1
|
Yuan Y, Qian L, Miao Y, Cui Q, Cao T, Yu Y, Zhang T, Zhao Q, Zhang R, Ren T, Zuo Y, Du Q, Qiao C, Wu Q, Zheng Z, Li M, Chinn YE, Xu W, Peng T, Chen R, Xiong S, Zheng H. Targeting Viperin prevents coxsackievirus B3-induced acute heart failure. Cell Discov 2025; 11:34. [PMID: 40195316 PMCID: PMC11977219 DOI: 10.1038/s41421-025-00778-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/21/2025] [Indexed: 04/09/2025] Open
Abstract
Coxsackievirus B3 (CVB3)-induced acute heart failure (AHF) is a common cause of cardiogenic death in young- and middle-aged people. However, the key molecular events linking CVB3 to AHF remain largely unknown, resulting in a lack of targeted therapy strategies thus far. Here, we unexpectedly found that Viperin deficiency does not promote CVB3 infection but protects mice from CVB3-induced AHF. Importantly, cardiac-specific expression of Viperin can induce cardiac dysfunction. Mechanistically, CVB3-encoded 3C protease rescues Viperin protein expression in cardiomyocytes by lowering UBE4A. Viperin in turn interacts with and reduces STAT1 to activate SGK1-KCNQ1 signaling, and eventually leads to cardiac electrical dysfunction and subsequent AHF. Furthermore, we designed an interfering peptide VS-IP1, which blocked Viperin-mediated STAT1 degradation and therefore prevented CVB3-induced AHF. This study established the first signaling link between CVB3 and cardiac electrical dysfunction, and revealed the potential of interfering peptides targeting Viperin for the treatment of CVB3-induced AHF.
Collapse
Affiliation(s)
- Yukang Yuan
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liping Qian
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Miao
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Qun Cui
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ting Cao
- Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, China
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tingting Zhang
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qian Zhao
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Renxia Zhang
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Tengfei Ren
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yibo Zuo
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qian Du
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Caixia Qiao
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Qiuyu Wu
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Zhijin Zheng
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Minqi Li
- Medical College of Nantong University, Nantong, Jiangsu, China
| | - Y Eugene Chinn
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Wei Xu
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
- Department of Medicine, Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Sidong Xiong
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China.
| | - Hui Zheng
- The First Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Department of Laboratory Medicine, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Himeno Y, Zhang Y, Enomoto S, Nomura H, Yamamoto N, Kiyokawa S, Ujihara M, Muangkram Y, Noma A, Amano A. Ionic Mechanisms of Propagated Repolarization in a One-Dimensional Strand of Human Ventricular Myocyte Model. Int J Mol Sci 2023; 24:15378. [PMID: 37895058 PMCID: PMC10607672 DOI: 10.3390/ijms242015378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Although repolarization has been suggested to propagate in cardiac tissue both theoretically and experimentally, it has been challenging to estimate how and to what extent the propagation of repolarization contributes to relaxation because repolarization only occurs in the course of membrane excitation in normal hearts. We established a mathematical model of a 1D strand of 600 myocytes stabilized at an equilibrium potential near the plateau potential level by introducing a sustained component of the late sodium current (INaL). By applying a hyperpolarizing stimulus to a small part of the strand, we succeeded in inducing repolarization which propagated along the strand at a velocity of 1~2 cm/s. The ionic mechanisms responsible for repolarization at the myocyte level, i.e., the deactivation of both the INaL and the L-type calcium current (ICaL), and the activation of the rapid component of delayed rectifier potassium current (IKr) and the inward rectifier potassium channel (IK1), were found to be important for the propagation of repolarization in the myocyte strand. Using an analogy with progressive activation of the sodium current (INa) in the propagation of excitation, regenerative activation of the predominant magnitude of IK1 makes the myocytes at the wave front start repolarization in succession through the electrical coupling via gap junction channels.
Collapse
Affiliation(s)
- Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan; (Y.Z.); (A.N.); (A.A.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Horváth B, Kovács ZM, Dienes C, Óvári J, Szentandrássy N, Magyar J, Bányász T, Varró A, Nánási PP. Conductance Changes of Na + Channels during the Late Na + Current Flowing under Action Potential Voltage Clamp Conditions in Canine, Rabbit, and Guinea Pig Ventricular Myocytes. Pharmaceuticals (Basel) 2023; 16:ph16040560. [PMID: 37111317 PMCID: PMC10143054 DOI: 10.3390/ph16040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Late sodium current (INa,late) is an important inward current contributing to the plateau phase of the action potential (AP) in the mammalian heart. Although INa,late is considered as a possible target for antiarrhythmic agents, several aspects of this current remained hidden. In this work, the profile of INa,late, together with the respective conductance changes (GNa,late), were studied and compared in rabbit, canine, and guinea pig ventricular myocytes using the action potential voltage clamp (APVC) technique. In canine and rabbit myocytes, the density of INa,late was relatively stable during the plateau and decreased only along terminal repolarization of the AP, while GNa,late decreased monotonically. In contrast, INa,late increased monotonically, while GNa,late remained largely unchanged during the AP in guinea pig. The estimated slow inactivation of Na+ channels was much slower in guinea pig than in canine or rabbit myocytes. The characteristics of canine INa,late and GNa,late were not altered by using command APs recorded from rabbit or guinea pig myocytes, indicating that the different shapes of the current profiles are related to genuine interspecies differences in the gating of INa,late. Both INa,late and GNa,late decreased in canine myocytes when the intracellular Ca2+ concentration was reduced either by the extracellular application of 1 µM nisoldipine or by the intracellular application of BAPTA. Finally, a comparison of the INa,late and GNa,late profiles induced by the toxin of Anemonia sulcata (ATX-II) in canine and guinea pig myocytes revealed profound differences between the two species: in dog, the ATX-II induced INa,late and GNa,late showed kinetics similar to those observed with the native current, while in guinea pig, the ATX-II induced GNa,late increased during the AP. Our results show that there are notable interspecies differences in the gating kinetics of INa,late that cannot be explained by differences in AP morphology. These differences must be considered when interpreting the INa,late results obtained in guinea pig.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Zsigmond M Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Óvári
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
4
|
Qi D, Li W, Quan XQ, Gao Y, Wang J, Guo L, Zhao W, Liu T, Gao C, Yan GX. Alternating Early Afterdepolarizations Underlying Bradycardia-Dependent Macroscopic T Wave and Discordant Mechanical Alternans. Circ Arrhythm Electrophysiol 2023; 16:e011453. [PMID: 36595630 DOI: 10.1161/circep.122.011453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Macroscopic T wave alternans (macro-TWA) often heralds the onset of Torsades de Pointes in patients with QT prolongation. However, the mechanisms underlying macro-TWA remain unclear. We examined the cellular and ionic basis for macro-TWA in rabbits with left ventricular hypertrophy (LVH). METHODS The renovascular hypertension model was used to induce LVH in rabbits. Action potentials were simultaneously recorded from epicardium and endocardium together with a transmural ECG and isometric contractility in arterially perfused left ventricular wedges. Late sodium current (INa-L) was recorded in single-isolated left ventricular myocytes with the whole cell patch-clamp technique. RESULTS Macro-TWA and accompanied mechanical alternans occurred spontaneously in 8 of 33 LVH rabbits (P<0.05, versus 0/15 in controls) and were induced by an INa-L enhancer ATX-II at 1 to 3 nM in additional 7. Macro-TWA and mechanical alternans occurred discordantly, that is, that longer QT interval and larger T wave were associated with weaker isometric contvractility. Alternating early afterdepolarizations in the endocardium caused macro-TWA in 12 of 15 LVH rabbits and, therefore, early afterdepolarization-dependent R-from-T extrasystoles and Torsades de Pointes always originated from the beats with longer QT and larger T wave during macro-TWA. INa-L density was significantly larger in LVH myocytes than that of control myocytes. Macro-TWA, mechanical alternans, R-from-T extrasystoles, and Torsades de Pointes were all abolished by INa-L blocker ranolazine or mexiletine. CONCLUSIONS LVH enhances INa-L density and promotes alternating early afterdepolarizations in the left ventricular endocardium that manifest as macro-TWA with discordant mechanical alternans. INa-L blockade abolishes macro-TWA, mechanical alternans, early afterdepolarization-dependent R-from-T extrasystoles, and Torsades de Pointes.
Collapse
Affiliation(s)
- Datun Qi
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.)
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
| | - Wei Li
- Department of Cardiology, Xinhua Hospital, Shanghai, China (W.L.)
| | - Xiao-Qing Quan
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
| | - Yuan Gao
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
- Henan University of Traditional Chinese Medicine, Zhengzhou, China (Y.G.)
| | - Jianyong Wang
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
- TEDA International Cardiovascular Hospital, Tianjin, China (J.W.)
| | | | - Wenping Zhao
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
- Affiliated Hospital of Hebei University, Baoding, China (W.Z.)
| | - Tong Liu
- Department of Cardiology, Second Hospital of Tianjin Medical University, China (T.L.)
| | - Chuanyu Gao
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.)
| | - Gan-Xin Yan
- Zhengzhou University People's Hospital and Central China Fuwai Hospital, Zhengzhou, China (D.Q., C.G., G.-X.Y.)
- Lankenau Institute for Medical Research, Wynnewood, PA (D.Q., X.-Q.Q., Y.G., J.W., W.Z., G.-X.Y.)
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA (G.-X.Y.)
| |
Collapse
|
5
|
Wenzhong L, Hualan L. COVID-19: the CaMKII-like system of S protein drives membrane fusion and induces syncytial multinucleated giant cells. Immunol Res 2021; 69:496-519. [PMID: 34410575 PMCID: PMC8374125 DOI: 10.1007/s12026-021-09224-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 S protein on the membrane of infected cells can promote receptor-dependent syncytia formation, relating to extensive tissue damage and lymphocyte elimination. In this case, it is challenging to obtain neutralizing antibodies and prevent them through antibodies effectively. Considering that, in the current study, structural domain search methods are adopted to analyze the SARS-CoV-2 S protein to find the fusion mechanism. The results show that after the EF-hand domain of S protein bound to calcium ions, S2 protein had CaMKII protein activities. Besides, the CaMKII_AD domain of S2 changed S2 conformation, facilitating the formation of HR1-HR2 six-helix bundles. Apart from that, the Ca2+-ATPase of S2 pumped calcium ions from the virus cytoplasm to help membrane fusion, while motor structures of S drove the CaATP_NAI and CaMKII_AD domains to extend to the outside and combined the viral membrane and the cell membrane, thus forming a calcium bridge. Furthermore, the phospholipid-flipping-ATPase released water, triggering lipid mixing and fusion and generating fusion pores. Then, motor structures promoted fusion pore extension, followed by the cytoplasmic contents of the virus being discharged into the cell cytoplasm. After that, the membrane of the virus slid onto the cell membrane along the flowing membrane on the gap of the three CaATP_NAI. At last, the HR1-HR2 hexamer would fall into the cytoplasm or stay on the cell membrane. Therefore, the CaMKII_like system of S protein facilitated membrane fusion for further inducing syncytial multinucleated giant cells.
Collapse
Affiliation(s)
- Liu Wenzhong
- School of Computer Science and Engineering, Sichuan University of Science & Engineering, Zigong, 643002, China.
- School of Life Science and Food Engineering, Yibin University, Yibin, 644000, China.
| | - Li Hualan
- School of Life Science and Food Engineering, Yibin University, Yibin, 644000, China
| |
Collapse
|
6
|
Detrimental proarrhythmogenic interaction of Ca 2+/calmodulin-dependent protein kinase II and Na V1.8 in heart failure. Nat Commun 2021; 12:6586. [PMID: 34782600 PMCID: PMC8593192 DOI: 10.1038/s41467-021-26690-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
An interplay between Ca2+/calmodulin-dependent protein kinase IIδc (CaMKIIδc) and late Na+ current (INaL) is known to induce arrhythmias in the failing heart. Here, we elucidate the role of the sodium channel isoform NaV1.8 for CaMKIIδc-dependent proarrhythmia. In a CRISPR-Cas9-generated human iPSC-cardiomyocyte homozygous knock-out of NaV1.8, we demonstrate that NaV1.8 contributes to INaL formation. In addition, we reveal a direct interaction between NaV1.8 and CaMKIIδc in cardiomyocytes isolated from patients with heart failure (HF). Using specific blockers of NaV1.8 and CaMKIIδc, we show that NaV1.8-driven INaL is CaMKIIδc-dependent and that NaV1.8-inhibtion reduces diastolic SR-Ca2+ leak in human failing cardiomyocytes. Moreover, increased mortality of CaMKIIδc-overexpressing HF mice is reduced when a NaV1.8 knock-out is introduced. Cellular and in vivo experiments reveal reduced ventricular arrhythmias without changes in HF progression. Our work therefore identifies a proarrhythmic CaMKIIδc downstream target which may constitute a prognostic and antiarrhythmic strategy.
Collapse
|
7
|
Kiss D, Horváth B, Hézső T, Dienes C, Kovács Z, Topal L, Szentandrássy N, Almássy J, Prorok J, Virág L, Bányász T, Varró A, Nánási PP, Magyar J. Late Na + Current Is [Ca 2+] i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals (Basel) 2021; 14:ph14111142. [PMID: 34832924 PMCID: PMC8623624 DOI: 10.3390/ph14111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enhancement of the late sodium current (INaL) increases arrhythmia propensity in the heart, whereas suppression of the current is antiarrhythmic. In the present study, we investigated INaL in canine ventricular cardiomyocytes under action potential voltage-clamp conditions using the selective Na+ channel inhibitors GS967 and tetrodotoxin. Both 1 µM GS967 and 10 µM tetrodotoxin dissected largely similar inward currents. The amplitude and integral of the GS967-sensitive current was significantly smaller after the reduction of intracellular Ca2+ concentration ([Ca2+]i) either by superfusion of the cells with 1 µM nisoldipine or by intracellular application of 10 mM BAPTA. Inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII) by KN-93 or the autocamtide-2-related inhibitor peptide similarly reduced the amplitude and integral of INaL. Action potential duration was shortened in a reverse rate-dependent manner and the plateau potential was depressed by GS967. This GS967-induced depression of plateau was reduced by pretreatment of the cells with BAPTA-AM. We conclude that (1) INaL depends on the magnitude of [Ca2+]i in canine ventricular cells, (2) this [Ca2+]i-dependence of INaL is mediated by the Ca2+-dependent activation of CaMKII, and (3) INaL is augmented by the baseline CaMKII activity.
Collapse
Affiliation(s)
- Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - Zsigmond Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; (L.T.); (J.P.); (L.V.); (A.V.)
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; (L.T.); (J.P.); (L.V.); (A.V.)
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; (L.T.); (J.P.); (L.V.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; (L.T.); (J.P.); (L.V.); (A.V.)
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52255575; Fax: +36-52255116
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
8
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
9
|
Ton AT, Nguyen W, Sweat K, Miron Y, Hernandez E, Wong T, Geft V, Macias A, Espinoza A, Truong K, Rasoul L, Stafford A, Cotta T, Mai C, Indersmitten T, Page G, Miller PE, Ghetti A, Abi-Gerges N. Arrhythmogenic and antiarrhythmic actions of late sustained sodium current in the adult human heart. Sci Rep 2021; 11:12014. [PMID: 34103608 PMCID: PMC8187365 DOI: 10.1038/s41598-021-91528-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.
Collapse
Affiliation(s)
- Anh Tuan Ton
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - William Nguyen
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Katrina Sweat
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Yannick Miron
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Eduardo Hernandez
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tiara Wong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Valentyna Geft
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andrew Macias
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ana Espinoza
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ky Truong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Lana Rasoul
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Alexa Stafford
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tamara Cotta
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Christina Mai
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tim Indersmitten
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Guy Page
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA.
| |
Collapse
|
10
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
11
|
Contribution of the neuronal sodium channel Na V1.8 to sodium- and calcium-dependent cellular proarrhythmia. J Mol Cell Cardiol 2020; 144:35-46. [PMID: 32418916 DOI: 10.1016/j.yjmcc.2020.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE In myocardial pathology such as heart failure a late sodium current (INaL) augmentation is known to be involved in conditions of arrhythmogenesis. However, the underlying mechanisms of the INaL generation are not entirely understood. By now evidence is growing that non-cardiac sodium channel isoforms could also be involved in the INaL generation. The present study investigates the contribution of the neuronal sodium channel isoform NaV1.8 to arrhythmogenesis in a clearly-defined setting of enhanced INaL by using anemone toxin II (ATX-II) in the absence of structural heart disease. METHODS Electrophysiological experiments were performed in order to measure INaL, action potential duration (APD), SR-Ca2+-leak and cellular proarrhythmic triggers in ATX-II exposed wild-type (WT) and SCN10A-/- mice cardiomyocytes. In addition, WT cardiomyocytes were stimulated with ATX-II in the presence or absence of NaV1.8 inhibitors. INCX was measured by using the whole cell patch clamp method. RESULTS In WT cardiomyocytes exposure to ATX-II augmented INaL, prolonged APD, increased SR-Ca2+-leak and induced proarrhythmic triggers such as early afterdepolarizations (EADs) and Ca2+-waves. All of them could be significantly reduced by applying NaV1.8 blockers PF-01247324 and A-803467. Both blockers had no relevant effects on cellular electrophysiology of SCN10A-/- cardiomyocytes. Moreover, in SCN10A-/--cardiomyocytes, the ATX-II-dependent increase in INaL, SR-Ca2+-leak and APD prolongation was less than in WT and comparable to the results which were obtained with WT cardiomyocytes being exposed to ATX-II and NaV1.8 inhibitors in parallel. Moreover, we found a decrease in reverse mode NCX current and reduced CaMKII-dependent RyR2-phosphorylation after application of PF-01247324 as an underlying explanation for the Na+-mediated Ca2+-dependent proarrhythmic triggers. CONCLUSION The current findings demonstrate that NaV1.8 is a significant contributor for INaL-induced arrhythmic triggers. Therefore, NaV1.8 inhibition under conditions of an enhanced INaL constitutes a promising antiarrhythmic strategy which merits further investigation.
Collapse
|
12
|
Horváth B, Hézső T, Kiss D, Kistamás K, Magyar J, Nánási PP, Bányász T. Late Sodium Current Inhibitors as Potential Antiarrhythmic Agents. Front Pharmacol 2020; 11:413. [PMID: 32372952 PMCID: PMC7184885 DOI: 10.3389/fphar.2020.00413] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/19/2022] Open
Abstract
Based on recent findings, an increased late sodium current (INa,late) plays an important pathophysiological role in cardiac diseases, including rhythm disorders. The article first describes what is INa,late and how it functions under physiological circumstances. Next, it shows the wide range of cellular mechanisms that can contribute to an increased INa,late in heart diseases, and also discusses how the upregulated INa,late can play a role in the generation of cardiac arrhythmias. The last part of the article is about INa,late inhibiting drugs as potential antiarrhythmic agents, based on experimental and preclinical data as well as in the light of clinical trials.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Division of Sport Physiology, University of Debrecen, Debrecen, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Late sodium current in human, canine and guinea pig ventricular myocardium. J Mol Cell Cardiol 2020; 139:14-23. [DOI: 10.1016/j.yjmcc.2019.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023]
|
14
|
Uchida S, Asai Y, Kariya Y, Tsumoto K, Hibino H, Honma M, Abe T, Nin F, Kurata Y, Furutani K, Suzuki H, Kitano H, Inoue R, Kurachi Y. Integrative and theoretical research on the architecture of a biological system and its disorder. J Physiol Sci 2019; 69:433-451. [PMID: 30868372 PMCID: PMC6456489 DOI: 10.1007/s12576-019-00667-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/08/2019] [Indexed: 11/28/2022]
Abstract
An organism stems from assemblies of a variety of cells and proteins. This complex system serves as a unit, and it exhibits highly sophisticated functions in response to exogenous stimuli that change over time. The complete sequencing of the entire human genome has allowed researchers to address the enigmas of life and disease at the gene- or molecular-based level. The consequence of such studies is the rapid accumulation of a multitude of data at multiple levels, ranging from molecules to the whole body, that has necessitated the development of entirely new concepts, tools, and methodologies to analyze and integrate these data. This necessity has given birth to systems biology, an advanced theoretical and practical research framework that has totally changed the directions of not only basic life science but also medicine. During the symposium of the 95th Annual Meeting of The Physiological Society of Japan 2018, five researchers reported on their respective studies on systems biology. The topics included reactions of drugs, ion-transport architecture in an epithelial system, multi-omics in renal disease, cardiac electrophysiological systems, and a software platform for computer simulation. In this review article these authors have summarized recent achievements in the field and discuss next-generation studies on health and disease.
Collapse
Affiliation(s)
- Shinichi Uchida
- Department of Nephrology, Graduate Schools of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Yoshiyuki Asai
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshiaki Kariya
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kunichika Tsumoto
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Osaka University, Suita, Japan
- Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
- Department of Physiology II, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.
- AMED-CREST, AMED, Niigata, Japan.
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeshi Abe
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
- AMED-CREST, AMED, Niigata, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Kazuharu Furutani
- Department of Physiology and Membrane Biology, University of California Davis, Davis, 95616, USA
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Shinagawa-ku, Tokyo, 108-0071, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Osaka University, Suita, Japan.
- Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan.
| |
Collapse
|
15
|
Huang X, Song Z, Qu Z. Determinants of early afterdepolarization properties in ventricular myocyte models. PLoS Comput Biol 2018; 14:e1006382. [PMID: 30475801 PMCID: PMC6283611 DOI: 10.1371/journal.pcbi.1006382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/06/2018] [Accepted: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Early afterdepolarizations (EADs) are spontaneous depolarizations during the repolarization phase of an action potential in cardiac myocytes. It is widely known that EADs are promoted by increasing inward currents and/or decreasing outward currents, a condition called reduced repolarization reserve. Recent studies based on bifurcation theories show that EADs are caused by a dual Hopf-homoclinic bifurcation, bringing in further mechanistic insights into the genesis and dynamics of EADs. In this study, we investigated the EAD properties, such as the EAD amplitude, the inter-EAD interval, and the latency of the first EAD, and their major determinants. We first made predictions based on the bifurcation theory and then validated them in physiologically more detailed action potential models. These properties were investigated by varying one parameter at a time or using parameter sets randomly drawn from assigned intervals. The theoretical and simulation results were compared with experimental data from the literature. Our major findings are that the EAD amplitude and takeoff potential exhibit a negative linear correlation; the inter-EAD interval is insensitive to the maximum ionic current conductance but mainly determined by the kinetics of ICa,L and the dual Hopf-homoclinic bifurcation; and both inter-EAD interval and latency vary largely from model to model. Most of the model results generally agree with experimental observations in isolated ventricular myocytes. However, a major discrepancy between modeling results and experimental observations is that the inter-EAD intervals observed in experiments are mainly between 200 and 500 ms, irrespective of species, while those of the mathematical models exhibit a much wider range with some models exhibiting inter-EAD intervals less than 100 ms. Our simulations show that the cause of this discrepancy is likely due to the difference in ICa,L recovery properties in different mathematical models, which needs to be addressed in future action potential model development. Early afterdepolarizations (EADs) are abnormal depolarizations during the plateau phase of action potential in cardiac myocytes, arising from a dual Hopf-homoclinic bifurcation. The same bifurcations are also responsible for certain types of bursting behaviors in other cell types, such as beta cells and neuronal cells. EADs are known to play important role in the genesis of lethal arrhythmias and have been widely studied in both experiments and computer models. However, a detailed comparison between the properties of EADs observed in experiments and those from mathematical models have not been carried out. In this study, we performed theoretical analyses and computer simulations of different ventricular action potential models as well as different species to investigate the properties of EADs and compared these properties to those observed in experiments. While the EAD properties in the action potential models capture many of the EAD properties seen in experiments, the inter-EAD intervals in the computer models differ a lot from model to model, and some of them show very large discrepancy with those observed in experiments. This discrepancy needs to be addressed in future cardiac action potential model development.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Physics, South China University of Technology, Guangzhou, China
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Li G, Zhang L. The role of mexiletine in the management of long QT syndrome. J Electrocardiol 2018; 51:1061-1065. [DOI: 10.1016/j.jelectrocard.2018.08.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 01/25/2023]
|
17
|
Hegyi B, Bányász T, Izu LT, Belardinelli L, Bers DM, Chen-Izu Y. β-adrenergic regulation of late Na + current during cardiac action potential is mediated by both PKA and CaMKII. J Mol Cell Cardiol 2018; 123:168-179. [PMID: 30240676 DOI: 10.1016/j.yjmcc.2018.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Late Na+ current (INaL) significantly contributes to shaping cardiac action potentials (APs) and increased INaL is associated with cardiac arrhythmias. β-adrenergic receptor (βAR) stimulation and its downstream signaling via protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways are known to regulate INaL. However, it remains unclear how each of these pathways regulates INaL during the AP under physiological conditions. Here we performed AP-clamp experiments in rabbit ventricular myocytes to delineate the impact of each signaling pathway on INaL at different AP phases to understand the arrhythmogenic potential. During the physiological AP (2 Hz, 37 °C) we found that INaL had a basal level current independent of PKA, but partially dependent on CaMKII. βAR activation (10 nM isoproterenol, ISO) further enhanced INaL via both PKA and CaMKII pathways. However, PKA predominantly increased INaL early during the AP plateau, whereas CaMKII mainly increased INaL later in the plateau and during rapid repolarization. We also tested the role of key signaling pathways through exchange protein activated by cAMP (Epac), nitric oxide synthase (NOS) and reactive oxygen species (ROS). Direct Epac stimulation enhanced INaL similar to the βAR-induced CaMKII effect, while NOS inhibition prevented the βAR-induced CaMKII-dependent INaL enhancement. ROS generated by NADPH oxidase 2 (NOX2) also contributed to the ISO-induced INaL activation early in the AP. Taken together, our data reveal differential modulations of INaL by PKA and CaMKII signaling pathways at different AP phases. This nuanced and comprehensive view on the changes in INaL during AP deepens our understanding of the important role of INaL in reshaping the cardiac AP and arrhythmogenic potential under elevated sympathetic stimulation, which is relevant for designing therapeutic treatment of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Internal Medicine/Cardiology, University of California, Davis, CA, USA.
| |
Collapse
|
18
|
Han D, Tan H, Sun C, Li G. Dysfunctional Nav1.5 channels due to SCN5A mutations. Exp Biol Med (Maywood) 2018; 243:852-863. [PMID: 29806494 DOI: 10.1177/1535370218777972] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The voltage-gated sodium channel 1.5 (Nav1.5), encoded by the SCN5A gene, is responsible for the rising phase of the action potential of cardiomyocytes. The sodium current mediated by Nav1.5 consists of peak and late components (INa-P and INa-L). Mutant Nav1.5 causes alterations in the peak and late sodium current and is associated with an increasingly wide range of congenital arrhythmias. More than 400 mutations have been identified in the SCN5A gene. Although the mechanisms of SCN5A mutations leading to a variety of arrhythmias can be classified according to the alteration of INa-P and INa-L as gain-of-function, loss-of-function and both, few researchers have summarized the mechanisms in this way before. In this review article, we aim to review the mechanisms underlying dysfunctional Nav1.5 due to SCN5A mutations and to provide some new insights into further approaches in the treatment of arrhythmias. Impact statement The field of ion channelopathy caused by dysfunctional Nav1.5 due to SCN5A mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of various arrhythmias develops. In this review, we focus on the dysfunctional Nav1.5 related to arrhythmias and the underlying mechanisms. We update SCN5A mutations in a precise way since 2013 and presents novel classifications of SCN5A mutations responsible for the dysfunction of the peak (INa-P) and late (INa-L) sodium channels based on their phenotypes, including loss-, gain-, and coexistence of gain- and loss-of function mutations in INa-P, INa-L, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying arrhythmias from cell to bedside, promoting the management of various arrhythmias in practice.
Collapse
Affiliation(s)
- Dan Han
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Hui Tan
- 2 Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chaofeng Sun
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Guoliang Li
- 1 Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
19
|
Luo A, Liu Z, Cao Z, Hao J, Wu L, Fu C, Zeng M, Jiang W, Zhang P, Zhao B, Zhao T, Zhao J, Ma J. Wenxin Keli diminishes Ca2+
overload induced by hypoxia/reoxygenation in cardiomyocytes through inhibiting INaL
and ICaL. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2017; 40:1412-1425. [PMID: 28972668 DOI: 10.1111/pace.13206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Antao Luo
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Zhipei Liu
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Zhenzhen Cao
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Jie Hao
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Lin Wu
- Department of Cardiology, First Hospital; Peking University; Beijing China
| | - Chen Fu
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Mengliu Zeng
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Wanzhen Jiang
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Peihua Zhang
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| | - Buchang Zhao
- Buchang Cardio-cerebrovascular Hospital; Xian China
| | - Tao Zhao
- Graduate School; Tianjin University of Traditional Chinese Medicine; Tianjin China
| | - Jing Zhao
- Buchang Cardio-cerebrovascular Hospital; Xian China
| | - Jihua Ma
- Cardio-Electrophysiological Research Laboratory; Medical College of Wuhan University of Science and Technology; Wuhan China
| |
Collapse
|
20
|
Hysteretic Dynamics of Multi-Stable Early Afterdepolarisations with Repolarisation Reserve Attenuation: A Potential Dynamical Mechanism for Cardiac Arrhythmias. Sci Rep 2017; 7:10771. [PMID: 28883639 PMCID: PMC5589958 DOI: 10.1038/s41598-017-11355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Some cardiovascular and non-cardiovascular drugs frequently cause excessive prolongation of the cardiac action potential (AP) and lead to the development of early afterdepolarisations (EADs), which trigger lethal ventricular arrhythmias. Combining computer simulations in APs with numerical calculations based on dynamical system theory, we investigated stability changes of APs observed in a paced human ventricular myocyte model by decreasing and/or increasing the rapid (IKr) and slow (IKs) components of delayed rectifying K+ current. Upon reducing IKr, the APs without EADs (no-EAD response) showed gradual prolongation of AP duration (APD), and were annihilated without AP configuration changes due to the occurrence of saddle-node bifurcations. This annihilation caused a transition to an AP with EADs as a new stable steady state. Furthermore, reducing repolarisation currents (repolarisation reserve attenuation) evoked multi-stable states consisting of APs with different APDs, and caused multiple hysteretic dynamics. Depending on initial ion circumstances within ventricular myocytes, these multi-stable AP states might increase the local/global heterogeneity of AP repolarisations in the ventricle. Thus, the EAD-induced arrhythmias with repolarisation reserve attenuation might be attributed to the APD variability caused by multi-stability in cardiac AP dynamics.
Collapse
|
21
|
Bohnen MS, Peng G, Robey SH, Terrenoire C, Iyer V, Sampson KJ, Kass RS. Molecular Pathophysiology of Congenital Long QT Syndrome. Physiol Rev 2017; 97:89-134. [PMID: 27807201 PMCID: PMC5539372 DOI: 10.1152/physrev.00008.2016] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ion channels represent the molecular entities that give rise to the cardiac action potential, the fundamental cellular electrical event in the heart. The concerted function of these channels leads to normal cyclical excitation and resultant contraction of cardiac muscle. Research into cardiac ion channel regulation and mutations that underlie disease pathogenesis has greatly enhanced our knowledge of the causes and clinical management of cardiac arrhythmia. Here we review the molecular determinants, pathogenesis, and pharmacology of congenital Long QT Syndrome. We examine mechanisms of dysfunction associated with three critical cardiac currents that comprise the majority of congenital Long QT Syndrome cases: 1) IKs, the slow delayed rectifier current; 2) IKr, the rapid delayed rectifier current; and 3) INa, the voltage-dependent sodium current. Less common subtypes of congenital Long QT Syndrome affect other cardiac ionic currents that contribute to the dynamic nature of cardiac electrophysiology. Through the study of mutations that cause congenital Long QT Syndrome, the scientific community has advanced understanding of ion channel structure-function relationships, physiology, and pharmacological response to clinically employed and experimental pharmacological agents. Our understanding of congenital Long QT Syndrome continues to evolve rapidly and with great benefits: genotype-driven clinical management of the disease has improved patient care as precision medicine becomes even more a reality.
Collapse
Affiliation(s)
- M S Bohnen
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - G Peng
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - S H Robey
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - C Terrenoire
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - V Iyer
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - K J Sampson
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| | - R S Kass
- Department of Pharmacology, Columbia University Medical Center, New York, New York; and The New York Stem Cell Foundation Research Institute, New York, New York
| |
Collapse
|
22
|
Mason FE, Sossalla S. The Significance of the Late Na+ Current for Arrhythmia Induction and the Therapeutic Antiarrhythmic Potential of Ranolazine. J Cardiovasc Pharmacol Ther 2016; 22:40-50. [DOI: 10.1177/1074248416644989] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this article is to review the basis of arrhythmogenesis, the functional and clinical role of the late Na current, and its therapeutic inhibition. Under pathological conditions such as ischemia and heart failure this current is abnormally enhanced and influences cellular electrophysiology as a proarrhythmic substrate in myocardial pathology. Ranolazine the only approved late Na current blocker has been demonstrated to produce antiarrhythmic effects in the atria and the ventricle. We summarize recent experimental and clinical studies of ranolazine and other experimental late Na current blockers and discuss the significance of the available data.
Collapse
Affiliation(s)
- Fleur E. Mason
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany
| | - Samuel Sossalla
- Department of Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany
- Department of Internal Medicine III (Cardiology and Angiology), University Hospital Schleswig-Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Göttingen & Kiel, Germany
| |
Collapse
|
23
|
Holzem KM, Gomez JF, Glukhov AV, Madden EJ, Koppel AC, Ewald GA, Trenor B, Efimov IR. Reduced response to IKr blockade and altered hERG1a/1b stoichiometry in human heart failure. J Mol Cell Cardiol 2016; 96:82-92. [PMID: 26093152 PMCID: PMC4683114 DOI: 10.1016/j.yjmcc.2015.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023]
Abstract
Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus, we aimed to examine whether decreased expression of the rapid delayed rectifier potassium current, IKr, contributes to repolarization abnormalities in human HF. To map functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (∆APD80) and found that ∆APD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p=0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongation was greater in normal conditions than in failing conditions, provided that the cellular model of HF included a significant downregulation of IKr. In human HF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with altered hERG1a:hERG1b protein stoichiometry in the failing human LV, and failing cardiomyoctye simulations support the experimental findings. Thus, of IKr protein and functional expression may be important determinants of repolarization remodeling in the failing human LV.
Collapse
Affiliation(s)
- Katherine M Holzem
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Juan F Gomez
- Polytechnic University of Valencia, Valencia, Spain
| | - Alexey V Glukhov
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Eli J Madden
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Aaron C Koppel
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Gregory A Ewald
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | | | - Igor R Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
24
|
Gloschat CR, Koppel AC, Aras KK, Brennan JA, Holzem KM, Efimov IR. Arrhythmogenic and metabolic remodelling of failing human heart. J Physiol 2016; 594:3963-80. [PMID: 27019074 DOI: 10.1113/jp271992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/21/2016] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a major cause of morbidity and mortality worldwide. The global burden of HF continues to rise, with prevalence rates estimated at 1-2% and incidence approaching 5-10 per 1000 persons annually. The complex pathophysiology of HF impacts virtually all aspects of normal cardiac function - from structure and mechanics to metabolism and electrophysiology - leading to impaired mechanical contraction and sudden cardiac death. Pharmacotherapy and device therapy are the primary methods of treating HF, but neither is able to stop or reverse disease progression. Thus, there is an acute need to translate basic research into improved HF therapy. Animal model investigations are a critical component of HF research. However, the translation from cellular and animal models to the bedside is hampered by significant differences between species and among physiological scales. Our studies over the last 8 years show that hypotheses generated in animal models need to be validated in human in vitro models. Importantly, however, human heart investigations can establish translational platforms for safety and efficacy studies before embarking on costly and risky clinical trials. This review summarizes recent developments in human HF investigations of electrophysiology remodelling, metabolic remodelling, and β-adrenergic remodelling and discusses promising new technologies for HF research.
Collapse
Affiliation(s)
- C R Gloschat
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - A C Koppel
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - K K Aras
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - J A Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - K M Holzem
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - I R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
25
|
Clancy CE, Chen-Izu Y, Bers DM, Belardinelli L, Boyden PA, Csernoch L, Despa S, Fermini B, Hool LC, Izu L, Kass RS, Lederer WJ, Louch WE, Maack C, Matiazzi A, Qu Z, Rajamani S, Rippinger CM, Sejersted OM, O'Rourke B, Weiss JN, Varró A, Zaza A. Deranged sodium to sudden death. J Physiol 2015; 593:1331-45. [PMID: 25772289 DOI: 10.1113/jphysiol.2014.281204] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022] Open
Abstract
In February 2014, a group of scientists convened as part of the University of California Davis Cardiovascular Symposium to bring together experimental and mathematical modelling perspectives and discuss points of consensus and controversy on the topic of sodium in the heart. This paper summarizes the topics of presentation and discussion from the symposium, with a focus on the role of aberrant sodium channels and abnormal sodium homeostasis in cardiac arrhythmias and pharmacotherapy from the subcellular scale to the whole heart. Two following papers focus on Na(+) channel structure, function and regulation, and Na(+)/Ca(2+) exchange and Na(+)/K(+) ATPase. The UC Davis Cardiovascular Symposium is a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The focus on Na(+) in the 2014 symposium stemmed from the multitude of recent studies that point to the importance of maintaining Na(+) homeostasis in the heart, as disruption of homeostatic processes are increasingly identified in cardiac disease states. Understanding how disruption in cardiac Na(+)-based processes leads to derangement in multiple cardiac components at the level of the cell and to then connect these perturbations to emergent behaviour in the heart to cause disease is a critical area of research. The ubiquity of disruption of Na(+) channels and Na(+) homeostasis in cardiac disorders of excitability and mechanics emphasizes the importance of a fundamental understanding of the associated mechanisms and disease processes to ultimately reveal new targets for human therapy.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Pharmacology, University of California, Davis, Genome Building Rm 3503, Davis, CA, 95616-8636, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chen-Izu Y, Shaw RM, Pitt GS, Yarov-Yarovoy V, Sack JT, Abriel H, Aldrich RW, Belardinelli L, Cannell MB, Catterall WA, Chazin WJ, Chiamvimonvat N, Deschenes I, Grandi E, Hund TJ, Izu LT, Maier LS, Maltsev VA, Marionneau C, Mohler PJ, Rajamani S, Rasmusson RL, Sobie EA, Clancy CE, Bers DM. Na+ channel function, regulation, structure, trafficking and sequestration. J Physiol 2015; 593:1347-60. [PMID: 25772290 DOI: 10.1113/jphysiol.2014.281428] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/02/2014] [Indexed: 12/19/2022] Open
Abstract
This paper is the second of a series of three reviews published in this issue resulting from the University of California Davis Cardiovascular Symposium 2014: Systems approach to understanding cardiac excitation-contraction coupling and arrhythmias: Na(+) channel and Na(+) transport. The goal of the symposium was to bring together experts in the field to discuss points of consensus and controversy on the topic of sodium in the heart. The present review focuses on Na(+) channel function and regulation, Na(+) channel structure and function, and Na(+) channel trafficking, sequestration and complexing.
Collapse
Affiliation(s)
- Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, USA; Department of Biomedical Engineering, University of California, Davis, USA; Department of Internal Medicine/Cardiology, University of California, Davis, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Luo AT, Cao ZZ, Xiang Y, Zhang S, Qian CP, Fu C, Zhang PH, Ma JH. Ketamine attenuates the Na+-dependent Ca2+ overload in rabbit ventricular myocytes in vitro by inhibiting late Na+ and L-type Ca2+ currents. Acta Pharmacol Sin 2015; 36:1327-36. [PMID: 26456586 DOI: 10.1038/aps.2015.75] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 07/02/2015] [Indexed: 12/27/2022]
Abstract
AIM Intracellular Ca(2+) ([Ca(2+)]i) overload occurs in myocardial ischemia. An increase in the late sodium current (INaL) causes intracellular Na(+) overload and subsequently [Ca(2+)]i overload via the reverse-mode sodium-calcium exchanger (NCX). Thus, inhibition of INaL is a potential therapeutic target for cardiac diseases associated with [Ca(2+)]i overload. The aim of this study was to investigate the effects of ketamine on Na(+)-dependent Ca(2+) overload in ventricular myocytes in vitro. METHODS Ventricular myocytes were enzymatically isolated from hearts of rabbits. INaL, NCX current (INCX) and L-type Ca(2+) current (ICaL) were recorded using whole-cell patch-clamp technique. Myocyte shortening and [Ca(2+)]i transients were measured simultaneously using a video-based edge detection and dual excitation fluorescence photomultiplier system. RESULTS Ketamine (20, 40, 80 μmol/L) inhibited INaL in a concentration-dependent manner. In the presence of sea anemone toxin II (ATX, 30 nmol/L), INaL was augmented by more than 3-fold, while ketamine concentration-dependently suppressed the ATX-augmented INaL. Ketamine (40 μmol/L) also significantly suppressed hypoxia or H2O2-induced enhancement of INaL. Furthermore, ketamine concentration-dependently attenuated ATX-induced enhancement of reverse-mode INCX. In addition, ketamine (40 μmol/L) inhibited ICaL by 33.4%. In the presence of ATX (3 nmol/L), the rate and amplitude of cell shortening and relaxation, the diastolic [Ca(2+)]i, and the rate and amplitude of [Ca(2+)]i rise and decay were significantly increased, which were reverted to control levels by tetrodotoxin (TTX, 2 μmol/L) or by ketamine (40 μmol/L). CONCLUSION Ketamine protects isolated rabbit ventricular myocytes against [Ca(2+)]i overload by inhibiting INaL and ICaL.
Collapse
|
28
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
29
|
Elshrif MM, Shi P, Cherry EM. Representing variability and transmural differences in a model of human heart failure. IEEE J Biomed Health Inform 2015; 19:1308-20. [PMID: 26068919 DOI: 10.1109/jbhi.2015.2442833] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During heart failure (HF) at the cellular level, the electrophysiological properties of single myocytes get remodeled, which can trigger the occurrence of ventricular arrhythmias that could be manifested in many forms such as early afterdepolarizations (EADs) and alternans (ALTs). In this paper, based on experimentally observed human HF data, specific ionic and exchanger current strengths are modified from a recently developed human ventricular cell model: the O'Hara-Virág-Varró-Rudy (OVVR) model. A new transmural HF-OVVR model is developed that incorporates HF changes and variability of the observed remodeling. This new heterogeneous HF-OVVR model is able to replicate many of the failing action potential (AP) properties and the dynamics of both [Ca(2+)]i and [Na(+)]i in accordance with experimental data. Moreover, it is able to generate EADs for different cell types and exhibits ALTs at modest pacing rate for transmural cell types. We have assessed the HF-OVVR model through the examination of the AP duration and the major ionic currents' rate dependence in single myocytes. The evaluation of the model comes from utilizing the steady-state (S-S) and S1-S2 restitution curves and from probing the accommodation of the HF-OVVR model to an abrupt change in cycle length. In addition, we have investigated the effect of chosen currents on the AP properties, such as blocking the slow sodium current to shorten the AP duration and suppress the EADs, and have found good agreement with experimental observations. This study should help elucidate arrhythmogenic mechanisms at the cellular level and predict unseen properties under HF conditions. In addition, this AP cell model might be useful for modeling and simulating HF at the tissue and organ levels.
Collapse
|
30
|
Lau E, Kossidas K, Kim TY, Kunitomo Y, Ziv O, Zhen S, Taylor C, Schofield L, Yammine J, Liu G, Peng X, Qu Z, Koren G, Choi BR. Spatially Discordant Alternans and Arrhythmias in Tachypacing-Induced Cardiac Myopathy in Transgenic LQT1 Rabbits: The Importance of IKs and Ca2+ Cycling. PLoS One 2015; 10:e0122754. [PMID: 25970695 PMCID: PMC4430457 DOI: 10.1371/journal.pone.0122754] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/12/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Remodeling of cardiac repolarizing currents, such as the downregulation of slowly activating K+ channels (IKs), could underlie ventricular fibrillation (VF) in heart failure (HF). We evaluated the role of Iks remodeling in VF susceptibility using a tachypacing HF model of transgenic rabbits with Long QT Type 1 (LQT1) syndrome. METHODS AND RESULTS LQT1 and littermate control (LMC) rabbits underwent three weeks of tachypacing to induce cardiac myopathy (TICM). In vivo telemetry demonstrated steepening of the QT/RR slope in LQT1 with TICM (LQT1-TICM; pre: 0.26±0.04, post: 0.52±0.01, P<0.05). In vivo electrophysiology showed that LQT1-TICM had higher incidence of VF than LMC-TICM (6 of 11 vs. 3 of 11, respectively). Optical mapping revealed larger APD dispersion (16±4 vs. 38±6 ms, p<0.05) and steep APD restitution in LQT1-TICM compared to LQT1-sham (0.53±0.12 vs. 1.17±0.13, p<0.05). LQT1-TICM developed spatially discordant alternans (DA), which caused conduction block and higher-frequency VF (15±1 Hz in LQT1-TICM vs. 13±1 Hz in LMC-TICM, p<0.05). Ca2+ DA was highly dynamic and preceded voltage DA in LQT1-TICM. Ryanodine abolished DA in 5 out of 8 LQT1-TICM rabbits, demonstrating the importance of Ca2+ in complex DA formation. Computer simulations suggested that HF remodeling caused Ca2+-driven alternans, which was further potentiated in LQT1-TICM due to the lack of IKs. CONCLUSIONS Compared with LMC-TICM, LQT1-TICM rabbits exhibit steepened APD restitution and complex DA modulated by Ca2+. Our results strongly support the contention that the downregulation of IKs in HF increases Ca2+ dependent alternans and thereby the risk of VF.
Collapse
Affiliation(s)
- Emily Lau
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Konstantinos Kossidas
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Tae Yun Kim
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Yukiko Kunitomo
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Ohad Ziv
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Song Zhen
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Chantel Taylor
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Lorraine Schofield
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Joe Yammine
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Gongxin Liu
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Xuwen Peng
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gideon Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Bum-Rak Choi
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
31
|
Ballou LM, Lin RZ, Cohen IS. Control of cardiac repolarization by phosphoinositide 3-kinase signaling to ion channels. Circ Res 2015; 116:127-37. [PMID: 25552692 DOI: 10.1161/circresaha.116.303975] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Upregulation of phosphoinositide 3-kinase (PI3K) signaling is a common alteration in human cancer, and numerous drugs that target this pathway have been developed for cancer treatment. However, recent studies have implicated inhibition of the PI3K signaling pathway as the cause of a drug-induced long-QT syndrome in which alterations in several ion currents contribute to arrhythmogenic drug activity. Surprisingly, some drugs that were thought to induce long-QT syndrome by direct block of the rapid delayed rectifier (IKr) also seem to inhibit PI3K signaling, an effect that may contribute to their arrhythmogenicity. The importance of PI3K in regulating cardiac repolarization is underscored by evidence that QT interval prolongation in diabetes mellitus also may result from changes in multiple currents because of decreased insulin activation of PI3K in the heart. How PI3K signaling regulates ion channels to control the cardiac action potential is poorly understood. Hence, this review summarizes what is known about the effect of PI3K and its downstream effectors, including Akt, on sodium, potassium, and calcium currents in cardiac myocytes. We also refer to some studies in noncardiac cells that provide insight into potential mechanisms of ion channel regulation by this signaling pathway in the heart. Drug development and safety could be improved with a better understanding of the mechanisms by which PI3K regulates cardiac ion channels and the extent to which PI3K inhibition contributes to arrhythmogenic susceptibility.
Collapse
Affiliation(s)
- Lisa M Ballou
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.)
| | - Richard Z Lin
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.).
| | - Ira S Cohen
- From the Department of Physiology and Biophysics and the Institute for Molecular Cardiology, Stony Brook University, NY (L.M.B., R.Z.L., I.S.C.); and the Medical Service, Northport VA Medical Center, NY (R.Z.L.).
| |
Collapse
|
32
|
Safavi-Naeini P, Rasekh A, Razavi M, Saeed M, Massumi A. Sudden Cardiac Death in Coronary Artery Disease. Coron Artery Dis 2015. [DOI: 10.1007/978-1-4471-2828-1_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Mishra S, Reznikov V, Maltsev VA, Undrovinas NA, Sabbah HN, Undrovinas A. Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts. J Physiol 2014; 593:1409-27. [PMID: 25772296 DOI: 10.1113/jphysiol.2014.278259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/03/2014] [Indexed: 01/06/2023] Open
Abstract
KEY POINTS Late Na(+) current (INaL) contributes to action potential remodelling and Ca(2+)/Na(+) changes in heart failure. The molecular identity of INaL remains unclear. The contributions of different Na(+) channel isoforms, apart from the cardiac isoform, remain unknown. We discovered and characterized a substantial contribution of neuronal isoform Nav1.1 to INaL. This new component is physiologically relevant to the control of action potential shape and duration, as well as to cell Ca(2+) dynamics, especially in heart failure. ABSTRACT Late Na(+) current (INaL) contributes to action potential (AP) duration and Ca(2+) handling in cardiac cells. Augmented INaL was implicated in delayed repolarization and impaired Ca(2+) handling in heart failure (HF). We tested if Na(+) channel (Nav) neuronal isoforms contribute to INaL and Ca(2+) cycling defects in HF in 17 dogs in which HF was achieved via sequential coronary artery embolizations. Six normal dogs served as control. Transient Na(+) current (INaT ) and INaL in left ventricular cardiomyocytes (VCMs) were recorded by patch clamp while Ca(2+) dynamics was monitored using Fluo-4. Virally delivered short interfering RNA (siRNA) ensured Nav1.1 and Nav1.5 post-transcriptional silencing. The expression of six Navs was observed in failing VCMs as follows: Nav1.5 (57.3%) > Nav1.2 (15.3%) > Nav1.1 (11.6%) > Nav2.1 (10.7%) > Nav1.3 (4.6%) > Nav1.6 (0.5%). Failing VCMs showed up-regulation of Nav1.1 expression, but reduction of Nav1.6 mRNA. A similar Nav expression pattern was found in samples from human hearts with ischaemic HF. VCMs with silenced Nav1.5 exhibited residual INaT and INaL (∼30% of control) with rightwardly shifted steady-state activation and inactivation. These currents were tetrodotoxin sensitive but resistant to MTSEA, a specific Nav1.5 blocker. The amplitude of the tetrodotoxin-sensitive INaL was 0.1709 ± 0.0299 pA pF(-1) (n = 7 cells) and the decay time constant was τ = 790 ± 76 ms (n = 5). This INaL component was lacking in VCMs with a silenced Nav1.1 gene, indicating that, among neuronal isoforms, Nav1.1 provides the largest contribution to INaL. At -10 mV this contribution is ∼60% of total INaL. Our further experimental and in silico examinations showed that this new Nav1.1 INaL component contributes to Ca(2+) accumulation in failing VCMs and modulates AP shape and duration. In conclusion, we have discovered an Nav1.1-originated INaL component in dog heart ventricular cells. This component is physiologically relevant to controlling AP shape and duration, as well as to cell Ca(2+) dynamics.
Collapse
Affiliation(s)
- Sudhish Mishra
- Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | |
Collapse
|
34
|
Sag CM, Mallwitz A, Wagner S, Hartmann N, Schotola H, Fischer TH, Ungeheuer N, Herting J, Shah AM, Maier LS, Sossalla S, Unsöld B. Enhanced late INa induces proarrhythmogenic SR Ca leak in a CaMKII-dependent manner. J Mol Cell Cardiol 2014; 76:94-105. [DOI: 10.1016/j.yjmcc.2014.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/19/2014] [Accepted: 08/19/2014] [Indexed: 12/19/2022]
|
35
|
Horvath B, Bers DM. The late sodium current in heart failure: pathophysiology and clinical relevance. ESC Heart Fail 2014; 1:26-40. [PMID: 28834665 DOI: 10.1002/ehf2.12003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
Large and growing body of data suggest that an increased late sodium current (INa,late ) can have a significant pathophysiological role in heart failure and other heart diseases. The first goal of this article is to describe how INa,late functions under physiological circumstances. The second goal is to show the wide range of cellular mechanisms that can increase INa,late in cardiac disease, and also to describe how the up-regulated INa,late contributes to the pathophysiology of heart failure. The final section of the article discusses the possible use of INa,late -modifying drugs in heart failure, on the basis of experimental and preclinical data.
Collapse
Affiliation(s)
- Balazs Horvath
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
36
|
Guo D, Yu M, Liu Q, Cox RH, Liu T, Yan GX. Ventricular hypertrophy amplifies transmural dispersion of repolarization by preferentially increasing the late sodium current in endocardium. J Electrocardiol 2014; 47:642-8. [PMID: 24813353 DOI: 10.1016/j.jelectrocard.2014.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 01/17/2023]
Abstract
BACKGROUND The late sodium current (INa-L) contributes importantly to rate-dependent change in action potential duration (APD) and transmural dispersion of repolarization (TDR). However, little is known about the mechanisms of increased APD rate-dependence and amplified TDR in left ventricular hypertrophy (LVH) and failure. The purpose of this study was to investigate the role of INa-L in rate-adaptation of transmural APD heterogeneity. METHODS APD, its rate-dependence and INa-L current were examined in myocytes isolated from the endocardium and epicardium of the control and LVH rabbits. AP was recorded using the standard microelectrode technique, and INa-L was recorded using the whole-cell patch clamp technique. RESULTS Early afterdepolarizations (EADs) were frequently recorded in the isolated myocytes of the LVH rabbits but not in those of controls. LVH prolonged APD more significantly in the endocardial myocytes than in the epicardium (31.7±3.4 vs. 21.6±1.5% n=6, p<0.05), leading to a marked increase in TDR. LVH endocardial myocytes exhibited a greater rate-dependent change in APD compared to the epicardial myocytes. INa-L densities were significantly increased in both LVH endocardium and epicardium. However, LVH increased the INa-L density preferentially in the endocardial myocytes compared to the epicardial myocytes (54.5±4.8% vs. 39.2±3.3%, n=6, p<0.05). CONCLUSIONS Our results demonstrate that LVH increased the INa-L preferentially in the endocardium over the epicardium, which contributes importantly to the stronger rate-dependent change in repolarization and longer APD in the endocardium. This results in an amplified TDR capable of initiating EAD and ventricular arrhythmias.
Collapse
Affiliation(s)
- Donglin Guo
- Lankenau Institute for Medical Research, Wynnewood, PA; College of Life Science, South-Central University for Nationalities, Wuhan, China.
| | - Mengfei Yu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Qinghua Liu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Robert H Cox
- Lankenau Institute for Medical Research, Wynnewood, PA
| | - Tengxian Liu
- Lankenau Institute for Medical Research, Wynnewood, PA
| | - Gan-Xin Yan
- Lankenau Institute for Medical Research, Wynnewood, PA; Jefferson Medical College, Philadelphia, PA
| |
Collapse
|
37
|
Abstract
Late I Na is an integral part of the sodium current, which persists long after the fast-inactivating component. The magnitude of the late I Na is relatively small in all species and in all types of cardiomyocytes as compared with the amplitude of the fast sodium current, but it contributes significantly to the shape and duration of the action potential. This late component had been shown to increase in several acquired or congenital conditions, including hypoxia, oxidative stress, and heart failure, or due to mutations in SCN5A, which encodes the α-subunit of the sodium channel, as well as in channel-interacting proteins, including multiple β subunits and anchoring proteins. Patients with enhanced late I Na exhibit the type-3 long QT syndrome (LQT3) characterized by high propensity for the life-threatening ventricular arrhythmias, such as Torsade de Pointes (TdP), as well as for atrial fibrillation. There are several distinct mechanisms of arrhythmogenesis due to abnormal late I Na, including abnormal automaticity, early and delayed after depolarization-induced triggered activity, and dramatic increase of ventricular dispersion of repolarization. Many local anesthetic and antiarrhythmic agents have a higher potency to block late I Na as compared with fast I Na. Several novel compounds, including ranolazine, GS-458967, and F15845, appear to be the most selective inhibitors of cardiac late I Na reported to date. Selective inhibition of late I Na is expected to be an effective strategy for correcting these acquired and congenital channelopathies.
Collapse
|
38
|
Abstract
Ca²⁺ plays a crucial role in connecting membrane excitability with contraction in myocardium. The hallmark features of heart failure are mechanical dysfunction and arrhythmias; defective intracellular Ca²⁺ homeostasis is a central cause of contractile dysfunction and arrhythmias in failing myocardium. Defective Ca²⁺ homeostasis in heart failure can result from pathological alteration in the expression and activity of an increasingly understood collection of Ca²⁺ homeostatic and structural proteins, ion channels, and enzymes. This review focuses on the molecular mechanisms of defective Ca²⁺ cycling in heart failure and considers how fundamental understanding of these pathways may translate into novel and innovative therapies.
Collapse
Affiliation(s)
- Min Luo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | |
Collapse
|
39
|
Affiliation(s)
- Antonio Zaza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milano, Italy,
| | | |
Collapse
|
40
|
Shryock JC, Song Y, Rajamani S, Antzelevitch C, Belardinelli L. The arrhythmogenic consequences of increasing late INa in the cardiomyocyte. Cardiovasc Res 2013; 99:600-11. [PMID: 23752976 DOI: 10.1093/cvr/cvt145] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This review presents the roles of cardiac sodium channel NaV1.5 late current (late INa) in generation of arrhythmic activity. The assumption of the authors is that proper Na(+) channel function is necessary to the maintenance of the transmembrane electrochemical gradient of Na(+) and regulation of cardiac electrical activity. Myocyte Na(+) channels' openings during the brief action potential upstroke contribute to peak INa and initiate excitation-contraction coupling. Openings of Na(+) channels outside the upstroke contribute to late INa, a depolarizing current that persists throughout the action potential plateau. The small, physiological late INa does not appear to be critical for normal electrical or contractile function in the heart. Late INa does, however, reduce the net repolarizing current, prolongs action potential duration, and increases cellular Na(+) loading. An increase of late INa, due to acquired conditions (e.g. heart failure) or inherited Na(+) channelopathies, facilitates the formation of early and delayed afterpolarizations and triggered arrhythmias, spontaneous diastolic depolarization, and cellular Ca(2+) loading. These in turn increase the spatial and temporal dispersion of repolarization time and may lead to reentrant arrhythmias.
Collapse
Affiliation(s)
- John C Shryock
- Department of Biology, Cardiovascular Therapeutic Area, Gilead Sciences, Foster City, CA, USA
| | | | | | | | | |
Collapse
|
41
|
Holzem KM, Efimov IR. Arrhythmogenic remodelling of activation and repolarization in the failing human heart. Europace 2013; 14 Suppl 5:v50-v57. [PMID: 23104915 DOI: 10.1093/europace/eus275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Heart failure is a major cause of disability and death worldwide, and approximately half of heart failure-related deaths are sudden and presumably due to ventricular arrhythmias. Patients with heart failure have been shown to be at 6- to 9-fold increased risk of sudden cardiac death compared to the general population. (AHA. Heart Disease and Stroke Statistics-2003 Update. Heart and Stroke Facts. Dallas, TX: American Heart Association; 2002) Thus, electrophysiological remodelling associated with heart failure is a leading cause of disease mortality and has been a major investigational focus examined using many animal models of heart failure. While these studies have provided an important foundation for understanding the arrhythmogenic pathophysiology of heart failure, the need for corroborating studies conducted on human heart tissue has been increasingly recognized. Many human heart studies of conduction and repolarization remodelling have now been published and shed some light on important, potentially arrhythmogenic, changes in human heart failure. These studies are being conducted at multiple experimental scales from isolated cells to whole-tissue preparations and have provided insight into regulatory mechanisms such as decreased protein expression, alternative mRNA splicing of ion channel genes, and defective cellular trafficking. Further investigations of heart failure in the human myocardium will be essential for determining possible therapeutic targets to prevent arrhythmia in heart failure and for facilitating the translation of basic research findings to the clinical realm.
Collapse
Affiliation(s)
- Katherine M Holzem
- Department of Biomedical Engineering, Washington University in St Louis, One Brookings Drive, St Louis, MO 63130, USA
| | | |
Collapse
|
42
|
Sophocarpine Attenuates the Na+-dependent Ca2+ Overload Induced by Anemonia Sulcata Toxin—Increased Late Sodium Current in Rabbit Ventricular Myocytes. J Cardiovasc Pharmacol 2012; 60:357-66. [DOI: 10.1097/fjc.0b013e318262c932] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
43
|
Das S, Aiba T, Rosenberg M, Hessler K, Xiao C, Quintero PA, Ottaviano FG, Knight AC, Graham EL, Boström P, Morissette MR, del Monte F, Begley MJ, Cantley LC, Ellinor PT, Tomaselli GF, Rosenzweig A. Pathological role of serum- and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling. Circulation 2012; 126:2208-19. [PMID: 23019294 DOI: 10.1161/circulationaha.112.115592] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a growing cause of morbidity and mortality. Cardiac phosphatidylinositol 3-kinase signaling promotes cardiomyocyte survival and function, but it is paradoxically activated in heart failure, suggesting that chronic activation of this pathway may become maladaptive. Here, we investigated the downstream phosphatidylinositol 3-kinase effector, serum- and glucocorticoid-regulated kinase-1 (SGK1), in heart failure and its complications. METHODS AND RESULTS We found that cardiac SGK1 is activated in human and murine heart failure. We investigated the role of SGK1 in the heart by using cardiac-specific expression of constitutively active or dominant-negative SGK1. Cardiac-specific activation of SGK1 in mice increased mortality, cardiac dysfunction, and ventricular arrhythmias. The proarrhythmic effects of SGK1 were linked to biochemical and functional changes in the cardiac sodium channel and could be reversed by treatment with ranolazine, a blocker of the late sodium current. Conversely, cardiac-specific inhibition of SGK1 protected mice after hemodynamic stress from fibrosis, heart failure, and sodium channel alterations. CONCLUSIONS SGK1 appears both necessary and sufficient for key features of adverse ventricular remodeling and may provide a novel therapeutic target in cardiac disease.
Collapse
Affiliation(s)
- Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nair K, Pekhletski R, Harris L, Care M, Morel C, Farid T, Backx PH, Szabo E, Nanthakumar K. Escape capture bigeminy: phenotypic marker of cardiac sodium channel voltage sensor mutation R222Q. Heart Rhythm 2012; 9:1681-1688.e1. [PMID: 22710484 DOI: 10.1016/j.hrthm.2012.06.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Indexed: 01/02/2023]
Abstract
BACKGROUND Electrocardiographic signature of escape capture bigeminy that spans generations and clusters in a family has not been linked to a sodium channel voltage sensor mutation. OBJECTIVE To characterize the clinical and biophysical consequences of the R222Q mutation in the voltage sensor of cardiac sodium channels. METHODS Comprehensive clinical assessment, invasive electrophysiologic study, genetic analysis, and patch-clamp studies were undertaken. RESULTS Uniquely, 5 members had the same electrocardiographic pattern of a junctional escape ventricular capture bigeminy. Genetic analysis of 3 family members revealed the same mutation (R222Q) in the cardiac sodium channel gene, SCN5A (nucleotide change was 665 G→A that led to missense amino acid substitution Arg 222 Gln, located in the S4 voltage sensor in domain I). Catheterization and mapping revealed that there was no consistent evidence of bundle branch reentry or fascicular potentials preceding ectopic beats. The bigeminy was suppressed by the intravenous administration of the sodium channel blocker, lidocaine. Patch-clamp studies revealed unique differential leftward voltage-dependent shifts in activation and inactivation properties of human voltage-gated Na(+) channels with the R222Q mutation, consistent with increasing channel excitability at precisely the voltages corresponding to the resting membrane potential of cardiomyocytes. CONCLUSIONS The R222Q mutation enhances cardiac sodium channel excitability, resulting in an unusual, highly penetrant phenotype of escape capture bigeminy and cardiomyopathy. These findings support the conclusion that a mutation in the voltage sensor of cardiac sodium channels can cause bigeminal arrhythmia associated with cardiomyopathy.
Collapse
Affiliation(s)
- Krishnakumar Nair
- Division of Cardiology, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jia S, Lian J, Guo D, Xue X, Patel C, Yang L, Yuan Z, Ma A, Yan GX. Modulation of the late sodium current by ATX-II and ranolazine affects the reverse use-dependence and proarrhythmic liability of IKr blockade. Br J Pharmacol 2012; 164:308-16. [PMID: 21182492 DOI: 10.1111/j.1476-5381.2010.01181.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Drug-induced torsades de pointes (TdP) often occurs during bradycardia due to reverse use-dependence. We tested the hypothesis that inhibition or enhancement of late sodium current (I(Na,L) ) could modulate the drug-induced reverse use-dependence in QT and T(p-e) (an index of dispersion of repolarization), and therefore the liability for TdP. EXPERIMENTAL APPROACH Arterially perfused rabbit left ventricular wedge preparations were used. Action potentials from the endocardium were recorded simultaneously with a transmural ECG. The effects of Anemonia sulcata toxin (ATX-II) (an I(Na,L) enhancer), d,l-sotalol, clarithromycin and ranolazine (an I(Na,L) blocker) on rate-dependent changes in QT, T(p-e) and proarrhythmic events were tested, either alone or in combination. Rate-dependent QT and T(p-e) slopes and TdP score (a combined index of TdP liability) were calculated at control and during drug infusion. KEY RESULTS ATX-II (30 nM) and sotalol (300 µM) caused a marked increase in QT and T(p-e) intervals, steeper QT-basic cycle length (BCL) and T(p-e) -BCL slopes (i.e. reverse use-dependence), and TdP. Addition of ranolazine (15 µM) to ATX-II or sotalol significantly attenuated QT-BCL, T(p-e) -BCL slopes and the increased TdP scores. In contrast, clarithromycin (100 µM) moderately prolonged QT and T(p-e) without causing R-on-T extrasystole or TdP, but addition of ATX-II (1 nM) to clarithromycin markedly amplified the QT-BCL and T(p-e) -BCL slopes and further increased TdP score. CONCLUSION AND IMPLICATIONS Modulation of I(Na,L) altered drug-induced reverse use-dependence related to QT as well as T(p-e) , indicating that inhibition of I(Na,L) can markedly reduce the TdP liability of agents that prolong QT intervals.
Collapse
Affiliation(s)
- Shaobin Jia
- The First Hospital, Xi'An Jiaotong University, Xi'An, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Trenor B, Cardona K, Gomez JF, Rajamani S, Ferrero JM, Belardinelli L, Saiz J. Simulation and mechanistic investigation of the arrhythmogenic role of the late sodium current in human heart failure. PLoS One 2012; 7:e32659. [PMID: 22427860 PMCID: PMC3299678 DOI: 10.1371/journal.pone.0032659] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 02/02/2012] [Indexed: 11/18/2022] Open
Abstract
Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na+ current (INaL) is relevant and is currently under investigation. In this study we examined the role of INaL in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of INaL. A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human INaL and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for INaL in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca2+ transient. A mechanistic investigation of intracellular Na+ accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na+/K+ pump, the Na+/Ca2+ exchanger and INaL. The results of the simulations also showed that in failing myocytes, the enhancement of INaL increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the INaL prolong APD and alter Ca2+ transient facilitating the development of early afterdepolarizations. An enhanced INaL appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca2+]i homeostasis of failing myocytes.
Collapse
Affiliation(s)
- Beatriz Trenor
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València, Valencia, Spain.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ma J, Luo A, Wu L, Wan W, Zhang P, Ren Z, Zhang S, Qian C, Shryock JC, Belardinelli L. Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. Am J Physiol Cell Physiol 2011; 302:C1141-51. [PMID: 22189558 DOI: 10.1152/ajpcell.00374.2011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) augments late sodium current (I(Na.L)) in cardiomyocytes. This study tests the hypothesis that both Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and protein kinase C (PKC) mediate the effect of increased [Ca(2+)](i) to increase I(Na.L). Whole cell and open cell-attached patch clamp techniques were used to record I(Na.L) in rabbit ventricular myocytes dialyzed with solutions containing various concentrations of [Ca(2+)](i). Dialysis of cells with [Ca(2+)](i) from 0.1 to 0.3, 0.6, and 1.0 μM increased I(Na.L) in a concentration-dependent manner from 0.221 ± 0.038 to 0.554 ± 0.045 pA/pF (n = 10, P < 0.01) and was associated with an increase in mean Na(+) channel open probability and prolongation of channel mean open-time (n = 7, P < 0.01). In the presence of 0.6 μM [Ca(2+)](i), KN-93 (10 μM) and bisindolylmaleimide (BIM, 2 μM) decreased I(Na.L) by 45.2 and 54.8%, respectively. The effects of KN-93 and autocamtide-2-related inhibitory peptide II (2 μM) were not different. A combination of KN-93 and BIM completely reversed the increase in I(Na.L) as well as the Ca(2+)-induced changes in Na(+) channel mean open probability and mean open-time induced by 0.6 μM [Ca(2+)](i). Phorbol myristoyl acetate increased I(Na.L) in myocytes dialyzed with 0.1 μM [Ca(2+)](i); the effect was abolished by Gö-6976. In summary, both CaMKII and PKC are involved in [Ca(2+)](i)-mediated augmentation of I(Na.L) in ventricular myocytes. Inhibition of CaMKII and/or PKC pathways may be a therapeutic target to reduce myocardial dysfunction and cardiac arrhythmias caused by calcium overload.
Collapse
Affiliation(s)
- Jihua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Moreno JD, Clancy CE. Pathophysiology of the cardiac late Na current and its potential as a drug target. J Mol Cell Cardiol 2011; 52:608-19. [PMID: 22198344 DOI: 10.1016/j.yjmcc.2011.12.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/30/2011] [Accepted: 12/07/2011] [Indexed: 12/19/2022]
Abstract
A pathological increase in the late component of the cardiac Na(+) current, I(NaL), has been linked to disease manifestation in inherited and acquired cardiac diseases including the long QT variant 3 (LQT3) syndrome and heart failure. Disruption in I(NaL) leads to action potential prolongation, disruption of normal cellular repolarization, development of arrhythmia triggers, and propensity to ventricular arrhythmia. Attempts to treat arrhythmogenic sequelae from inherited and acquired syndromes pharmacologically with common Na(+) channel blockers (e.g. flecainide, lidocaine, and amiodarone) have been largely unsuccessful. This is due to drug toxicity and the failure of most current drugs to discriminate between the peak current component, chiefly responsible for single cell excitability and propagation in coupled tissue, and the late component (I(NaL)) of the Na(+) current. Although small in magnitude as compared to the peak Na(+) current (~1-3%), I(NaL) alters action potential properties and increases Na(+) loading in cardiac cells. With the increasing recognition that multiple cardiac pathological conditions share phenotypic manifestations of I(NaL) upregulation, there has been renewed interest in specific pharmacological inhibition of I(Na). The novel antianginal agent ranolazine, which shows a marked selectivity for late versus peak Na(+) current, may represent a novel drug archetype for targeted reduction of I(NaL). This article aims to review common pathophysiological mechanisms leading to enhanced I(NaL) in LQT3 and heart failure as prototypical disease conditions. Also reviewed are promising therapeutic strategies tailored to alter the molecular mechanisms underlying I(Na) mediated arrhythmia triggers.
Collapse
Affiliation(s)
- Jonathan D Moreno
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College/The Rockefeller University/Sloan-Kettering Cancer Institute, New York, NY 10021, USA
| | | |
Collapse
|
49
|
Bányász T, Szentandrássy N, Tóth A, Nánási PP, Magyar J, Chen-Izu Y. Cardiac calmodulin kinase: a potential target for drug design. Curr Med Chem 2011; 18:3707-13. [PMID: 21774758 DOI: 10.2174/092986711796642409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/06/2011] [Indexed: 01/01/2023]
Abstract
Therapeutic strategy for cardiac arrhythmias has undergone a remarkable change during the last decades. Currently implantable cardioverter defibrillator therapy is considered to be the most effective therapeutic method to treat malignant arrhythmias. Some even argue that there is no room for antiarrhythmic drug therapy in the age of implantable cardioverter defibrillators. However, in clinical practice, antiarrhythmic drug therapies are frequently needed, because implantable cardioverter defibrillators are not effective in certain types of arrhythmias (i.e. premature ventricular beats or atrial fibrillation). Furthermore, given the staggering cost of device therapy, it is economically imperative to develop alternative effective treatments. Cardiac ion channels are the target of a number of current treatment strategies, but therapies based on ion channel blockers only resulted in moderate success. Furthermore, these drugs are associated with an increased risk of proarrhythmia, systemic toxicity, and increased defibrillation threshold. In many cases, certain ion channel blockers were found to increase mortality. Other drug classes such as ßblockers, angiotensin-converting enzyme inhibitors, aldosterone antagonists, and statins appear to have proven efficacy for reducing cardiac mortality. These facts forced researchers to shift the focus of their research to molecular targets that act upstream of ion channels. One of these potential targets is calcium/calmodulin-dependent kinase II (CaMKII). Several lines of evidence converge to suggest that CaMKII inhibition may provide an effective treatment strategy for heart diseases. (1) Recent studies have elucidated that CaMKII plays a key role in modulating cardiac function and regulating hypertrophy development. (2) CaMKII activity has been found elevated in the failing hearts from human patients and animal models. (3) Inhibition of CaMKII activity has been shown to mitigate hypertrophy, prevent functional remodeling and reduce arrhythmogenic activity. In this review, we will discuss the structural and functional properties of CaMKII, the modes of its activation and the functional consequences of CaMKII activity on ion channels.
Collapse
Affiliation(s)
- T Bányász
- Department of Physiology, University of Debrecen, Nagyerdei krt. 98. H-4012 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
50
|
Tamargo J, Caballero R, Delpón E. Ranolazine: an antianginal drug with antiarrhythmic properties. Expert Rev Cardiovasc Ther 2011; 9:815-27. [PMID: 21809962 DOI: 10.1586/erc.11.91] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ranolazine is an agent approved for the symptomatic treatment of chronic stable angina that inhibits the late inward sodium current (I(NaL)). I(NaL) amplitude is increased under several pathological conditions, including increased oxidative stress, myocardial ischemia, cardiac hypertrophy, heart failure, long-QT syndrome variant 3 and atrial fibrillation. Experimental and preliminary clinical evidence suggests that ranolazine may represent a new therapeutic strategy in the treatment of a broad spectrum of cardiac arrhythmias. This article reviews the role of the I(NaL) and provides an update on experimental and clinical evidence supporting the efficacy and safety of ranolazine across a broad spectrum of arrhythmias.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain.
| | | | | |
Collapse
|