured by immunofluorescence and immunohistochemistry. We also studied NO modulation by proinflammatory cytokines (IL-17A, IL-6, tumor necrosis factor α, or IL-1β) in the presence or absence of all-trans retinoic acid (At RA) in peripheral blood mononuclear cells (PBMCs), monocytes, and in colonic mucosa cultures. Analysis of cytokines, cytokine receptors, and NOS2 transcripts revealed that the levels of mRNA transcripts of the indicated genes are elevated in all IBD groups. Our study shows a significant positive correlation between the NO and IL-17A, IL-23, and IL-6 levels in plasma of the patients with IBD. Interestingly, the correlation is significantly higher in patients with active CD. Our study shows that both p-STAT3 and inducible NOS expression was upregulated in PBMCs and colonic mucosa, especially in patients with active CD. At RA downregulates NO production in the presence of proinflammatory cytokines for the 2 groups of patients. Collectively, our study indicates that the IL-23/IL-17A axis plays a pivotal role in IBD pathogenesis through the NO pathway.
Collapse
Affiliation(s)
- Hayet Rafa
- Team: Cytokines and NO Synthases, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Science, USTHB, Algiers, Algeria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Rhee EJ, Nallamshetty S, Plutzky J. Retinoid metabolism and its effects on the vasculature. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:230-40. [PMID: 21810483 DOI: 10.1016/j.bbalip.2011.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/15/2011] [Accepted: 07/06/2011] [Indexed: 12/16/2022]
Abstract
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
6
|
Behr GA, Schnorr CE, Moreira JCF. Increased blood oxidative stress in experimental menopause rat model: the effects of vitamin A low-dose supplementation upon antioxidant status in bilateral ovariectomized rats. Fundam Clin Pharmacol 2011; 26:235-49. [PMID: 21226757 DOI: 10.1111/j.1472-8206.2010.00923.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Menopause has been reported to be associated with increased oxidative stress and metabolic disorders among women worldwide. Disarrangements in the redox state similar to those observed in women during the decline of ovarian hormonal activity can be obtained experimentally through rat bilateral ovariectomy. The search for alternative treatments to improve life quality in postmenopausal woman is really important. The aim of this study was to evaluate biochemical and oxidative stress parameters that distinguish sham-operated female rats from Wistar rats bilaterally ovariectomized (OVX). Additionally, we have also investigated the effects of retinol palmitate (a vitamin A supplement) low-dose supplementation (500 or 1500 IU/kg/day, during 30 days) upon blood and plasma antioxidant status in OVX rats. Ovariectomy caused an increase in body weight gain, pronounced uterine atrophy, decreased plasma triglycerides and increased total cholesterol levels, and reduced acid uric content. Moreover, we found increased blood peroxidase activities (catalase and glutathione peroxidase), decreased plasma non-enzymatic antioxidant defenses total reactive antioxidant potential and total antioxidant reactivity, decreased protein and non-protein SH levels, accompanied by increased protein oxidative damage (carbonyl). In addition, vitamin A low-dose supplementation was capable to ameliorate antioxidant status in OVX rats, restoring both enzymatic and non-enzymatic defenses, promoting reduction in plasma SH content, and decreasing protein oxidative damage levels. This is the first work in the literature showing that vitamin A at low dose may be beneficial in the treatment of menopause symptoms. Further studies will be made to better understand the effects of vitamin A supplementation in menopause rat model.
Collapse
Affiliation(s)
- Guilherme Antônio Behr
- Center of Oxidative Stress Research, Professor Tuiskon Dick Department of Biochemistry, Institute of Health Basic Sciences, Federal University of Rio Grande do Sul, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | |
Collapse
|
7
|
Ionova IA, Vásquez-Vivar J, Whitsett J, Herrnreiter A, Medhora M, Cooley BC, Pieper GM. Deficient BH4 production via de novo and salvage pathways regulates NO responses to cytokines in adult cardiac myocytes. Am J Physiol Heart Circ Physiol 2008; 295:H2178-87. [PMID: 18835915 PMCID: PMC2614582 DOI: 10.1152/ajpheart.00748.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 09/25/2008] [Indexed: 12/25/2022]
Abstract
Adult rat cardiac myocytes typically display a phenotypic response to cytokines manifested by low or no increases in nitric oxide (NO) production via inducible NO synthase (iNOS) that distinguishes them from other cell types. To better characterize this response, we examined the expression of tetrahydrobiopterin (BH4)-synthesizing and arginine-utilizing genes in cytokine-stimulated adult cardiac myocytes. Intracellular BH4 and 7,8-dihydrobiopterin (BH2) and NO production were quantified. Cytokines induced GTP cyclohydrolase and its feedback regulatory protein but with deficient levels of BH4 synthesis. Despite the induction of iNOS protein, cytokine-stimulated adult cardiac myocytes produced little or no increase in NO versus unstimulated cells. Western blot analysis under nonreducing conditions revealed the presence of iNOS monomers. Supplementation with sepiapterin (a precursor of BH4) increased BH4 as well as BH2, but this did not enhance NO levels or eliminate iNOS monomers. Similar findings were confirmed in vivo after treatment of rat cardiac allograft recipients with sepiapterin. It was found that expression of dihydrofolate reductase, required for full activity of the salvage pathway, was not detected in adult cardiac myocytes. Thus, adult cardiac myocytes have a limited capacity to synthesize BH4 after cytokine stimulation. The mechanisms involve posttranslational factors impairing de novo and salvage pathways. These conditions are unable to support active iNOS protein dimers necessary for NO production. These findings raise significant new questions about the prevailing understanding of how cytokines, via iNOS, cause cardiac dysfunction and injury in vivo during cardiac inflammatory disease states since cardiac myocytes are not a major source of high NO production.
Collapse
Affiliation(s)
- Irina A Ionova
- Department of Surgery (Transplant Surgery), Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Pesonen M, Kallio MJT, Siimes MA, Ranki A. Retinol concentrations after birth are inversely associated with atopic manifestations in children and young adults. Clin Exp Allergy 2007; 37:54-61. [PMID: 17210042 DOI: 10.1111/j.1365-2222.2006.02630.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Vitamin A has anti-inflammatory and immunomodulatory effects, and its deficiency results in impaired specific and innate immunity. Vitamin A is essential for inducing the gut-homing specificity on T cells. OBJECTIVE As an impaired gut immune response in early infancy may contribute to the development of atopic sensitization, we looked for an association of plasma retinol concentrations and the subsequent development of allergic symptoms in healthy infants. METHODS A cohort of 200 unselected, full-term newborns were followed up from birth to age 20 years. The plasma retinol concentration was determined in cord blood (n=97), at ages of 2, 4 and 12 months (n=95), and at ages 5 years (n=155) and 11 years (n=151). The subjects were re-examined at the ages of 5, 11 and 20 years with assessment of the occurrence of allergic symptoms during the preceding year, skin prick testing and measurement of serum total IgE. RESULTS subjects with allergic symptoms or a positive skin prick test (SPT) in childhood or adolescence had lower retinol concentrations in infancy and childhood than symptom-free subjects. The difference was most pronounced at age 2 months. Retinol concentration at 2 months correlated inversely with positive SPT at ages of 5 and 20 years, and with allergic symptoms at age 20 years. CONCLUSION Retinol concentration in young infants is inversely associated with the subsequent development of allergic symptoms. We propose that an inborn regulation of retinol may play a role in atopic sensitization, possibly through regulating the intestinal T cell responses.
Collapse
Affiliation(s)
- M Pesonen
- Department of Dermatology, The Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland.
| | | | | | | |
Collapse
|
9
|
Romero-Sandoval EA, Molina C, Alique M, Moreno-Manzano V, Lucio FJ, Herrero JF. Vitamin A active metabolite, all-trans retinoic acid, induces spinal cord sensitization. I. Effects after oral administration. Br J Pharmacol 2006; 149:56-64. [PMID: 16847436 PMCID: PMC1629405 DOI: 10.1038/sj.bjp.0706829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Retinoic acid is an active metabolite of vitamin A involved in the modulation of the inflammatory and nociceptive responses. The aim of the present study was to analyze the properties of spinal cord neuronal responses of male Wistar rats treated with all-trans retinoic acid (ATRA) p.o. in the normal situation and under carrageenan-induced inflammation. We also studied the expression and distribution of cyclooxygenases (COX) in the spinal cord. EXPERIMENTAL APPROACH Properties of spinal cord neurons were studied by means of the single motor unit technique. The expression of COX enzymes in the spinal cord was assessed by Western blot analysis and immunohistochemistry. KEY RESULTS Intensity thresholds for mechanical and electrical stimulation (C-fibers) were significantly lower in animals treated with ATRA than vehicle, either in normal rats or in rats with inflammation. The size of cutaneous receptive fields was also larger in animals treated with ATRA in the normal and inflammatory conditions. The expression of COX-2 enzyme, but not COX-1, was significantly higher in animals treated with ATRA. COX-2 labeling was observed in dorsal horn cells and in ventral horn motoneurons. CONCLUSIONS AND IMPLICATIONS In conclusion, the oral treatment with ATRA in rats induces a sensitization-like effect on spinal cord neuronal responses similar to that observed in animals with inflammation and might explain the enhancement of allodynia and hyperalgesia observed in previously published behavioral experiments. The mechanism of action involves an over-expression of COX-2, but not COX-1, in dorsal and ventral horn areas of the lumbar spinal cord.
Collapse
Affiliation(s)
- E A Romero-Sandoval
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - C Molina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - M Alique
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - V Moreno-Manzano
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - F J Lucio
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
| | - J F Herrero
- Departamento de Fisiología, Facultad de Medicina, Universidad de Alcalá, Madrid, Spain
- Author for correspondence:
| |
Collapse
|
10
|
Seguin-Devaux C, Hanriot D, Dailloux M, Latger-Cannard V, Zannad F, Mertes PM, Longrois D, Devaux Y. Retinoic acid amplifies the host immune response to LPS through increased T lymphocytes number and LPS binding protein expression. Mol Cell Endocrinol 2005; 245:67-76. [PMID: 16309824 DOI: 10.1016/j.mce.2005.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 08/26/2005] [Accepted: 10/17/2005] [Indexed: 11/29/2022]
Abstract
Vitamin A deficiency is associated with increased susceptibility to infection but the effects of Vitamin A supplementation on host response to pathogens are controversial. This study investigated the mechanisms by which all-trans retinoic acid (atRA) modulates the host immune response in an experimental model of Vitamin A supplementation before and after challenge with LPS in rats. We show here that a supplementation with five daily injections of 10mg/kg atRA increased the number of T lymphocytes in the peripheral blood. In addition, we show that atRA increased the expression of the LPS binding protein (LBP), a component of the LPS recognition system. The retinoic acid receptor (RAR)alpha agonist Ro 4060-55 but not the pan-retinoid X receptors (RXRs) agonist Ro 2573-86 mimicked the effects of atRA on LBP expression suggesting that atRA enhances LBP expression through a RARalpha-mediated pathway. In order to investigate the significance of increased LBP expression we challenged atRA-supplemented rats with the Gram-positive bacteria Listeria monocytogenes (LM) that activates the immune response independently from LBP. In sharp contrast to our previous observations that atRA supplementation enhances IFN-gamma expression and NOS2 pathway activation in LPS-challenged rats [Devaux, Y., Grosjean, S., Seguin, C., David, C., Dousset, B., Zannad, F., Meistelman, C., de Talancé, N., Mertes, P.M., Ungureanu-Longrois, D., 2000. Retinoic acid and host-pathogen interactions: effects on inducible nitric oxide synthase in vivo. Am. J. Physiol. 279, E1045-E1053], atRA did not increase the LM-induced IFN-gamma expression and NOS2 pathway activation. Overall, these data demonstrate that although atRA induces a "priming" of the immune system characterized by increased T lymphocytes number and LBP expression, the profile of the immune response depends on the inflammatory/infectious stimulus. These results could explain why Vitamin A supplementation could have beneficial/neutral or deleterious effects according to the identity of the infectious pathogen.
Collapse
Affiliation(s)
- Carole Seguin-Devaux
- Unité mixte UHP - INSERM U684, Faculté de Médecine, 9 avenue de la forêt de Haye, BP 184, Vandoeuvre-les-Nancy, Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schulz R, Rassaf T, Massion PB, Kelm M, Balligand JL. Recent advances in the understanding of the role of nitric oxide in cardiovascular homeostasis. Pharmacol Ther 2005; 108:225-56. [PMID: 15949847 DOI: 10.1016/j.pharmthera.2005.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/15/2005] [Indexed: 02/04/2023]
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. To date, 3 distinct NOS isoforms have been identified: neuronal NOS (NOS1), inducible NOS (NOS2), and endothelial NOS (NOS3). Biochemically, NOS consists of a flavin-containing reductase domain, a heme-containing oxygenase domain, and regulatory sites. NOS catalyse an overall 5-electron oxidation of one Nomega-atom of the guanidino group of L-arginine to form NO and L-citrulline. NO exerts a plethora of biological effects in the cardiovascular system. The basal formation of NO in mitochondria by a mitochondrial NOS seems to be one of the main regulators of cellular respiration, mitochondrial transmembrane potential, and transmembrane proton gradient. This review focuses on recent advances in the understanding of the role of enzyme and enzyme-independent NO formation, regulation of NO bioactivity, new aspects of NO on cardiac function and morphology, and the clinical impact and perspectives of these recent advances in our knowledge on NO-related pathways.
Collapse
Affiliation(s)
- R Schulz
- Institut für Pathophysiologie, Zentrum für Innere Medizin des Universitätsklinikums Essen, Germany.
| | | | | | | | | |
Collapse
|
12
|
Türközkan N, Seven I, Erdamar H, Cimen B. Effect of vitamin A pretreatment on Escherichia coli-induced lipid peroxidation and level of 3-nitrotyrosine in kidney of guinea pig. Mol Cell Biochem 2005; 278:33-7. [PMID: 16180086 DOI: 10.1007/s11010-005-0602-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 01/13/2005] [Indexed: 02/03/2023]
Abstract
In the present study, we report the effect of vitamin A (Vit A, retinol palpitate) on kidney lipid peroxidation and 3-nitrotyrosine (3-NT) levels induced after Escherichia coli administration to guinea pigs. Vit A was administrated intraperitoneally (i.p.) to guinea pigs at a dose 15,000 IU/kg per day for 7 days prior to E. coli injection. On day 8, the animals were injected i.p. with E. coli dosed at 12 x10(9) colony forming units per kilogram. Kidneys were collected 6 h after administration of E. coli. Malondialdehyde (MDA) as a lipid peroxidation product, and 3-NT levels were measured by reverse phase high-performance liquid chromatography. There was a significant increase in MDA and 3-NT levels in lipopolysaccaharide-induced group (p<0.001). 3-NT was not detectable in kidney of normal control animals. However, Vit A administration prior to E. coli injection prevented 3-NT formation but did not prevent the rice in MDA level of kidney (p<0.001). Vit A alone did not alter the MDA level in the kidney of the control group.
Collapse
Affiliation(s)
- Nurten Türközkan
- Department of Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey,
| | | | | | | |
Collapse
|
13
|
Aytekin M, Vinatzer U, Musteanu M, Raynaud S, Wieser R. Regulation of the expression of the oncogene EVI1 through the use of alternative mRNA 5′-ends. Gene 2005; 356:160-8. [PMID: 16014322 DOI: 10.1016/j.gene.2005.04.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 03/31/2005] [Accepted: 04/27/2005] [Indexed: 01/31/2023]
Abstract
The EVI1 gene plays important roles in development and leukemogenesis. Recently, human EVI1 has been shown to give rise to at least six different mRNA variants with alternative 5'-ends, only some of which are conserved in mice. In order to gain a basic understanding of the regulation and potential biological importance of these alternative transcripts, we confirmed their expression by Northern blot, and, using real time quantitative RT-PCR, compared their abundance and stability under different conditions. The general expression patterns of the EVI1 5'-end variants in a panel of 20 human tissues were similar, but particularly high or low levels of some of them were noted in certain tissues. Pronounced differences in the expression of the 5'-end variants were noted in response to all-trans retinoic acid: in a human teratocarcinoma cell line, only the EVI1 transcript variants containing alternative exons 1a and 1b were upregulated in response to this agent. This induction required transcriptional activity of RNA polymerase, but was also associated with a substantial increase in the stability of these mRNA variants.
Collapse
Affiliation(s)
- Metin Aytekin
- KIMCL, Abteilung fuer Humangenetik, Medizinische Universitaet Wien, Waehringerstr. 10, A-1090 Wien, Austria
| | | | | | | | | |
Collapse
|
14
|
Xu J, Fan S, Rosen EM. Regulation of the estrogen-inducible gene expression profile by the breast cancer susceptibility gene BRCA1. Endocrinology 2005; 146:2031-47. [PMID: 15637295 DOI: 10.1210/en.2004-0409] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tumor suppressor gene BRCA1 functions in part as a caretaker in preserving the integrity of the genome, but also exhibits tissue-specific function by inhibiting estrogen receptor activity. Because estrogen (E2) induces a wide range of gene expression changes (by nongenomic and several transcriptional pathways), we sought to determine how comprehensive is the BRCA1-mediated inhibition of E2-induced gene expression alterations. Using cDNA-spotted microarrays, we identified a relatively large number of gene expression alterations (both increased and decreased expression) in MCF-7 cells caused by E2, some of which have been reported in previous studies. However, in the presence of exogenous wild-type BRCA1 (wtBRCA1), the response to E2 was severely blunted, with only about 10% the number of gene expression changes as that found in the absence of wtBRCA1. Examples of these findings were confirmed by semiquantitative and quantitative RT-PCR assays. In contrast to wtBRCA1, the induction by E2 of several E2-responsive genes was not inhibited by a full-length tumor-associated mutant BRCA1 protein [T300G (or (61)Cys-->Gly)]. For three E2-responsive genes whose induction by E2 was inhibited by wtBRCA1, wtBRCA1 had little or no effect on the mRNA half-life in the presence of E2. Consistent with these findings, wtBRCA1 inhibited E2-stimulated proliferation of MCF-7 cells, but wtBRCA1 failed to inhibit the proliferation of MCF-7 cells stimulated by IGF-I. Our findings suggest that BRCA1 globally inhibits the response to estrogen in a dose- and time-dependent fashion. The implications of these findings for understanding how BRCA1 may act to restrain E2 action in vivo are considered.
Collapse
Affiliation(s)
- Jingwen Xu
- Department of Oncology, Lombardi Cancer Center, Georgetown University, 3970 Reservoir Road Northwest, Box 571469, Washington, D.C. 20057-1469, USA
| | | | | |
Collapse
|
15
|
Zhong GZ, Chen FR, Bu DF, Wang SH, Pang YZ, Tang CS. Cobalt-60 gamma radiation increased the nitric oxide generation in cultured rat vascular smooth muscle cells. Life Sci 2004; 74:3055-63. [PMID: 15081571 DOI: 10.1016/j.lfs.2003.08.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Accepted: 10/08/2003] [Indexed: 11/24/2022]
Abstract
Radiation is a promising and new treatment for restenosis following angioplasty. Nitric oxide has been proposed as a potential "anti-restenotic" molecule. We radiated the cultured rat vascular smooth muscle cells with Cobalt-60 gamma radiation at doses of 14 and 25Gy and observed nitrite production, cGMP content, L-arginine uptake, inducible nitric oxide synthase (iNOS) activity, and the gene expression of iNOS. Results showed that radiation at doses of 14 and 25Gy increased cGMP content by 92.4% and 86.4%, respectively. Radiation at the dose of 25Gy increased the iNOS activity and nitrite content, but radiation at the dose of 14Gy had no significant effect on iNOS activity and NO production. Both doses of radiation significantly decreased the L-arginine transport. Radiation at the doses of 14 and 25Gy increased iNOS gene expression significantly, which was consistent with the effect of radiation on iNOS activity. In conclusion, radiation induces the NO generation by up-regulating the iNOS activity.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/radiation effects
- Arginine/metabolism
- Cells, Cultured
- Cobalt Radioisotopes
- Cyclic GMP/metabolism
- DNA Primers/chemistry
- DNA, Complementary/genetics
- Gamma Rays/adverse effects
- Male
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/radiation effects
- Nitric Oxide/biosynthesis
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Nitrites/metabolism
- RNA, Messenger/genetics
- Rats
- Rats, Wistar
- Reverse Transcriptase Polymerase Chain Reaction
- Up-Regulation
Collapse
Affiliation(s)
- Guang Zhen Zhong
- Department of Cardiology, The Third Hospital, Peking University, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Nitric oxide (NO) is synthesized from L-arginine by NO synthase (NOS). As an endothelium-derived relaxing factor, a mediator of immune responses, a neurotransmitter, a cytotoxic free radical, and a signaling molecule, NO plays crucial roles in virtually every cellular and organ function in the body. The discovery of NO synthesis has unified traditionally diverse research areas in nutrition, physiology, immunology, pathology, and neuroscience. Increasing evidence over the past decade shows that many dietary factors, including protein, amino acids, glucose, fructose, cholesterol, fatty acids, vitamins, minerals, phytoestrogens, ethanol, and polyphenols, are either beneficial to health or contribute to the pathogenesis of chronic diseases partially through modulation of NO production by inducible NOS or constitutive NOS. Although most published studies have focused on only a single nutrient and have generated new and exciting knowledge, future studies are necessary to investigate the interactions of dietary factors on NO synthesis and to define the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University College Station, Texas 77843, USA.
| | | |
Collapse
|
17
|
Abstract
Radiation hazards in outer space present an enormous challenge for the biological safety of astronauts. A deleterious effect of radiation is the production of reactive oxygen species, which result in damage to biomolecules (e.g., lipid, protein, amino acids, and DNA). Understanding free radical biology is necessary for designing an optimal nutritional countermeasure against space radiation-induced cytotoxicity. Free radicals (e.g., superoxide, nitric oxide, and hydroxyl radicals) and other reactive species (e.g., hydrogen peroxide, peroxynitrite, and hypochlorous acid) are produced in the body, primarily as a result of aerobic metabolism. Antioxidants (e.g., glutathione, arginine, citrulline, taurine, creatine, selenium, zinc, vitamin E, vitamin C, vitamin A, and tea polyphenols) and antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidases) exert synergistic actions in scavenging free radicals. There has been growing evidence over the past three decades showing that malnutrition (e.g., dietary deficiencies of protein, selenium, and zinc) or excess of certain nutrients (e.g., iron and vitamin C) gives rise to the oxidation of biomolecules and cell injury. A large body of the literature supports the notion that dietary antioxidants are useful radioprotectors and play an important role in preventing many human diseases (e.g., cancer, atherosclerosis, stroke, rheumatoid arthritis, neurodegeneration, and diabetes). The knowledge of enzymatic and non-enzymatic oxidative defense mechanisms will serve as a guiding principle for establishing the most effective nutrition support to ensure the biological safety of manned space missions.
Collapse
Affiliation(s)
- Yun-Zhong Fang
- Department of Biochemistry and Molecular Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | |
Collapse
|
18
|
Seguin-Devaux C, Devaux Y, Latger-Cannard V, Grosjean S, Rochette-Egly C, Zannad F, Meistelman C, Mertes PM, Longrois D. Enhancement of the inducible NO synthase activation by retinoic acid is mimicked by RARalpha agonist in vivo. Am J Physiol Endocrinol Metab 2002; 283:E525-35. [PMID: 12169446 DOI: 10.1152/ajpendo.00008.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that all-trans retinoic acid (atRA), the active metabolite of vitamin A, enhances the activation of the inducible nitric oxide synthase (NOS II) pathway, a component of innate immunity, in rats in vivo. We investigated the relative contribution of retinoic acid receptor-alpha (RARalpha) and retinoid X receptors (RXRs) to NOS II activation triggered by LPS. Five-day supplementation with 10 mg/kg of either atRA or the RARalpha selective agonist Ro-40-6055, but not with 10 mg/kg of the pan-RXR agonist Ro-25-7386, enhanced the LPS-induced NOS II mRNA, protein expression in liver, and plasma nitrite/nitrate concentration. Both atRA and the RARalpha agonist (but not the RXR agonist) increased the number of peripheral T helper lymphocytes and plasma interferon-gamma concentration. Synergism between retinoids and LPS on NOS II activation within an organ coincided with synergism on interferon regulatory factor-1 mRNA expression but not with the level of expression of the RARalpha protein. These results suggest that, in vivo, atRA activates NOS II through RARalpha and contributes to characterizing the complex effect of retinoids on the host inflammatory/immune response.
Collapse
Affiliation(s)
- Carole Seguin-Devaux
- Unité Propre de Recherche et d'Enseignement Supérieur-Equipe d'Accueil 3447 Lésions-Réparation: Remodelage Cardiaque et Artériel, Faculté de Médecine, Université Henri Poincaré, Nancy I, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Devaux Y, Seguin C, Grosjean S, de Talancé N, Schwartz M, Burlet A, Zannad F, Meistelman C, Mertes PM, Ungureanu-Longrois D. Retinoic acid and lipopolysaccharide act synergistically to increase prostanoid concentrations in rats in vivo. J Nutr 2001; 131:2628-35. [PMID: 11584082 DOI: 10.1093/jn/131.10.2628] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vitamin A and its active metabolite retinoic acid (RA) modulate host-pathogen interactions by interfering with the host immune and inflammatory response including prostaglandin (PG) biosynthesis. The effects of RA on phospholipase A(2) (PLA(2)) and cyclooxygenase (COX) isoforms in vitro are controversial, and few in vivo studies exist. We investigated the in vivo effects of RA on PG biosynthesis in the presence or absence of lipopolysaccharide (LPS) in rats. RA alone [10 mg/(kg. d) for 5 d] increased plasma and liver PG concentrations by increasing COX-1 protein expression (twofold that of control rats). RA acted synergistically with LPS to increase plasma (400-fold) and liver (15-fold) concentrations of prostaglandin E(2) (PGE(2)) and significantly, but to a lesser extent, other PG compared with RA rats, in the absence of major differences in PLA(2) expression or activity or COX-1 and COX-2 mRNA or protein expression. The RA + LPS-mediated increase in PGE(2) was significantly attenuated (97%) by aminoguanidine (AG), a relatively specific inhibitor of the inducible nitric oxide synthase (NOS2), consistent with the previously reported synergistic effect of RA and LPS on NOS2 expression and activity. In addition, RA and LPS induced the expression of the microsomal isoform of PGE synthase (mPGES). In conclusion, in vivo, RA and LPS increased PG and especially PGE(2) concentrations. The PGE(2) increase was associated with NOS2-mediated activation of COX and induction of mPGES. These results contribute to the characterization of the effects of vitamin A on the host inflammatory response.
Collapse
Affiliation(s)
- Y Devaux
- Unité Propre d'Enseignement Supérieur Associée 971068, Faculté de Médecine, 54505 Vandoeuvre, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|