1
|
Cutter AD. Beyond Haldane's rule: Sex-biased hybrid dysfunction for all modes of sex determination. eLife 2024; 13:e96652. [PMID: 39158559 PMCID: PMC11333046 DOI: 10.7554/elife.96652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Haldane's rule occupies a special place in biology as one of the few 'rules' of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane's rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane's rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane's rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane's rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
2
|
Centenary of Haldane's ‘rule’: why male sterility may be normal, not ‘idiopathic’. J Genet 2022. [DOI: 10.1007/s12041-022-01369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Forsdyke DR. When acting as a reproductive barrier for sympatric speciation, hybrid sterility can only be primary. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractAnimal gametes unite to form a zygote that develops into an adult with gonads that, in turn, produce gametes. Interruption of this germinal cycle by prezygotic or postzygotic reproductive barriers can result in two cycles, each with the potential to evolve into a new species. When the speciation process is complete, members of each species are fully reproductively isolated from those of the other. During speciation a primary barrier may be supported and eventually superceded by a later-appearing secondary barrier. For those holding certain cases of prezygotic isolation to be primary (e.g. elephant cannot copulate with mouse), the onus is to show that they had not been preceded over evolutionary time by periods of postzygotic hybrid inviability (genically determined) or sterility (genically or chromosomally determined). Likewise, the onus is upon those holding cases of hybrid inviability to be primary (e.g. Dobzhansky–Muller epistatic incompatibilities) to show that they had not been preceded by periods, however brief, of hybrid sterility. The latter, when acting as a sympatric barrier causing reproductive isolation, can only be primary. In many cases, hybrid sterility may result from incompatibilities between parental chromosomes that attempt to pair during meiosis in the gonad of their offspring (Winge-Crowther-Bateson incompatibilities). While such incompatibilities have long been observed on a microscopic scale, there is growing evidence for a role of dispersed finer DNA sequence differences (i.e. in base k-mers).
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L3N6, Canada
| |
Collapse
|
4
|
Forsdyke DR. Success of alignment-free oligonucleotide (k-mer) analysis confirms relative importance of genomes not genes in speciation and phylogeny. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractThe utility of DNA sequence substrings (k-mers) in alignment-free phylogenetic classification, including that of bacteria and viruses, is increasingly recognized. However, its biological basis eludes many 21st century practitioners. A path from the 19th century recognition of the informational basis of heredity to the modern era can be discerned. Crick’s DNA ‘unpairing postulate’ predicted that recombinational pairing of homologous DNAs during meiosis would be mediated by short k-mers in the loops of stem-loop structures extruded from classical duplex helices. The complementary ‘kissing’ duplex loops – like tRNA anticodon–codon k-mer duplexes – would seed a more extensive pairing that would then extend until limited by lack of homology or other factors. Indeed, this became the principle behind alignment-based methods that assessed similarity by degree of DNA–DNA reassociation in vitro. These are now seen as less sensitive than alignment-free methods that are closely consistent, both theoretically and mechanistically, with chromosomal anti-recombination models for the initiation of divergence into new species. The analytical power of k-mer differences supports the theses that evolutionary advance sometimes serves the needs of nucleic acids (genomes) rather than proteins (genes), and that such differences can play a role in early speciation events.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
5
|
Forsdyke DR. The chromosomal basis of species initiation: Prdm9 as an anti-speciation gene. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
6
|
Delph LF, Demuth JP. Haldane’s Rule: Genetic Bases and Their Empirical Support. J Hered 2016; 107:383-91. [DOI: 10.1093/jhered/esw026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/27/2016] [Indexed: 11/14/2022] Open
|
7
|
Forsdyke DR. Rebooting the Genome. Evol Bioinform Online 2016. [DOI: 10.1007/978-3-319-28755-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol 2012; 335:32-50. [DOI: 10.1016/j.crvi.2011.11.002] [Citation(s) in RCA: 369] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/07/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
|
9
|
Wierzbicki H, Moska M, Strzała T, Macierzyńska A. Do aquatic barriers reduce male-mediated gene flow in a hybrid zone of the common shrew (Sorex araneus)? Hereditas 2011; 148:114-7. [PMID: 22150822 DOI: 10.1111/j.1601-5223.2010.02224.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Heliodor Wierzbicki
- Department of Genetics and Animal Breeding, University of Environmental and Life Sciences, Kożuchowska 7, PL-51-631 Wrocław, Poland.
| | | | | | | |
Collapse
|
10
|
Abstract
Sometimes a cross between two individuals that appear to belong to the same species produces a sterile offspring (i.e., their hybrid is sterile). Thus, the two individuals appear reproductively isolated from each other. If each could find a compatible mate, then new species might emerge. At issue is whether the form of hybrid sterility that precedes sympatric differentiation into species is, in the general case, of genic or non-genic origin. Several recent papers lend the authority of William Bateson to the genic hypothesis, referring to the "Bateson–Dobzhansky–Muller hypothesis". All these papers cite a 1996 paper that, in turn, cites a 1909 paper of Bateson. However, from 1902 until 1926 the latter espoused a non-genic hypothesis that today would be classified as "chromosomal". Analysis of Bateson's 1909 text reveals no recantation. Bateson's non-genic view was similar to that advanced by Richard Goldschmidt in the 1940s. However, Bateson proposed a contribution from parents of abstract factors that, together in their hybrids, complement to bring about a negative effect (hybrid sterility). In contrast, Goldschmidt proposed that normally parents contribute complementary factors making parental chromosomes compatible at meiosis in their hybrids, which hence are fertile (i.e., the parental factors work together to produce a positive effect). When the factors are not sufficiently complementary the parental chromosomes are incompatible in their hybrids, which hence are sterile. The non-genic Batesonian–Goldschmidtian abstractions are now being fleshed-out chemically in terms of DNA base-composition differences.
Collapse
Affiliation(s)
- D. R. Forsdyke
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
11
|
Abstract
Several reproductive barriers exist within the Nasonia species complex, including allopatry, premating behavioral isolation, postzygotic inviability and Wolbachia-induced cytoplasmic incompatibility. Here we show that hybrid males suffer two additional reproductive disadvantages, an inability to properly court females and decreased sperm production. Hybrid behavioral sterility, characterized by a reduced ability of hybrids to perform necessary courtship behaviors, occurs in hybrids between two species of Nasonia. Hybrid males produced in crosses between N. vitripennis and N. giraulti courted females at a reduced frequency (23-69%), compared with wild-type N. vitripennis and N. giraulti males (>93%). Reduced courtship frequency was not a simple function of inactivity among hybrids. A strong effect of cytoplasmic (mitochondrial) background was also found in N. vitripennis and N. giraulti crosses; F2 hybrids with giraulti cytoplasm showing reduced ability at most stages of courtship. Hybrids produced between a younger species pair, N. giraulti and N. longicornis, were behaviorally fertile. All males possessed motile sperm, but sperm production is greatly reduced in hybrids between the older species pair, N. vitripennis and N. giraulti. This effect on hybrid males, lowered sperm counts rather than nonfunctional sperm, is different from most described cases of hybrid male sterility, and may represent an earlier stage of hybrid sperm breakdown. The results add to previous studies of F2 hybrid inviability and behavioral sterility, and indicate that Wolbachia-induced hybrid incompatibility has arisen early in species divergence, relative to behavioral sterility and spermatogenic infertility.
Collapse
Affiliation(s)
- M E Clark
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| | | | | | | |
Collapse
|
12
|
Adbullah MH, Idris I, Hilmi M. Karyotype of Malayan Gaur (Bos gaurus hubbacki), Sahiwal-Friesian cattle and Gaur x cattle hybrid backcrosses. Pak J Biol Sci 2009; 12:896-901. [PMID: 19777782 DOI: 10.3923/pjbs.2009.896.901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Interspecific hybridization has been reported for a wide variety of vertebrate species either spontaneous or by organized crossing of bovine species. The hybrids were often carrying intermediate characters genetically and phenotypically of the parents. Thus, status information of both aspects is valuable in animal production for selection and breeding management. The Gaur-cattle hybrids was reported to be superior in production value compared to their parent cattle but fertility status was still questionable. The project was abandoned due to their fertility issue and the hybrids were kept within the cattle in a dairy farm. Cytogenetic status and breeding record of the remaining herd were unavailable since then. The herd was then translocated to a deer farm (PTH Lenggong) and kept freely in the paddock. Recently, two female calves were born via inter se mating. Peripheral blood cultures of Malayan Gaur, Sahiwal-Friesian cattle and Gaur x cattle hybrid backcrosses were analyzed via Giemsa stained metaphase. The Gaur and cattle were having diploid chromosome number (2n) of 56 and 60, respectively. Interestingly, the backcrosses from the hybrids by cattle bulls were found to have two chromosome arrangements, which are 2n = 58 and 2n = 60.
Collapse
Affiliation(s)
- Mamat-Hamidi Adbullah
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43300 UPM Serdang, Selangor, Malaysia
| | | | | |
Collapse
|
13
|
Thongwat D, Morgan K, O'Loughlin SM, Walton C, Choochote W, Somboon P. Crossing experiments supporting the specific status of Anopheles maculatus chromosomal form K. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2008; 24:194-202. [PMID: 18666525 DOI: 10.2987/5668.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
There are 3 recognized chromosomal forms (B, E, K) in the taxon of Anopheles maculatus, 1 of the 8 members of the Anopheles maculatus group. Previous studies suggested that forms B and E are cytotypes of the species, but genetic characteristics of form K are unknown. The present study used crossing experiments, and polytene chromosomes of the ovarian nurse cell in F1 hybrids to show that form K is genetically distinct from forms B and E. In addition, postzygotic genetic incompatibility between form K and An. sawadwongporni, An. dravidicus, and An. pseudowillmori are demonstrated. In all crosses, hybrid males were sterile, with atrophied testes and accessory glands, or partially sterile with abnormal spermatozoa. The hybrid females showed varying degrees of atrophied ovaries. The ovarian nurse cell polytene chromosomes of the F1 hybrid females displayed approximately 70% to almost complete asynapsis. The results provide clear evidence that form K should no longer be regarded as a cytotype of An. maculatus. The present study supports previous suggestions that form K represents another species of the Maculatus group.
Collapse
Affiliation(s)
- Damrongpan Thongwat
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | | | | | | |
Collapse
|
14
|
Lancaster ML, Bradshaw CJA, Goldsworthy SD, Sunnucks P. Lower reproductive success in hybrid fur seal males indicates fitness costs to hybridization. Mol Ecol 2007; 16:3187-97. [PMID: 17651196 DOI: 10.1111/j.1365-294x.2007.03339.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hybridization among organisms can potentially contribute to the processes of evolution, but this depends on the fitness of hybrids relative to parental species. A small, recently formed population of fur seals on subantarctic Macquarie Island contains a high proportion of hybrids (17-30%) derived from combinations of three parental species: Antarctic, subantarctic and New Zealand fur seals. Mitochondrial control-region data (restriction fragment length polymorphisms) and nine microsatellites were used to determine the species composition of breeding adults, and hybrid male fitness was measured by comparing reproductive success (number of genetically inferred paternities) of hybrid and pure-species territory males over 6 years. No correlations were found between male reproductive success and three genetic measures of outbreeding, but this may be due to a relatively small number of dominant males analysed. Territory males fathered 63% of pups, but hybrid males had lower reproductive success than pure-species males despite having the same ability to hold territories. A greater proportion of females in hybrid male territories conceived extra-territorially than those in territories of pure-species males, and most (70 of 82) mated with conspecifics. This suggests the presence of reproductive isolating mechanisms that promote positive assortative mating and reduce the production of hybrid offspring. Although we found no evidence for male sterility in the population, mechanisms that reduce lifetime reproductive success may act to decrease the frequency of hybrids. Our study has identified a disadvantage of hybridization - reduced reproductive success of hybrid sons - that may be contributing to the persistence of pure lineages at Macquarie Island and the temporal decline in hybridization observed there.
Collapse
Affiliation(s)
- Melanie L Lancaster
- Zoology Department, La Trobe University, Bundoora, Victoria 3083, Australia.
| | | | | | | |
Collapse
|
15
|
Rau D, Attene G, Brown AHD, Nanni L, Maier FJ, Balmas V, Saba E, Schäfer W, Papa R. Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley "net blotch" disease. Curr Genet 2007; 51:377-92. [PMID: 17426975 DOI: 10.1007/s00294-007-0126-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/02/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
The main aim of this study was to test the patterns of sequence divergence and haplotype structure at the MAT locus of Pyrenophora teres, the causal agent of barley 'net blotch' disease. P. teres is a heterothallic ascomycete that co-occurs in two symptomatological forms, the net form (NF) and the spot form (SF). The mating-type genes MAT1-1-1 and MAT1-2-1 were sequenced from 22 NF isolates (12 MAT1-1-1 and 10 MAT1-2-1 sequences) and 17 SF isolates (10 MAT1-1-1 and seven MAT1-2-1 sequences) collected from Sardinian barley landrace populations and worldwide. On the basis of a parsimony network analysis, the two forms of P. teres are phylogenetically separated. More than 85% of the total nucleotide variation was found between formae speciales. The two forms do not share any polymorphisms. Six diagnostic nucleotide polymorphisms were found in the MAT1-1-1 intron (1) and in the MAT1-1-1 (3) and MAT1-2-1 (2) exons. Three diagnostic non-synonymous mutations were found, one in MAT1-1-1 and two in MAT1-2-1. For comparison with P. teres sequence data, the mating-type genes from Pyrenophora graminea were also isolated and sequenced. Divergence between P. graminea and P. teres is of a similar magnitude to that between NF and SF of P. teres. The MAT genes of P. graminea were closer to those of SF than to NF, with the MAT1-2-1 SF peptide not different from the MAT1-2-1 peptide of P. graminea. Overall, these data suggest long genetic isolation between the two forms of P. teres and that hybridization is rare or absent under field conditions, with each form having some particular niche specialization. This indicates that research on resistance to P. teres should consider the two forms separately, as different species.
Collapse
Affiliation(s)
- D Rau
- Dipartimento di Scienze degli Alimenti, Facoltà di Agraria, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rebooting the Genome. Evol Bioinform Online 2006. [DOI: 10.1007/978-0-387-33419-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
17
|
Lee SJ, Mortimer JR, Forsdyke DR. Genomic conflict settled in favour of the species rather than the gene at extreme GC percentage values. ACTA ACUST UNITED AC 2005; 3:219-28. [PMID: 15702952 DOI: 10.2165/00822942-200403040-00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Wada and colleagues have shown that, whether prokaryotic or eukaryotic, each gene has a "homostabilising propensity" to adopt a relatively uniform GC percentage (GC%). Accordingly, each gene can be viewed as a "microisochore" occupying a discrete GC% niche of relatively uniform base composition amongst its fellow genes. Although first, second and third codon positions usually differ in GC%, each position tends to maintain a uniform, gene-specific GC% value. Thus, within a genome, genic GC% values can cover a wide range. This is most evident at third codon positions, which are least constrained by amino acid encoding needs. In 1991, Wada and colleagues further noted that, within a phylogenetic group, genomic GC% values can also cover a wide range. This is again most evident at third codon positions. Thus, the dispersion of GC% values among genes within a genome matches the dispersion of GC% values among genomes within a phylogenetic group. Wada described the context-independence of plots of different codon position GC% values against total GC% as a "universal" characteristic. Several studies relate this to recombination. We have confirmed that third codon positions usually relate more to the genes that contain them than to the species. However, in genomes with extreme GC% values (low or high), third codon positions tend to maintain a constant GC%, thus relating more to the species than to the genes that contain them. Genes in an extreme-GC% genome collectively span a smaller GC% range, and mainly rely on first and second codon positions for differentiation as "microisochores". Our results are consistent with the view that differences in GC% serve to recombinationally isolate both genome sectors (facilitating gene duplication) and genomes (facilitating genome duplication, e.g. speciation). In intermediate-GC% genomes, conflict between the needs of the species and the needs of individual genes within that species is minimal. However, in extreme-GC% genomes there is a conflict, which is settled in favour of the species (i.e. group selection) rather than in favour of the gene (genic selection).
Collapse
Affiliation(s)
- Shang-Jung Lee
- Genetics Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
18
|
Ironside JE, Filatov DA. Extreme population structure and high interspecific divergence of the Silene Y chromosome. Genetics 2005; 171:705-13. [PMID: 15998726 PMCID: PMC1456801 DOI: 10.1534/genetics.105.041210] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated that the diversity of Y-linked genes is substantially lower than that of their X-linked homologs in the plant Silene latifolia. This difference has been attributed to selective sweeps, Muller's ratchet, and background selection, processes that are predicted to severely affect the evolution of the nonrecombining Y chromosome. We studied the DNA diversity of a noncoding region of the homologous genes DD44Y and DD44X, sampling S. latifolia populations from a wide geographical area and also including the closely related species S. dioica, S. diclinis, and S. heuffelii. On the Y chromosome of S. latifolia, we found substantial DNA diversity. Geographical population structure was far higher than on the X chromosome and differentiation between the species was also higher for the Y than for the X chromosome. Our findings indicate that the loss of genetic diversity on the Y chromosome in Silene occurs within local populations rather than within entire species. These results are compatible with background selection, Muller's ratchet, and local selective sweeps, but not with species-wide selective sweeps. The higher interspecific divergence of DD44Y, compared to DD44X, supports the hypothesis that Y chromosome differentiation between incipient species precedes reproductive isolation of the entire genome, forming an early stage in the process of speciation.
Collapse
|
19
|
Forsdyke DR. Chromosomal speciation: a reply. J Theor Biol 2004; 230:189-96. [PMID: 15302550 DOI: 10.1016/j.jtbi.2004.04.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Revised: 04/09/2004] [Accepted: 04/26/2004] [Indexed: 11/23/2022]
Abstract
The "genic" and the "non-genic" (chromosomal) hypotheses for the predominant mechanism by which species diverge into two have long been in contention. In 1998 Coyne and Orr attacked certain formulations of the chromosomal hypothesis on the grounds that they required macromutations (structural changes in chromosomes). In 1999 I replied that numerous independent micromutations (single DNA base changes) should suffice (GC% hypothesis). Kliman et al., with the support of Coyne and Charlesworth, have presented various counterarguments, to which the present paper responds with evidence that GC% differences are primary to genic differences and would operate by changing the structure of stem-loops extruded from duplex DNAs. Chromosomes attempting to align by means of complementary loop-loop interactions would fail if GC% differences exceeded a critical threshold. This would disrupt meiosis (hybrid sterility) and the parents of organisms with failed meiosis would be reproductively isolated from each other. If they could find new mates with which they were GC-compatible, then new species could emerge. The model leads to predictions consistent with several lines of evidence. The GC% version of the chromosomal hypothesis has a sound basis and deserves at least as much attention as its genic rival.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biochemistry, Queen's University, Kingston, Ont., Canada K7L3N6.
| |
Collapse
|
20
|
Nijman IJ, Otsen M, Verkaar ELC, de Ruijter C, Hanekamp E, Ochieng JW, Shamshad S, Rege JEO, Hanotte O, Barwegen MW, Sulawati T, Lenstra JA. Hybridization of banteng (Bos javanicus) and zebu (Bos indicus) revealed by mitochondrial DNA, satellite DNA, AFLP and microsatellites. Heredity (Edinb) 2003; 90:10-6. [PMID: 12522420 DOI: 10.1038/sj.hdy.6800174] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hybridization between wild and domestic bovine species occurs worldwide either spontaneously or by organized crossing. We have analysed hybridization of banteng (Bos javanicus) and zebu (Bos indicus) in south-east Asian cattle using mitochondrial DNA (PCR-RFLP and sequencing), AFLP, satellite fragment length polymorphisms (SFLP or PCR-RFLP of satellite DNA) and microsatellite genotyping. The Indonesian Madura zebu breed is reputed to be of hybrid zebu-banteng origin, but this has never been documented and Bali cattle are considered to be a domesticated form of banteng. The banteng mitochondrial type was found in all animals sampled on the isle of Bali, Indonesia, but only in 35% of the animals from a Malaysian Bali-cattle population. The Madura animals also carried mitochondrial DNA of either zebu and banteng origin. In both populations, zebu introgression was confirmed by AFLP and SFLP. Microsatellite analysis of the Malaysian Bali population revealed for 12 out of 15 loci screened, Bali-cattle-specific alleles, several of which were also found in wild banteng animals. The tools we have described are suitable for the detection of species in introgression studies, which are essential for the genetic description of local breeds and the preservation of their economic and cultural value.
Collapse
Affiliation(s)
- I J Nijman
- Institute of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Piálek J, Hauffe HC, Rodríguez-Clark KM, Searle JB. Raciation and speciation in house mice from the Alps: the role of chromosomes. Mol Ecol 2001; 10:613-25. [PMID: 11298973 DOI: 10.1046/j.1365-294x.2001.01209.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are at least 24 different karyotypic races of house mouse in the central Alps, each characterized by a different complement of ancestral acrocentric and derived metacentric chromosomes; altogether 55 different metacentric chromosomes have been described from the region. We argue that this chromosome variation largely arose in situ. If these races were to make contact, in most cases they would produce F1 hybrids with substantial infertility (sometimes complete sterility), due to nondisjunction and germ cell death associated with the formation of long-chain and/or ring configurations at meiosis. We present fertility estimates to confirm this for two particular hybrid types, one of which demonstrates male-limited sterility (in accordance with Haldane's Rule). As well as a model for speciation in allopatry, the Alpine mouse populations are of interest with regards speciation in parapatry: we discuss a possible reinforcement event. Raciation of house mice appears to have happened on numerous occasions within the central Alps. To investigate one possible source of new karyotypic races, we use a two-dimensional stepping stone model to examine the generation of recombinant races within chromosomal hybrid zones. Using field-derived ecological data and laboratory-derived fertility estimates, we show that hybrid karyotypic races can be generated at a reasonable frequency in simulations. Our model complements others developed for flowering plants that also emphasize the potential of chromosomal hybrid zones in generating new stable karyotypic forms.
Collapse
Affiliation(s)
- J Piálek
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, CZ-675 02 Studenec 122, Czech Republic
| | | | | | | |
Collapse
|
22
|
Abstract
Of Chargaff's four rules on DNA base composition, only his first parity rule was incorporated into mainstream biology as the DNA double helix. Now, the cluster rule, the second parity rule, and the GC rule, reveal the multiple levels of information in our genomes and potential conflicts between them. In these terms we can understand how double-stranded RNA became an intracellular alarm signal, how potentially recombining nucleic acids can distinguish between 'self' and 'not-self' so leading to the origin of species, how isochores evolved to facilitate gene duplication, and how unlikely it is that any mutation can ever remain truly neutral.
Collapse
Affiliation(s)
- D R Forsdyke
- Department of Biochemistry, Queen's University, Kingston, Ontario K7L3N6, Canada.
| | | |
Collapse
|