1
|
Pabst T, Kortz L, Fiedler GM, Ceglarek U, Idle JR, Beyoğlu D. The plasma lipidome in acute myeloid leukemia at diagnosis in relation to clinical disease features. BBA CLINICAL 2017; 7:105-114. [PMID: 28331812 PMCID: PMC5357680 DOI: 10.1016/j.bbacli.2017.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/04/2017] [Accepted: 03/04/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Early studies established that certain lipids were lower in acute myeloid leukemia (AML) cells than normal leukocytes. Because lipids are now known to play an important role in cell signaling and regulation of homeostasis, and are often perturbed in malignancies, we undertook a comprehensive lipidomic survey of plasma from AML patients at time of diagnosis and also healthy blood donors. METHODS Plasma lipid profiles were measured using three mass spectrometry platforms in 20 AML patients and 20 healthy blood donors. Data were collected on total cholesterol and fatty acids, fatty acid amides, glycerolipids, phospholipids, sphingolipids, cholesterol esters, coenzyme Q10 and eicosanoids. RESULTS We observed a depletion of plasma total fatty acids and cholesterol, but an increase in certain free fatty acids with the observed decline in sphingolipids, phosphocholines, triglycerides and cholesterol esters probably driven by enhanced fatty acid oxidation in AML cells. Arachidonic acid and precursors were elevated in AML, particularly in patients with high bone marrow (BM) or peripheral blasts and unfavorable prognostic risk. PGF2α was also elevated, in patients with low BM or peripheral blasts and with a favorable prognostic risk. A broad panoply of lipid classes is altered in AML plasma, pointing to disturbances of several lipid metabolic interconversions, in particular in relation to blast cell counts and prognostic risk. CONCLUSIONS These data indicate potential roles played by lipids in AML heterogeneity and disease outcome. GENERAL SIGNIFICANCE Enhanced catabolism of several lipid classes increases prognostic risk while plasma PGF2α may be a marker for reduced prognostic risk in AML.
Collapse
Key Words
- 12-HEPE, 12-hydroxy-5Z,8Z,10E,14Z,17Z-eicosapentaenoic acid
- 12-LOX, 12-lipoxygenase
- 2HG, (R)-2-hydroxyglutarate
- 2OG, 2-oxoglutarate
- 8,9-DHET, 8,9-dihydroxy-5Z,11Z,14Z-eicosatrienoic acid
- AA, arachidonic acid
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- Acute myeloid leukemia
- Blast cell number
- CE, cholesterol ester
- CML, chronic myelogenous leukemia
- CPT1a, carnitine palmitate transferase 1a
- Cer, ceramide
- CoQ10, coenzyme Q10
- DG, diacylglycerol
- DGLA, dihomo-γ-linoleic acid
- DIC, disseminated intravascular coagulation
- EPA, eicosapentaenoic acid (20:5;5Z,8Z,11Z,14Z,17Z)
- ESI-, electrospray ionization negative mode
- ESI +, electrospray ionization positive mode
- Eicosanoids
- FAA, fatty acid amide
- FAB, French-American-British classification
- FAME, fatty acid methyl ester
- FAO, fatty acid oxidation
- FLC-QqLIT-MS, fast liquid chromatography-quadrupole linear ion-trap mass spectrometry
- Fatty acids
- GCMS, gas chromatography–mass spectrometry
- LPC, lysophosphatidylcholine
- LPE, lysophosphatidylethanolamine
- Lipidomics
- MG, monoacylglycerol
- MRM, multiple reactions monitoring
- MUFA, monounsaturated fatty acid
- OPLS-DA, orthogonal PLS-DA
- PC, phosphatidylcholine
- PCA, principal components analysis
- PE, phosphatidylethanolamine
- PGE2, prostaglandin E2
- PGF1α, prostaglandin 1α
- PGF2α, prostaglandin F2α
- PGH2, prostaglandin H2
- PLS-DA, projection to latent structures-discriminant analysis
- POEA, palmitoleoyl ethanolamide
- PUFA, polyunsaturated fatty acid
- Prognostic risk
- SCD1, stearoyl CoA desaturase 1
- SM, sphingomyelin
- TG, triacylglycerol (triglyceride)
- TxA2, thromboxane A2
- TxB2, thromboxane B2
- UPLC-ESI-QTOFMS, ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry
- mPGES-1, microsomal prostaglandin E synthase-1
Collapse
Affiliation(s)
- Thomas Pabst
- Department of Medical Oncology, Inselspital Bern, Switzerland
| | - Linda Kortz
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany
| | - Georg M Fiedler
- Institute of Clinical Chemistry, Inselspital Bern, Switzerland
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Germany
| | - Jeffrey R Idle
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| | - Diren Beyoğlu
- Hepatology Research Group, Department of Clinical Research, University of Bern, Switzerland
| |
Collapse
|
2
|
Singh J, Khan M, Singh I. Caffeic acid phenethyl ester induces adrenoleukodystrophy (Abcd2) gene in human X-ALD fibroblasts and inhibits the proinflammatory response in Abcd1/2 silenced mouse primary astrocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:747-58. [PMID: 23318275 DOI: 10.1016/j.bbalip.2013.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/31/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene. Accumulation of very long chain fatty acids (VLCFA) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity are the hallmark of the disease. Overexpression of ABCD2 gene, the closest homolog of ABCD1, has been shown to compensate for ABCD1, thus correcting the VLCFA derangement. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of caffeic acid phenethyl ester (CAPE) in inducing the expression of ABCD2 (ALDRP), and normalizing the peroxisomal β-oxidation as well as the levels of saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1), was also reduced by CAPE treatment. Importantly, CAPE upregulated Abcd2 expression and peroxisomal β-oxidation and lowered the VLCFA levels in Abcd1-deficient U87 astrocytes and B12 oligodendrocytes. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes we examined the effects of CAPE in VLCFA-induced inflammatory response. CAPE treatment decreased the inflammatory response as the expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. The observations indicate that CAPE corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be a potential drug candidate to be tested for X-ALD therapy in humans.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
3
|
Singh J, Khan M, Singh I. HDAC inhibitor SAHA normalizes the levels of VLCFAs in human skin fibroblasts from X-ALD patients and downregulates the expression of proinflammatory cytokines in Abcd1/2-silenced mouse astrocytes. J Lipid Res 2011; 52:2056-69. [PMID: 21891797 DOI: 10.1194/jlr.m017491] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). The consistent metabolic abnormality in all forms of X-ALD is an inherited defect in the peroxisomal β-oxidation of very long chain FAs (VLCFAs >C22:0) and the resultant pathognomic accumulation of VLCFA. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of a potent histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA) in inducing the expression of ABCD2 [adrenoleukodystrophy-related protein (ALDRP)], and normalizing the peroxisomal β-oxidation, as well as the saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and monounsaturated VLCFA (C26:1), was also reduced by SAHA treatment. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes, we also examined the effects of SAHA in VLCFA-induced inflammatory response. SAHA treatment decreased the inflammatory response as expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. These observations indicate that SAHA corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be an ideal drug candidate to be tested for X-ALD therapy in humans.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
4
|
Reamy AA, Wolfgang MJ. Carnitine palmitoyltransferase-1c gain-of-function in the brain results in postnatal microencephaly. J Neurochem 2011; 118:388-98. [PMID: 21592121 DOI: 10.1111/j.1471-4159.2011.07312.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Carnitine palmitoyltransferase-1c (CPT1c) is a newly identified and poorly understood brain-specific CPT1 homologue. Here, we have generated a new animal model that allows the conditional expression of CPT1c in a tissue specific and/or temporal manner via Cre-lox mediated recombination. Brain-specific, exogenous expression of CPT1c was achieved by crossing transgenic CPT1c mice to Nestin-Cre mice. The resulting double transgenic mice (CPT1c-TgN) displayed severe growth retardation in the postnatal period with a stunted development at 2 weeks of age. CPT1c-TgN mice had a greater than 2.3-fold reduction in brain weight. Even with this degree of microencephaly, CPT1c-TgN mice were viable and fertile and exhibited normal post-weaning growth. When fed a high fat diet CPT1c-TgN mice were protected from weight gain and the difference in body weight between CPT1c-TgN and control mice was further exaggerated. Conversely, low fat, high carbohydrate feeding partially reversed the body weight defects in CPT1c-TgN mice. Analysis of total brain lipids of low fat fed mice revealed a depletion of total very long chain fatty acids in adult CPT1c-TgN mice which was not evident in high fat fed CPT1c-TgN mice. These data show that CPT1c can elicit profound effects on brain physiology and total fatty acid profiles, which can be modulated by the nutritional composition of the diet.
Collapse
Affiliation(s)
- Amanda A Reamy
- Center for Metabolism and Obesity Research, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
5
|
Singh J, Khan M, Singh I. Silencing of Abcd1 and Abcd2 genes sensitizes astrocytes for inflammation: implication for X-adrenoleukodystrophy. J Lipid Res 2008; 50:135-47. [PMID: 18723473 DOI: 10.1194/jlr.m800321-jlr200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
X-linked adrenoleukodystrophy is a metabolic disorder arising from a mutation/deletion in the ABCD1 gene, leading to a defect in the peroxisomal adrenoleukodystrophy protein (ALDP), which inhibits the oxidation of very long chain fatty acids (VLCFAs). Thus, these VLCFAs accumulate. In a cerebral form of ALD (cALD), VLCFA accumulation induces neuroinflammation that leads to loss of oligodendrocytes and myelin, which ultimately shortens the lifespan. To establish a relationship between the metabolic disease and inflammatory disease induction, we document that small interfering RNA (siRNA)-mediated silencing of Abcd1 (ALDP) and Abcd2 [adrenoleukodystrophy-related protein (ALDRP)] genes in mice primary astrocyte cultures resulted in accumulation of VLCFA and induction of an inflammatory response characteristic of human cALD. Correction of the metabolic defect using monoenoic FAs in Abcd1/Abcd2-silenced cultured astrocytes decreased inducible nitric oxide synthase and inflammatory cytokine expression, suggesting a link between VLCFA accumulation and inflammation. The inflammatory response was found to be mediated by transcription factors NF-kappaB, AP-1, and C/EBP in Abcd1/Abcd2-silenced mouse primary astrocytes. Although mechanisms of VLCFA-mediated induction of the inflammatory response have been investigated here in vitro, the in vivo mediators remain elusive. Our data represent the first study to suggest a direct link between the accumulation of VLCFA and the induction of inflammatory mediators.
Collapse
Affiliation(s)
- Jaspreet Singh
- Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC, USA
| | | | | |
Collapse
|
6
|
Moser HW, Mahmood A, Raymond GV. X-linked adrenoleukodystrophy. ACTA ACUST UNITED AC 2007; 3:140-51. [PMID: 17342190 DOI: 10.1038/ncpneuro0421] [Citation(s) in RCA: 241] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 12/15/2006] [Indexed: 12/26/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is caused by a defect in the gene ABCD1, which maps to Xq28 and codes for a peroxisomal membrane protein that is a member of the ATP-binding cassette transporter superfamily. X-ALD is panethnic and affects approximately 1:20,000 males. Phenotypes include the rapidly progressive childhood, adolescent, and adult cerebral forms; adrenomyeloneuropathy, which presents as slowly progressive paraparesis in adults; and Addison disease without neurologic manifestations. These phenotypes are frequently misdiagnosed, respectively, as attention-deficit hyperactivity disorder (ADHD), multiple sclerosis, or idiopathic Addison disease. Approximately 50% of female carriers develop a spastic paraparesis secondary to myelopathic changes similar to adrenomyeloneuropathy. Assays of very long chain fatty acids in plasma, cultured chorion villus cells and amniocytes, and mutation analysis permit presymptomatic and prenatal diagnosis, as well as carrier identification. The timely use of these assays is essential for genetic counseling and therapy. Early diagnosis and treatment can prevent overt Addison disease, and significantly reduce the frequency of the severe childhood cerebral phenotype. A promising new method for mass newborn screening has been developed, the implementation of which will have a profound effect on the diagnosis and therapy of X-ALD.
Collapse
Affiliation(s)
- Hugo W Moser
- Neurogenetics Research Center, Kennedy Krieger Institute, 707 North Broadway, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
7
|
Vedam V, Kannenberg E, Datta A, Brown D, Haynes-Gann JG, Sherrier DJ, Carlson RW. The pea nodule environment restores the ability of a Rhizobium leguminosarum lipopolysaccharide acpXL mutant to add 27-hydroxyoctacosanoic acid to its lipid A. J Bacteriol 2006; 188:2126-33. [PMID: 16513742 PMCID: PMC1428142 DOI: 10.1128/jb.188.6.2126-2133.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Accepted: 12/22/2005] [Indexed: 11/20/2022] Open
Abstract
Members of the Rhizobiaceae contain 27-hydroxyoctacosanoic acid (27OHC(28:0)) in their lipid A. A Rhizobium leguminosarum 3841 acpXL mutant (named here Rlv22) lacking a functional specialized acyl carrier lacked 27OHC(28:0) in its lipid A, had altered growth and physiological properties (e.g., it was unable to grow in the presence of an elevated salt concentration [0.5% NaCl]), and formed irregularly shaped bacteroids, and the synchronous division of this mutant and the host plant-derived symbiosome membrane was disrupted. In spite of these defects, the mutant was able to persist within the root nodule cells and eventually form, albeit inefficiently, nitrogen-fixing bacteroids. This result suggested that while it is in a host root nodule, the mutant may have some mechanism by which it adapts to the loss of 27OHC(28:0) from its lipid A. In order to further define the function of this fatty acyl residue, it was necessary to examine the lipid A isolated from mutant bacteroids. In this report we show that addition of 27OHC(28:0) to the lipid A of Rlv22 lipopolysaccharides is partially restored in Rlv22 acpXL mutant bacteroids. We hypothesize that R. leguminosarum bv. viciae 3841 contains an alternate mechanism (e.g., another acp gene) for the synthesis of 27OHC(28:0), which is activated when the bacteria are in the nodule environment, and that it is this alternative mechanism which functionally replaces acpXL and is responsible for the synthesis of 27OHC(28:0)-containing lipid A in the Rlv22 acpXL bacteroids.
Collapse
Affiliation(s)
- Vinata Vedam
- University of Georgia, Complex Carbohydrate Research Center, 315 Riverbend Rd., Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Theodoulou FL, Holdsworth M, Baker A. Peroxisomal ABC transporters. FEBS Lett 2006; 580:1139-55. [PMID: 16413537 DOI: 10.1016/j.febslet.2005.12.095] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/22/2022]
Abstract
Peroxisomes perform a range of different functions, dependent upon organism, tissue type, developmental stage or environmental conditions, many of which are connected with lipid metabolism. This review summarises recent research on ATP binding cassette (ABC) transporters of the peroxisomal membrane (ABC subfamily D) and their roles in plants, fungi and animals. Analysis of mutants has revealed that peroxisomal ABC transporters play key roles in specific metabolic and developmental functions in different organisms. A common function is import of substrates for beta-oxidation but much remains to be determined concerning transport substrates and mechanisms which appear to differ significantly between phyla.
Collapse
Affiliation(s)
- Frederica L Theodoulou
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom.
| | | | | |
Collapse
|
9
|
Ferguson GP, Datta A, Carlson RW, Walker GC. Importance of unusually modified lipid A in Sinorhizobium stress resistance and legume symbiosis. Mol Microbiol 2005; 56:68-80. [PMID: 15773979 DOI: 10.1111/j.1365-2958.2005.04536.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sinorhizobium meliloti, a legume symbiont and Brucella abortus, a phylogenetically related mammalian pathogen, both require their BacA proteins to establish chronic intracellular infections in their respective hosts. The lipid A molecules of S. meliloti and B. abortus are unusually modified with a very-long-chain fatty acid (VLCFA; C > or = 28) and we discovered that BacA is involved in this unusual modification. This observation raised the possibility that the unusual lipid A modification could be crucial for the chronic infection of both S. meliloti and B. abortus. We investigated this by constructing and characterizing S. meliloti mutants in the lpxXL and acpXL genes, which encode an acyl transferase and acyl carrier protein directly involved in the biosynthesis of VLCFA-modified lipid A. Our analysis revealed that the unusually modified lipid A is important, but not crucial, for S. meliloti chronic infection and that BacA must have an additional function, which in combination with its observed effect on the lipid A in the free-living form of S. meliloti, is essential for the chronic infection. Additionally, we discovered that in the absence of VLCFAs, S. meliloti produces novel pentaacylated lipid A species, modified with unhydroxylated fatty acids, which are important for stress resistance.
Collapse
Affiliation(s)
- Gail P Ferguson
- Institute of Structural and Molecular Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, UK.
| | | | | | | |
Collapse
|
10
|
Ferguson GP, Datta A, Baumgartner J, Roop RM, Carlson RW, Walker GC. Similarity to peroxisomal-membrane protein family reveals that Sinorhizobium and Brucella BacA affect lipid-A fatty acids. Proc Natl Acad Sci U S A 2004; 101:5012-7. [PMID: 15044696 PMCID: PMC387365 DOI: 10.1073/pnas.0307137101] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sinorhizobium meliloti, a legume symbiont, and Brucella abortus, a phylogenetically related mammalian pathogen, both require the bacterial-encoded BacA protein to establish chronic intracellular infections in their respective hosts. We found that the bacterial BacA proteins share sequence similarity with a family of eukaryotic peroxisomal-membrane proteins, including the human adrenoleukodystrophy protein, required for the efficient transport of very-long-chain fatty acids out of the cytoplasm. This insight, along with the increased sensitivity of BacA-deficient mutants to detergents and cell envelope-disrupting agents, led us to discover that BacA affects the very-long-chain fatty acid (27-OHC28:0 and 29-OHC30:0) content of both Sinorhizobium and Brucella lipid A. We discuss models for how BacA function affects the lipid-A fatty-acid content and why this activity could be important for the establishment of chronic intracellular infections.
Collapse
Affiliation(s)
- Gail P Ferguson
- Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
11
|
Zolman BK, Silva ID, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation. PLANT PHYSIOLOGY 2001. [PMID: 11706205 DOI: 10.1104/pp.010550] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Peroxisomes are important organelles in plant metabolism, containing all the enzymes required for fatty acid beta-oxidation. More than 20 proteins are required for peroxisomal biogenesis and maintenance. The Arabidopsis pxa1 mutant, originally isolated because it is resistant to the auxin indole-3-butyric acid (IBA), developmentally arrests when germinated without supplemental sucrose, suggesting defects in fatty acid beta-oxidation. Because IBA is converted to the more abundant auxin, indole-3-acetic acid (IAA), in a mechanism that parallels beta-oxidation, the mutant is likely to be IBA resistant because it cannot convert IBA to IAA. Adult pxa1 plants grow slowly compared with wild type, with smaller rosettes, fewer leaves, and shorter inflorescence stems, indicating that PXA1 is important throughout development. We identified the molecular defect in pxa1 using a map-based positional approach. PXA1 encodes a predicted peroxisomal ATP-binding cassette transporter that is 42% identical to the human adrenoleukodystrophy (ALD) protein, which is defective in patients with the demyelinating disorder X-linked ALD. Homology to ALD protein and other human and yeast peroxisomal transporters suggests that PXA1 imports coenzyme A esters of fatty acids and IBA into the peroxisome for beta-oxidation. The pxa1 mutant makes fewer lateral roots than wild type, both in response to IBA and without exogenous hormones, suggesting that the IAA derived from IBA during seedling development promotes lateral root formation.
Collapse
Affiliation(s)
- B K Zolman
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA
| | | | | |
Collapse
|
12
|
Netik A, Hobel A, Rauschka H, Molzer B, Forss-Petter S, Berger J. Rolipram does not normalize very long-chain fatty acid levels in adrenoleukodystrophy protein-deficient fibroblasts and mice. J Inherit Metab Dis 2000; 23:615-24. [PMID: 11032336 DOI: 10.1023/a:1005686114356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In its severe form, X-linked adrenoleukodystrophy (X-ALD) is a lethal neurodegenerative disorder with inflammatory demyelination, in which defective peroxisomal beta-oxidation causes accumulation of very long-chain fatty acids (VLCFA) in tissues and plasma, in particular in the nervous system and adrenal glands. Recently, several drugs have been reported to reduce VLCFA in cultured human fibroblasts of X-ALD patients, and therefore to be potential candidates for novel therapeutic treatments in X-ALD. Among the most promising of these substances is the antidepressant rolipram, because of favourable adverse event profile in clinical studies and its additionally reported anti-inflammatory action. To further elucidate the effects of rolipram on peroxisomal beta-oxidation and VLCFA accumulation, we administered rolipram orally in the diet to ALD protein-deficient mice and ALD protein-deficient cultured human and mouse fibroblasts and assayed the accumulation of VLCFA. In contrast to the previously reported reduction of VLCFA, our data did not demonstrate a decrease in VLCFA content either in vivo or in vitro. NMR spectroscopic analysis verified the structural integrity and purity of the rolipram used here, thus excluding inauthenticity as a reason for the discrepancy. We therefore suggest that rolipram should be excluded from the current list of potential therapeutic agents for X-ALD.
Collapse
Affiliation(s)
- A Netik
- Division of Neuroimmunology, Brain Research Institute, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|