1
|
Khudayberdiev S, Weiss K, Heinze A, Colombaretti D, Trausch N, Linne U, Rust MB. The actin-binding protein CAP1 represses MRTF-SRF-dependent gene expression in mouse cerebral cortex. Sci Signal 2024; 17:eadj0032. [PMID: 38713765 DOI: 10.1126/scisignal.adj0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Serum response factor (SRF) is an essential transcription factor for brain development and function. Here, we explored how an SRF cofactor, the actin monomer-sensing myocardin-related transcription factor MRTF, is regulated in mouse cortical neurons. We found that MRTF-dependent SRF activity in vitro and in vivo was repressed by cyclase-associated protein CAP1. Inactivation of the actin-binding protein CAP1 reduced the amount of actin monomers in the cytoplasm, which promoted nuclear MRTF translocation and MRTF-SRF activation. This function was independent of cofilin1 and actin-depolymerizing factor, and CAP1 loss of function in cortical neurons was not compensated by endogenous CAP2. Transcriptomic and proteomic analyses of cerebral cortex lysates from wild-type and Cap1 knockout mice supported the role of CAP1 in repressing MRTF-SRF-dependent signaling in vivo. Bioinformatic analysis identified likely MRTF-SRF target genes, which aligned with the transcriptomic and proteomic results. Together with our previous studies that implicated CAP1 in axonal growth cone function as well as the morphology and plasticity of excitatory synapses, our findings establish CAP1 as a crucial actin regulator in the brain relevant for formation of neuronal networks.
Collapse
Affiliation(s)
- Sharof Khudayberdiev
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| | - Kerstin Weiss
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Anika Heinze
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Dalila Colombaretti
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Nathan Trausch
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Uwe Linne
- Department of Chemistry, Philipps-University Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, Hans-Meerwein-Strasse 6, 35032 Marburg, Germany
| |
Collapse
|
2
|
Greve JN, Marquardt A, Heiringhoff R, Reindl T, Thiel C, Di Donato N, Taft MH, Manstein DJ. The non-muscle actinopathy-associated mutation E334Q in cytoskeletal γ-actin perturbs interaction of actin filaments with myosin and ADF/cofilin family proteins. eLife 2024; 12:RP93013. [PMID: 38446501 PMCID: PMC10942649 DOI: 10.7554/elife.93013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin β4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.
Collapse
Affiliation(s)
- Johannes N Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Theresia Reindl
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
- Division for Structural Biochemistry, Hannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
3
|
Feng L, Li H, Du Y, Zhang T, Zhu Y, Li Z, Zhao L, Wang X, Wang G, Zhou L, Jiang Z, Liu Z, Ou Z, Wen Y, Zhuo Y. Chaperonin-Containing TCP1 Subunit 5 Protects Against the Effect of Mer Receptor Tyrosine Kinase Knockdown in Retinal Pigment Epithelial Cells by Interacting With Filamentous Actin and Activating the LIM-Kinase 1/Cofilin Pathway. Front Med (Lausanne) 2022; 9:861371. [PMID: 35492354 PMCID: PMC9043132 DOI: 10.3389/fmed.2022.861371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Retinitis pigmentosa (RP), characterized by the gradual loss of rod and cone photoreceptors that eventually leads to blindness, is the most common inherited retinal disorder, affecting more than 2.5 million people worldwide. However, the underlying pathogenesis of RP remains unclear and there is no effective cure for RP. Mutations in the Mer receptor tyrosine kinase (MERTK) gene induce the phagocytic dysfunction of retinal pigment epithelium (RPE) cells, leading to RP. Studies have indicated that filamentous actin (F-actin)—which is regulated by chaperonin-containing TCP1 subunit 5 (CCT5)—plays a vital role in phagocytosis in RPE cells. However, whether CCT5/F-actin signaling is involved in MERTK-associated RP remains largely unknown. In the present study, we specifically knocked down MERTK and CCT5 through siRNA transfection and examined the expression of CCT5 and F-actin in human primary RPE (HsRPE) cells. We found that MERTK downregulation inhibited cell proliferation, migration, and phagocytic function; significantly decreased the expression of F-actin; and disrupted the regular arrangement of F-actin. Importantly, our findings firstly indicate that CCT5 interacts with F-actin and is inhibited by MERTK siRNA in HsRPE cells. Upregulating CCT5 using CCT5-specific lentiviral vectors (CCT5-Le) rescued the cell proliferation, migration, and phagocytic function of HsRPE cells under the MERTK knockdown condition by increasing the expression of F-actin and restoring its regular arrangement via the LIMK1/cofilin, but not the SSH1/cofilin, pathway. In conclusion, CCT5 protects against the effect of MERTK knockdown in HsRPE cells and demonstrates the potential for effective treatment of MERTK-associated RP.
Collapse
Affiliation(s)
- Lujia Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Haichun Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yong Du
- Guizhou Provincial People's Hospital, Guizhou University, Guiyang, China
| | - Ting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yingting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Zhidong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Ling Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Xing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Gongpei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Linbin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Zhaorong Jiang
- Ophthalmology Department of Zhuhai Integrated Traditional Chinese and Western Medicine Hospital, Zhuhai, China
| | - Zheng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Zhancong Ou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yuwen Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Vallin J, Córdoba-Beldad CM, Grantham J. Sequestration of the Transcription Factor STAT3 by the Molecular Chaperone CCT: A Potential Mechanism for Modulation of STAT3 Phosphorylation. J Mol Biol 2021; 433:166958. [PMID: 33774038 DOI: 10.1016/j.jmb.2021.166958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/02/2021] [Accepted: 03/18/2021] [Indexed: 10/21/2022]
Abstract
Chaperonin Containing Tailless complex polypeptide 1 (CCT) is an essential molecular chaperone required for the folding of the abundant proteins actin and tubulin. The CCT oligomer also folds a range of other proteins and participates in non-folding activities such as providing assembly support for complexes of the von Hippel Lindau tumor suppressor protein and elongins. Here we show that the oncogenic transcription factor STAT3 binds to the CCT oligomer, but does not display the early binding upon translation in rabbit reticulocyte lysate typical of an obligate CCT folding substrate. Consistent with this, depletion of each of the CCT subunits by siRNA targeting indicates that loss of CCT oligomer does not suppress the activation steps of STAT3 upon stimulation with IL-6: phosphorylation, dimerisation and nuclear translocation. Furthermore, the transcriptional activity of STAT3 is not negatively affected by reduction in CCT levels. Instead, loss of CCT oligomer in MCF7 cells leads to an enhancement of STAT3 phosphorylation at Tyr705, implicating a role for the CCT oligomer in the sequestration of non-phosphorylated STAT3. Thus, as CCT is dynamic oligomer, the assembly state and also abundance of CCT oligomer may provide a means to modulate STAT3 phosphorylation.
Collapse
Affiliation(s)
- Josefine Vallin
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Carmen M Córdoba-Beldad
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Julie Grantham
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
5
|
The structure and evolution of eukaryotic chaperonin-containing TCP-1 and its mechanism that folds actin into a protein spring. Biochem J 2018; 475:3009-3034. [DOI: 10.1042/bcj20170378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022]
Abstract
Actin is folded to its native state in eukaryotic cytosol by the sequential allosteric mechanism of the chaperonin-containing TCP-1 (CCT). The CCT machine is a double-ring ATPase built from eight related subunits, CCT1–CCT8. Non-native actin interacts with specific subunits and is annealed slowly through sequential binding and hydrolysis of ATP around and across the ring system. CCT releases a folded but soft ATP-G-actin monomer which is trapped 80 kJ/mol uphill on the folding energy surface by its ATP-Mg2+/Ca2+ clasp. The energy landscape can be re-explored in the actin filament, F-actin, because ATP hydrolysis produces dehydrated and more compact ADP-actin monomers which, upon application of force and strain, are opened and closed like the elements of a spring. Actin-based myosin motor systems underpin a multitude of force generation processes in cells and muscles. We propose that the water surface of F-actin acts as a low-binding energy, directional waveguide which is recognized specifically by the myosin lever-arm domain before the system engages to form the tight-binding actomyosin complex. Such a water-mediated recognition process between actin and myosin would enable symmetry breaking through fast, low energy initial binding events. The origin of chaperonins and the subsequent emergence of the CCT–actin system in LECA (last eukaryotic common ancestor) point to the critical role of CCT in facilitating phagocytosis during early eukaryotic evolution and the transition from the bacterial world. The coupling of CCT-folding fluxes to the cell cycle, cell size control networks and cancer are discussed together with directions for further research.
Collapse
|
6
|
CCT chaperonin complex is required for efficient delivery of anthrax toxin into the cytosol of host cells. Proc Natl Acad Sci U S A 2013; 110:9932-7. [PMID: 23716698 DOI: 10.1073/pnas.1302257110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacterial toxins have evolved successful strategies for coopting host proteins to access the cytosol of host cells. Anthrax lethal factor (LF) enters the cytosol through pores in the endosomal membrane formed by anthrax protective antigen. Although in vitro models using planar lipid bilayers have shown that translocation can occur in the absence of cellular factors, recent studies using intact endosomes indicate that host factors are required for translocation in the cellular environment. In this study, we describe a high-throughput shRNA screen to identify host factors required for anthrax lethal toxin-induced cell death. The cytosolic chaperonin complex chaperonin containing t-complex protein 1 (CCT) was identified, and subsequent studies showed that CCT is required for efficient delivery of LF and related fusion proteins into the cytosol. We further show that knockdown of CCT inhibits the acid-induced delivery of LF and the fusion protein LFN-Bla (N terminal domain of LF fused to β-lactamase) across the plasma membrane of intact cells. Together, these results suggest that CCT is required for efficient delivery of enzymatically active toxin to the cytosol and are consistent with a direct role for CCT in translocation of LF through the protective antigen pore.
Collapse
|
7
|
Kabir MA, Uddin W, Narayanan A, Reddy PK, Jairajpuri MA, Sherman F, Ahmad Z. Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding. JOURNAL OF AMINO ACIDS 2011; 2011:843206. [PMID: 22312474 PMCID: PMC3268035 DOI: 10.4061/2011/843206] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022]
Abstract
Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner. The catalytic cooperativity of ATP binding/hydrolysis in CCT occurs in a sequential manner different from concerted cooperativity as shown for GroEL. Unlike GroEL, CCT does not have GroES-like cofactor, rather it has a built-in lid structure responsible for closing the central cavity. The CCT complex recognizes its substrates through diverse mechanisms involving hydrophobic or electrostatic interactions. Upstream factors like Hsp70 and Hsp90 also work in a concerted manner to transfer the substrate to CCT. Moreover, prefoldin, phosducin-like proteins, and Bag3 protein interact with CCT and modulate its function for the fine-tuning of protein folding process. Any misregulation of protein folding process leads to the formation of misfolded proteins or toxic aggregates which are linked to multiple pathological disorders.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Kerala 673601, India
| | | | | | | | | | | | | |
Collapse
|
8
|
The crystal structure of yeast CCT reveals intrinsic asymmetry of eukaryotic cytosolic chaperonins. EMBO J 2011; 30:3078-90. [PMID: 21701561 DOI: 10.1038/emboj.2011.208] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 05/11/2011] [Indexed: 01/17/2023] Open
Abstract
The cytosolic chaperonin CCT is a 1-MDa protein-folding machine essential for eukaryotic life. The CCT interactome shows involvement in folding and assembly of a small range of proteins linked to essential cellular processes such as cytoskeleton assembly and cell-cycle regulation. CCT has a classic chaperonin architecture, with two heterogeneous 8-membered rings stacked back-to-back, enclosing a folding cavity. However, the mechanism by which CCT assists folding is distinct from other chaperonins, with no hydrophobic wall lining a potential Anfinsen cage, and a sequential rather than concerted ATP hydrolysis mechanism. We have solved the crystal structure of yeast CCT in complex with actin at 3.8 Å resolution, revealing the subunit organisation and the location of discrete patches of co-evolving 'signature residues' that mediate specific interactions between CCT and its substrates. The intrinsic asymmetry is revealed by the structural individuality of the CCT subunits, which display unique configurations, substrate binding properties, ATP-binding heterogeneity and subunit-subunit interactions. The location of the evolutionarily conserved N-terminus of Cct5 on the outside of the barrel, confirmed by mutational studies, is unique to eukaryotic cytosolic chaperonins.
Collapse
|
9
|
Brackley KI, Grantham J. Interactions between the actin filament capping and severing protein gelsolin and the molecular chaperone CCT: evidence for nonclassical substrate interactions. Cell Stress Chaperones 2011; 16:173-9. [PMID: 20890741 PMCID: PMC3059788 DOI: 10.1007/s12192-010-0230-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/30/2022] Open
Abstract
CCT is a member of the chaperonin family of molecular chaperones and consists of eight distinct subunit species which occupy fixed positions within the chaperonin rings. The activity of CCT is closely linked to the integrity of the cytoskeleton as newly synthesized actin and tubulin monomers are dependent upon CCT to reach their native conformations. Furthermore, an additional role for CCT involving interactions with assembling/assembled microfilaments and microtubules is emerging. CCT is also known to interact with other proteins, only some of which will be genuine folding substrates. Here, we identify the actin filament remodeling protein gelsolin as a CCT-binding partner, and although it does not behave as a classical folding substrate, gelsolin binds to CCT with a degree of specificity. In cultured cells, the levels of CCT monomers affect levels of gelsolin, suggesting an additional link between CCT and the actin cytoskeleton that is mediated via the actin filament severing and capping protein gelsolin.
Collapse
Affiliation(s)
- Karen I. Brackley
- Department of Cell and Molecular Biology, Göteborgs Universitet, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Julie Grantham
- Department of Cell and Molecular Biology, Göteborgs Universitet, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| |
Collapse
|
10
|
Lundin VF, Leroux MR, Stirling PC. Quality control of cytoskeletal proteins and human disease. Trends Biochem Sci 2010; 35:288-97. [PMID: 20116259 DOI: 10.1016/j.tibs.2009.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 11/25/2022]
Abstract
Actins and tubulins are abundant cytoskeletal proteins that support diverse cellular processes. Owing to the unique properties of these filament-forming proteins, an intricate cellular machinery consisting minimally of the chaperonin CCT, prefoldin, phosducin-like proteins, and tubulin cofactors has evolved to facilitate their biogenesis. More recent evidence also suggests that regulated degradation pathways exist for actin (via TRIM32) and tubulin (via parkin or cofactor E-like). Collectively, these pathways maintain the quality control of cytoskeletal proteins ('proteostasis'), ensuring the appropriate function of microfilaments and microtubules. Here, we focus on the molecular mechanisms of the quality control of actin and tubulin, and discuss emerging links between cytoskeletal proteostasis and human diseases.
Collapse
Affiliation(s)
- Victor F Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
11
|
McCormack EA, Altschuler GM, Dekker C, Filmore H, Willison KR. Yeast phosducin-like protein 2 acts as a stimulatory co-factor for the folding of actin by the chaperonin CCT via a ternary complex. J Mol Biol 2009; 391:192-206. [PMID: 19501098 DOI: 10.1016/j.jmb.2009.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/28/2009] [Accepted: 06/01/2009] [Indexed: 11/18/2022]
Abstract
The eukaryotic chaperonin-containing TCP-1 (CCT) folds the cytoskeletal protein actin. The folding mechanism of this 16-subunit, 1-MDa machine is poorly characterised due to the absence of quantitative in vitro assays. We identified phosducin-like protein 2, Plp2p (=PLP2), as an ATP-elutable binding partner of yeast CCT while establishing the CCT interactome. In a novel in vitro CCT-ACT1 folding assay that is functional under physiological conditions, PLP2 is a stimulatory co-factor. In a single ATP-driven cycle, PLP2-CCT-ACT1 complexes yield 30-fold more native actin than CCT-ACT1 complexes. PLP2 interacts directly with ACT1 through the C-terminus of its thioredoxin fold and the CCT-binding subdomain 4 of actin. The in vitro CCT-ACT1-PLP2 folding cycle of the preassembled complex takes 90 s at 30 degrees C, several times slower than the canonical chaperonin GroEL. The specific interactions between PLP2, CCT and ACT1 in the yeast-component in vitro system and the pronounced stimulatory effect of PLP2 on actin folding are consistent with in vivo genetic approaches demonstrating an essential and positive role for PLP2 in cellular processes involving actin in Saccharomyces cerevisiae. In mammalian systems, however, several members of the PLP family, including human PDCL3, the orthologue of PLP2, have been shown to be inhibitory toward CCT-mediated folding of actin in vivo and in vitro. Here, using a rabbit-reticulocyte-derived in vitro translation system, we found that inhibition of beta-actin folding by PDCL3 can be relieved by exchanging its acidic C-terminal extension for that of PLP2. It seems that additional levels of regulatory control of CCT activity by this PLP have emerged in higher eukaryotes.
Collapse
Affiliation(s)
- Elizabeth A McCormack
- Protein Folding and Assembly Team, Section of Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London, UK
| | | | | | | | | |
Collapse
|
12
|
Vandamme D, Rommelaere H, Lambert E, Waterschoot D, Vandekerckhove J, Constantin B, Ampe C. α-Skeletal muscle actin mutants causing different congenital myopathies induce similar cytoskeletal defects in cell line cultures. ACTA ACUST UNITED AC 2009; 66:179-92. [DOI: 10.1002/cm.20340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Vandamme D, Lambert E, Waterschoot D, Tondeleir D, Vandekerckhove J, Machesky LM, Constantin B, Rommelaere H, Ampe C. Phenotypes induced by NM causing alpha-skeletal muscle actin mutants in fibroblasts, Sol 8 myoblasts and myotubes. BMC Res Notes 2009; 2:40. [PMID: 19284548 PMCID: PMC2657152 DOI: 10.1186/1756-0500-2-40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/10/2009] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Nemaline myopathy is a neuromuscular disorder characterized by the presence of nemaline bodies in patient muscles. 20% of the cases are associated with alpha-skeletal muscle actin mutations. We previously showed that actin mutations can cause four different biochemical phenotypes and that expression of NM associated actin mutants in fibroblasts, myoblasts and myotubes induces a range of cellular defects. FINDINGS We conducted the same biochemical experiments for twelve new actin mutants associated with nemaline myopathy. We observed folding and polymerization defects. Immunostainings of these and eight other mutants in transfected cells revealed typical cellular defects such as nemaline rods or aggregates, decreased incorporation in F-actin structures, membrane blebbing, the formation of thickened actin fibres and cell membrane blebbing in myotubes. CONCLUSION Our results confirm that NM associated alpha-actin mutations induce a range of defects at the biochemical level as well as in cultured fibroblasts and muscle cells.
Collapse
Affiliation(s)
- Drieke Vandamme
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| | - Ellen Lambert
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
- Department of Plant Production, Faculty of Bioscience Engineering, UGent, Coupure associations 653, Gent, Belgium
| | - Davy Waterschoot
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| | - Davina Tondeleir
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| | - Joël Vandekerckhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research, Garscube Estate, Switchback Rd., Bearsden, Glasgow, G63 9AE, UK
| | - Bruno Constantin
- Institut de Physiologie et Biologie Cellulaire, UMR CNRS/Université de Poitiers 6187, Pôle Biologie Santé, 86022 Poitiers cedex, France
| | - Heidi Rommelaere
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
- Current address : Ablynx N.V., Technologiepark 4, 9052 Zwijnaarde, Belgium
| | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, Gent, Belgium
- Department of Medical Protein Research, VIB, A. Baertsoenkaai 3, Gent, Belgium
| |
Collapse
|
14
|
A single amino acid residue is responsible for species-specific incompatibility between CCT and α-actin. FEBS Lett 2009; 583:782-6. [DOI: 10.1016/j.febslet.2009.01.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 01/19/2009] [Indexed: 11/24/2022]
|
15
|
Altschuler GM, Willison KR. Development of free-energy-based models for chaperonin containing TCP-1 mediated folding of actin. J R Soc Interface 2009; 5:1391-408. [PMID: 18708324 DOI: 10.1098/rsif.2008.0185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A free-energy-based approach is used to describe the mechanism through which chaperonin-containing TCP-1 (CCT) folds the filament-forming cytoskeletal protein actin, which is one of its primary substrates. The experimental observations on the actin folding and unfolding pathways are collated and then re-examined from this perspective, allowing us to determine the position of the CCT intervention on the actin free-energy folding landscape. The essential role for CCT in actin folding is to provide a free-energy contribution from its ATP cycle, which drives actin to fold from a stable, trapped intermediate I3, to a less stable but now productive folding intermediate I2. We develop two hypothetical mechanisms for actin folding founded upon concepts established for the bacterial type I chaperonin GroEL and extend them to the much more complex CCT system of eukaryotes. A new model is presented in which CCT facilitates free-energy transfer through direct coupling of the nucleotide hydrolysis cycle to the phases of actin substrate maturation.
Collapse
Affiliation(s)
- Gabriel M Altschuler
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
16
|
Spiess C, Miller EJ, McClellan AJ, Frydman J. Identification of the TRiC/CCT substrate binding sites uncovers the function of subunit diversity in eukaryotic chaperonins. Mol Cell 2006; 24:25-37. [PMID: 17018290 PMCID: PMC3339573 DOI: 10.1016/j.molcel.2006.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 08/11/2006] [Accepted: 09/12/2006] [Indexed: 10/24/2022]
Abstract
The ring-shaped hetero-oligomeric chaperonin TRiC/CCT uses ATP to fold a diverse subset of eukaryotic proteins. To define the basis of TRiC/CCT substrate recognition, we mapped the chaperonin interactions with the VHL tumor suppressor. VHL has two well-defined TRiC binding determinants. Each determinant contacts a specific subset of chaperonin subunits, indicating that TRiC paralogs exhibit distinct but overlapping specificities. The substrate binding site in these subunits localizes to a helical region in the apical domains that is structurally equivalent to that of bacterial chaperonins. Transferring the distal portion of helix 11 between TRiC subunits suffices to transfer specificity for a given substrate motif. We conclude that the architecture of the substrate binding domain is evolutionarily conserved among eukaryotic and bacterial chaperonins. The unique combination of specificity and plasticity in TRiC substrate binding may diversify the range of motifs recognized by this chaperonin and contribute to its unique ability to fold eukaryotic proteins.
Collapse
Affiliation(s)
- Christoph Spiess
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Erik J. Miller
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Amie J. McClellan
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| | - Judith Frydman
- Department of Biological Sciences and BioX Program, Stanford University, Stanford, California 94305
| |
Collapse
|
17
|
Grantham J, Brackley KI, Willison KR. Substantial CCT activity is required for cell cycle progression and cytoskeletal organization in mammalian cells. Exp Cell Res 2006; 312:2309-24. [PMID: 16765944 DOI: 10.1016/j.yexcr.2006.03.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 03/15/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
The chaperonin CCT hexadecamer is required for the folding of non-native actins and tubulins in eukaryotic cells. Among the consequences of greatly reducing CCT holocomplex levels in human cell lines by siRNA targeting are growth arrest and changes in cell morphology and motility. Less extensive reduction of CCT activity via microinjection of an inhibitory anti-CCT epsilon subunit monoclonal antibody, which alters the rates of substrate processing by CCT in vitro, causes a delay in cell cycle progression through G1/S phase in synchronized Swiss 3T3 cells. The degree of growth arrest strongly correlates with the extent of CCT depletion, indicating that full CCT activity is required for normal cell growth and division. Depletion of CCT does not affect actin polypeptide synthesis but causes a reduction in levels of native actin and perturbation of actin-based cell motility in BE cells. There are no large-scale effects on cytoplasmic protein synthesis or a general heat shock response during periods of low CCT activity.
Collapse
Affiliation(s)
- Julie Grantham
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | | | | |
Collapse
|
18
|
Pappenberger G, McCormack EA, Willison KR. Quantitative actin folding reactions using yeast CCT purified via an internal tag in the CCT3/gamma subunit. J Mol Biol 2006; 360:484-96. [PMID: 16762366 DOI: 10.1016/j.jmb.2006.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 04/28/2006] [Accepted: 05/01/2006] [Indexed: 11/16/2022]
Abstract
The eukaryotic cytosolic chaperonin CCT is an essential ATP-dependent protein folding machine whose action is required for folding the cytoskeletal proteins actin and tubulin, and a small number of other substrates, including members of the WD40-propellor repeat-containing protein family. An efficient purification protocol for CCT from Saccharomyces cerevisiae has been developed. It uses the calmodulin binding peptide as an affinity tag in an internal loop in the apical domain of the CCT3 subunit, which is predicted to be located on the outside of the double-ring assembly. This purified yeast CCT was used for a novel quantitative actin-folding assay with human beta-actin or yeast ACT1p protein folding intermediates, Ac(I), pre-synthesised in an Escherichia coli translation system. The formation of native actin follows approximately a first-order reaction with a rate constant of about 0.03 min(-1). Yeast CCT catalyses the folding of yeast ACT1p and human beta-actin with nearly identical rate constants and yields. The results from this controlled CCT-actin folding assay are consistent with a model where CCT and Ac(I) are in a binding pre-equilibrium with a rate-limiting binding step, followed by a faster ATP-driven processing to native actin. In this pure in vitro system, the human beta-actin mutants, D244S and G150P, show impaired folding behaviour in the manner predicted by our sequence-specific recognition model for CCT-actin interaction.
Collapse
Affiliation(s)
- Günter Pappenberger
- Cancer Research U.K., Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
19
|
Neirynck K, Waterschoot D, Vandekerckhove J, Ampe C, Rommelaere H. Actin Interacts with CCT via Discrete Binding Sites: A Binding transition-release Model for CCT-Mediated Actin Folding. J Mol Biol 2006; 355:124-38. [PMID: 16300788 DOI: 10.1016/j.jmb.2005.10.051] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/29/2005] [Accepted: 10/18/2005] [Indexed: 11/28/2022]
Abstract
The chaperones prefoldin and the cytosolic chaperonin CCT-containing TCP-1 (CCT) guide the cytoskeletal protein actin to its native conformation. Performing an alanine scan of actin, we identified discrete recognition determinants for CCT interaction. Interestingly, one of these is similar and functional in the non-homologous protein Cdc20, suggesting that some of the binding information in the CCT target proteins is shared. The information in actin for recognition by CCT and for folding is different, as all but one of the mutants in the recognition determinants are folding-competent. In addition, some other actin mutants remain CCT-arrested and are not released in a native conformation, whereas others do fold but remain bound to CAP. Kinetic experiments provide evidence that CCT-mediated folding of non-native actin occurs in at least two steps, in which initially the recognition determinant 245-249 contacts CCT and the other determinants interact at later stages. Actin mutants that are CCT-arrested demonstrate that some regions neighbouring the recognition determinants are involved in modulating the correct folding transitions of actin on CCT, or its release from this chaperonin. Further, we found that the ATP binding of actin is not a prerequisite for its release, and we suggest that CAP may be involved in charging the nucleotide. Based on the kinetics of CCT binding and folding of actin and actin mutants, we propose a multi-step recognition-transition-release model. This also implies that the currently accepted notion of CCT-mediated actin folding is probably more complex.
Collapse
Affiliation(s)
- Katrien Neirynck
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. A. Baertsoenkaai 3, 9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
20
|
Altschuler GM, Klug DR, Willison KR. Unfolding energetics of G-alpha-actin: a discrete intermediate can be re-folded to the native state by CCT. J Mol Biol 2005; 353:385-96. [PMID: 16171816 DOI: 10.1016/j.jmb.2005.07.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 07/22/2005] [Accepted: 07/25/2005] [Indexed: 11/16/2022]
Abstract
Nascent actin requires interactions with the highly conserved and essential eukaryotic chaperonin-containing TCP-1 (CCT) for its correct folding to the native state in vivo. Biochemical and structural analysis of the interaction between actin and CCT has been studied extensively but the underlying energetics and kinetics of the CCT-dependent actin folding process are not understood. We investigated the unfolding and folding pathways of actin, using stopped flow fluorescence and biochemical techniques. By using very low concentrations of actin, taking account of temperature and ATP concentration dependences we were able to determine accurately the activation energy of unfolding to a stable intermediate, I(3). Use of the fluorescent calcium chelator Quin-2 and consideration of the ATP concentration dependence on the unfolding rate has allowed the intrinsic kinetics to be linked to the accepted reaction scheme for actin denaturation. A free energy of -28.7(+/-0.2) kJ mol(-1) was determined for the loss of ATP from Ca-free G-actin, in good agreement with previous studies. Understanding the K(eq) value for this step then allowed the temperature dependence of the unfolding reaction of co-factor-free actin to be evaluated, yielding an activation energy for the unfolding of G-actin of 81.3(+/-3.3) kJ mol(-1). By chemical coupling of the extrinsic probe, Alexa Fluor 488 to cysteine 374 of native alpha-actin, we were able to follow the binding and folding of I(3) by CCT, observing for the first time, in vitro re-folding of EDTA-denatured G-actin. The high value of the activation energy between native actin and a non-native folding intermediate (I(3)) is characteristic of a partially folded, molten globule state expected to contain partial secondary structure.
Collapse
Affiliation(s)
- Gabriel M Altschuler
- Cancer Research UK, Centre for Cell and Molecular Biology, Chester Beatty Laboratories, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
21
|
Costa CF, Rommelaere H, Waterschoot D, Sethi KK, Nowak KJ, Laing NG, Ampe C, Machesky LM. Myopathy mutations in alpha-skeletal-muscle actin cause a range of molecular defects. J Cell Sci 2005; 117:3367-77. [PMID: 15226407 DOI: 10.1242/jcs.01172] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the gene encoding alpha-skeletal-muscle actin, ACTA1, cause congenital myopathies of various phenotypes that have been studied since their discovery in 1999. Although much is now known about the clinical aspects of myopathies resulting from over 60 different ACTA1 mutations, we have very little evidence for how mutations alter the behavior of the actin protein and thus lead to disease. We used a combination of biochemical and cell biological analysis to classify 19 myopathy mutants and found a range of defects in the actin. Using in vitro expression systems, we probed actin folding and actin's capacity to interact with actin-binding proteins and polymerization. Only two mutants failed to fold; these represent recessive alleles, causing severe myopathy, indicating that patients produce nonfunctional actin. Four other mutants bound tightly to cyclase-associated protein, indicating a possible instability in the nucleotide-binding pocket, and formed rods and aggregates in cells. Eleven mutants showed defects in the ability to co-polymerize with wild-type actin. Some of these could incorporate into normal actin structures in NIH 3T3 fibroblasts, but two of the three tested also formed aggregates. Four mutants showed no defect in vitro but two of these formed aggregates in cells, indicating functional defects that we have not yet tested for. Overall, we found a range of defects and behaviors of the mutants in vitro and in cultured cells, paralleling the complexity of actin-based muscle myopathy phenotypes.
Collapse
Affiliation(s)
- Céline F Costa
- School of Biosciences, Division of Molecular Cell Biology, University of Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rommelaere H, Waterschoot D, Neirynck K, Vandekerckhove J, Ampe C. A method for rapidly screening functionality of actin mutants and tagged actins. Biol Proced Online 2004; 6:235-249. [PMID: 15514698 PMCID: PMC524212 DOI: 10.1251/bpo94] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 09/23/2004] [Accepted: 10/01/2004] [Indexed: 11/26/2022] Open
Abstract
Recombinant production and biochemical analysis of actin mutants has been hampered by the fact that actin has an absolute requirement for the eukaryotic chaperone CCT to reach its native state. We therefore have developed a method to rapidly screen the folding capacity and functionality of actin variants, by combining in vitro expression of labelled actin with analysis on native gels, band shift assays or copolymerization tests. Additionally, we monitor, using immuno-fluorescence, incorporation of actin variants in cytoskeletal structures in transfected cells. We illustrate the method by two examples. In one we show that tagged versions of actin do not always behave native-like and in the other we study some of the molecular defects of three beta-actin mutants that have been associated with diseases.
Collapse
Affiliation(s)
- Heidi Rommelaere
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| | - Davy Waterschoot
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| | - Katrien Neirynck
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| | - Joël Vandekerckhove
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| | - Christophe Ampe
- Flanders Interuniversity Institute for Biotechnology (VIB 09) and Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University. B-9000 Gent. Belgium
| |
Collapse
|
23
|
Feldman DE, Spiess C, Howard DE, Frydman J. Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Mol Cell 2004; 12:1213-24. [PMID: 14636579 DOI: 10.1016/s1097-2765(03)00423-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The eukaryotic chaperonin TRiC/CCT mediates folding of an essential subset of newly synthesized proteins, including the tumor suppressor VHL. Here we show that chaperonin binding is specified by two short hydrophobic beta strands in VHL that, upon folding, become buried within the native structure. These TRiC binding determinants are disrupted by tumor-causing point mutations that interfere with chaperonin association and lead to misfolding. Strikingly, while unable to fold correctly in vivo, some of these VHL mutants can reach the native state when refolded in a chaperonin-independent manner. The specificity of TRiC/CCT for extended hydrophobic beta strands may help explain its role in folding aggregation-prone polypeptides. Our findings reveal a class of disease-causing mutations that inactivate protein function by disrupting chaperone-mediated folding in vivo.
Collapse
Affiliation(s)
- Douglas E Feldman
- Department of Biological Sciences and BioX Program, Stanford University, E200A James Clark Center, 318 Campus Drive, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
24
|
Rommelaere H, Waterschoot D, Neirynck K, Vandekerckhove J, Ampe C. Structural Plasticity of Functional Actin. Structure 2003; 11:1279-89. [PMID: 14527395 DOI: 10.1016/j.str.2003.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Actin is one of the most conserved and versatile proteins capable of forming homopolymers and interacting with numerous other proteins in the cell. We performed an alanine mutagenesis scan covering the entire beta-actin molecule. Somewhat surprisingly, the majority of the mutants were capable of reaching a stable conformation. We tested the ability of these mutants to bind to various actin binding proteins, thereby mapping different interfaces with actin. Additionally, we tested their ability to copolymerize with alpha-actin in order to localize regions in actin that contact neighboring protomers in the filament. Hereby, we could discriminate between two existing models for filamentous actin and our data strongly support the right-handed double-stranded helix model. We present data corroborating this model in vivo. Mutants defective in copolymerization do not colocalize with the actin cytoskeleton and some impair its normal function, thereby disturbing cell shape.
Collapse
Affiliation(s)
- Heidi Rommelaere
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000, Gent, Belgium.
| | | | | | | | | |
Collapse
|
25
|
Pedersen CB, Bross P, Winter VS, Corydon TJ, Bolund L, Bartlett K, Vockley J, Gregersen N. Misfolding, degradation, and aggregation of variant proteins. The molecular pathogenesis of short chain acyl-CoA dehydrogenase (SCAD) deficiency. J Biol Chem 2003; 278:47449-58. [PMID: 14506246 DOI: 10.1074/jbc.m309514200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Short chain acyl-CoA dehydrogenase (SCAD) deficiency is an inborn error of the mitochondrial fatty acid metabolism caused by rare variations as well as common susceptibility variations in the SCAD gene. Earlier studies have shown that a common variant SCAD protein (R147W) was impaired in folding, and preliminary experiments suggested that the variant protein displayed prolonged association with chaperonins and delayed formation of active enzyme. Accordingly, the molecular pathogenesis of SCAD deficiency may rely on intramitochondrial protein quality control mechanisms, including degradation and aggregation of variant SCAD proteins. In this study we investigated the processing of a set of disease-causing variant SCAD proteins (R22W, G68C, W153R, R359C, and Q341H) and two common variant proteins (R147W and G185S) that lead to reduced SCAD activity. All SCAD proteins, including the wild type, associate with mitochondrial hsp60 chaperonins; however, the variant SCAD proteins remained associated with hsp60 for prolonged periods of time. Biogenesis experiments at two temperatures revealed that some of the variant proteins (R22W, G68C, W153R, and R359C) caused severe misfolding, whereas others (R147W, G185S, and Q341H) exhibited a less severe temperature-sensitive folding defect. Based on the magnitude of in vitro defects, these SCAD proteins are characterized as folding-defective variants and mild folding variants, respectively. Pulse-chase experiments demonstrated that the variant SCAD proteins either triggered proteolytic degradation by mitochondrial proteases or, especially at elevated temperature, aggregation of non-native conformers. The latter finding may indicate that accumulation of aggregated SCAD proteins may play a role in the pathogenesis of SCAD deficiency.
Collapse
Affiliation(s)
- Christina Bak Pedersen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Skejby Sygehus, DK-8200 Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Many proteins function as helical polymers within the cell. Two intensively studied examples are eukaryotic actin and bacterial RecA, which belong to two different protein superfamilies. However, most other members of these superfamilies do not polymerize into helical filaments. General features of polymorphism, cooperativity and allostery that emerge from studies of eukaryotic actin and bacterial RecA raise more general issues about how conserved these filamentous structures have been during evolution.
Collapse
Affiliation(s)
- Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908-0733, USA.
| |
Collapse
|
27
|
Posern G, Sotiropoulos A, Treisman R. Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Mol Biol Cell 2002; 13:4167-78. [PMID: 12475943 PMCID: PMC138624 DOI: 10.1091/mbc.02-05-0068] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Signal-induced activation of the transcription factor serum response factor (SRF) requires alterations in actin dynamics. SRF activity can be inhibited by ectopic expression of beta-actin, either because actin itself participates in SRF regulation or as a consequence of cytoskeletal perturbations. To distinguish between these possibilities, we studied actin mutants. Three mutant actins, G13R, R62D, and a C-terminal VP16 fusion protein, were shown not to polymerize in vivo, as judged by two-hybrid, immunofluorescence, and cell fractionation studies. These actins effectively inhibited SRF activation, as did wild-type actin, which increased the G-actin level without altering the F:G-actin ratio. Physical interaction between SRF and actin was not detectable by mammalian or yeast two-hybrid assays, suggesting that SRF regulation involves an unidentified cofactor. SRF activity was not blocked upon inhibition of CRM1-mediated nuclear export by leptomycin B. Two actin mutants were identified, V159N and S14C, whose expression favored F-actin formation and which strongly activated SRF in the absence of external signals. These mutants seemed unable to inhibit SRF activity, because their expression did not reduce the absolute level of G-actin as assessed by DNase I binding. Taken together, these results provide strong evidence that G-actin, or a subpopulation of it, plays a direct role in signal transduction to SRF.
Collapse
Affiliation(s)
- Guido Posern
- Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, Transcription Laboratory, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
28
|
McCormack EA, Llorca O, Carrascosa JL, Valpuesta JM, Willison KR. Point mutations in a hinge linking the small and large domains of beta-actin result in trapped folding intermediates bound to cytosolic chaperonin CCT. J Struct Biol 2001; 135:198-204. [PMID: 11580269 DOI: 10.1006/jsbi.2001.4385] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 30-A cryo-EM-derived structure of apo-CCT-alpha-actin shows actin opened up across its nucleotide-binding cleft and binding to either of two CCT subunit pairs, CCTbeta-CCTdelta or CCTepsilon-CCTdelta, in a similar 1:4 arrangement. The two main duplicated domains of native actin are linked twice, topologically, by the connecting residues, Q137-S145 and P333-S338, and are tightly held together by hydrogen bonding with bound adenine nucleotide. We carried out a mutational screen to find residues in actin that might be involved in the huge rotations observed in the CCT-bound folding intermediate. When two evolutionarily highly conserved glycine residues of beta-actin, G146 and G150, were changed to proline, both mutant actin proteins were poorly processed by CCT in in vitro translation assays; they become arrested on CCT. A three-dimensional reconstruction of the substrate-bound ring of the apo-CCT-beta-actin complex shows that beta-actin G150P is not able to bind across the chaperonin cavity to interact with the CCTdelta subunit. beta-actin G150P seems tightly packed and apparently bound only to the CCTbeta and CCTepsilon subunits, which further indicates that these CCT subunits drive the interaction between CCT and actin. Hinge opening seems to be critical for actin folding, and we suggest that residues G146 and G150 are important components of the hinge around which the rigid subdomains, presumably already present in early actin folding intermediates, rotate during CCT-assisted folding.
Collapse
Affiliation(s)
- E A McCormack
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Llorca O, Martín-Benito J, Gómez-Puertas P, Ritco-Vonsovici M, Willison KR, Carrascosa JL, Valpuesta JM. Analysis of the interaction between the eukaryotic chaperonin CCT and its substrates actin and tubulin. J Struct Biol 2001; 135:205-18. [PMID: 11580270 DOI: 10.1006/jsbi.2001.4359] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two mechanisms have thus far been characterized for the assistance by chaperonins of the folding of other proteins. The first and best described is that of the prokaryotic chaperonin GroEL, which interacts with a large spectrum of proteins. GroEL uses a nonspecific mechanism by which any conformation of practically any unfolded polypeptide interacts with it through exposed, hydrophobic residues. ATP binding liberates the substrate in the GroEL cavity where it is given a chance to fold. A second mechanism has been described for the eukaryotic chaperonin CCT, which interacts mainly with the cytoskeletal proteins actin and tubulin. Cryoelectron microscopy and biochemical studies have revealed that both of these proteins interact with CCT in quasi-native, defined conformations. Here we have performed a detailed study of the docking of the actin and tubulin molecules extracted from their corresponding CCT:substrate complexes obtained from cryoelectron microscopy and image processing to localize certain regions in actin and tubulin that are involved in the interaction with CCT. These regions of actin and tubulin, which are not present in their prokaryotic counterparts FtsA and FtsZ, are involved in the polymerization of the two cytoskeletal proteins. These findings suggest coevolution of CCT with actin and tubulin in order to counteract the folding problems associated with the generation in these two cytoskeletal protein families of new domains involved in their polymerization.
Collapse
Affiliation(s)
- O Llorca
- Centro Nacional de Biotecnología, C.S.I.C., Campus Universidad Autónoma de Madrid, 28049, Spain
| | | | | | | | | | | | | |
Collapse
|