1
|
Lahham M, Jha S, Goj D, Macheroux P, Wallner S. The family of sarcosine oxidases: Same reaction, different products. Arch Biochem Biophys 2021; 704:108868. [PMID: 33812916 DOI: 10.1016/j.abb.2021.108868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
The subfamily of sarcosine oxidase is a set of enzymes within the larger family of amine oxidases. It is ubiquitously distributed among different kingdoms of life. The member enzymes catalyze the oxidization of an N-methyl amine bond of amino acids to yield unstable imine species that undergo subsequent spontaneous non-enzymatic reactions, forming an array of different products. These products range from demethylated simple species to complex alkaloids. The enzymes belonging to the sarcosine oxidase family, namely, monomeric and heterotetrameric sarcosine oxidase, l-pipecolate oxidase, N-methyltryptophan oxidase, NikD, l-proline dehydrogenase, FsqB, fructosamine oxidase and saccharopine oxidase have unique features differentiating them from other amine oxidases. This review highlights the key attributes of the sarcosine oxidase family enzymes, in terms of their substrate binding motif, type of oxidation reaction mediated and FAD regeneration, to define the boundaries of this group and demarcate these enzymes from other amine oxidase families.
Collapse
Affiliation(s)
- Majd Lahham
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria; Department of Biochemistry and Microbiology, Aljazeera Private University, Ghabagheb, Syria
| | - Shalinee Jha
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Dominic Goj
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Graz, Austria.
| |
Collapse
|
2
|
Papandreou C, Moré M, Bellamine A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health-Cause or Effect? Nutrients 2020; 12:E1330. [PMID: 32392758 PMCID: PMC7284902 DOI: 10.3390/nu12051330] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/19/2022] Open
Abstract
Trimethylamine-N-oxide (TMAO) is generated in a microbial-mammalian co-metabolic pathway mainly from the digestion of meat-containing food and dietary quaternary amines such as phosphatidylcholine, choline, betaine, or L-carnitine. Fish intake provides a direct significant source of TMAO. Human observational studies previously reported a positive relationship between plasma TMAO concentrations and cardiometabolic diseases. Discrepancies and inconsistencies of recent investigations and previous studies questioned the role of TMAO in these diseases. Several animal studies reported neutral or even beneficial effects of TMAO or its precursors in cardiovascular disease model systems, supporting the clinically proven beneficial effects of its precursor, L-carnitine, or a sea-food rich diet (naturally containing TMAO) on cardiometabolic health. In this review, we summarize recent preclinical and epidemiological evidence on the effects of TMAO, in order to shed some light on the role of TMAO in cardiometabolic diseases, particularly as related to the microbiome.
Collapse
|
3
|
Sun L, Sun J, Xu Q, Li X, Zhang L, Yang H. Metabolic responses to intestine regeneration in sea cucumbers Apostichopus japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2017; 22:32-38. [PMID: 28189056 DOI: 10.1016/j.cbd.2017.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/27/2017] [Accepted: 02/02/2017] [Indexed: 02/08/2023]
Abstract
Sea cucumbers are excellent models for studying organ regeneration due to their striking capacity to regenerate most of their viscera after evisceration. In this study, we applied NMR-based metabolomics to determine the metabolite changes that occur during the process of intestine regeneration in sea cucumbers. Partial least-squares discriminant analysis showed that there was significant differences in metabolism between regenerative intestines at 3, 7, and 14days post evisceration (dpe) and normal intestines. Changes in the concentration of 13 metabolites related to regeneration were observed and analyzed. These metabolites included leucine, isoleucine, valine, arginine, glutamate, hypotaurine, dimethylamine, N,N-dimethylglycine, betaine, taurine, inosine, homarine, and histidine. Three important genes (betaine-aldehyde dehydrogenase, betaine-homocysteine S-methyltransferase 1, and dimethylglycine dehydrogenase) were differentially expressed to regulate the levels of betaine and N,N-dimethylglycine during intestine regeneration. These results provide an important basis for studying regenerative mechanisms and developing regenerative matrixes.
Collapse
Affiliation(s)
- Lina Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jingchun Sun
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qinzeng Xu
- Key Laboratory of Marine Ecology and Environmental Science and Engineering, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Xiaoni Li
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Libin Zhang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Hongsheng Yang
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
4
|
Augustin P, Hromic A, Pavkov-Keller T, Gruber K, Macheroux P. Structure and biochemical properties of recombinant human dimethylglycine dehydrogenase and comparison to the disease-related H109R variant. FEBS J 2016; 283:3587-3603. [PMID: 27486859 PMCID: PMC5082570 DOI: 10.1111/febs.13828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 12/14/2022]
Abstract
The human dimethylglycine dehydrogenase (hDMGDH) is a flavin adenine dinucleotide (FAD)- and tetrahydrofolate (THF)-dependent, mitochondrial matrix enzyme taking part in choline degradation, one-carbon metabolism and electron transfer to the respiratory chain. The rare natural variant H109R causes dimethylglycine dehydrogenase deficiency leading to increased blood and urinary dimethylglycine concentrations. A detailed biochemical and structural characterization of hDMGDH was thus far hampered by insufficient heterologous expression of the protein. In the present study, we report the development of an intracellular, heterologous expression system in Komagataella phaffii (formerly known as Pichia pastoris) providing the opportunity to determine kinetic parameters, spectroscopic properties, thermostability, and the redox potential of hDMGDH. Moreover, we have successfully crystallized the wild-type enzyme and determined the structure to 3.1-Å resolution. The structure-based analysis of our biochemical data provided new insights into the kinetic properties of the enzyme in particular with respect to oxygen reactivity. A comparative study with the H109R variant demonstrated that the variant suffers from decreased protein stability, cofactor saturation, and substrate affinity. DATABASE Structural data are available in the PDB database under the accession number 5L46.
Collapse
Affiliation(s)
- Peter Augustin
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Altijana Hromic
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | - Karl Gruber
- Institute of Molecular Biosciences, University of Graz, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria.
| |
Collapse
|
5
|
Strickland KC, Holmes RS, Oleinik NV, Krupenko NI, Krupenko SA. Phylogeny and evolution of aldehyde dehydrogenase-homologous folate enzymes. Chem Biol Interact 2011; 191:122-8. [PMID: 21215736 PMCID: PMC3103616 DOI: 10.1016/j.cbi.2010.12.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/22/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways. Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both compartments and are likely the products of gene duplications. A well-characterized cytosolic folate enzyme, FDH (10-formyltetrahydro-folate dehydrogenase, ALDH1L1), contains a domain with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to catalyze the NADP(+)-dependent conversion of short-chain aldehydes to corresponding acids in vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism, by which a tetrahydrofolate-bound formyl group is oxidized to CO(2) in an NADP(+)-dependent fashion. We have recently cloned and characterized another folate enzyme containing an ALDH domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the respective genes, and some potential evolutionary implications are discussed. The phylogenic analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago.
Collapse
Affiliation(s)
- Kyle C. Strickland
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Roger S. Holmes
- School of Biomolecular and Physical Sciences, Griffith University, Nathan 4111 Brisbane, Queensland, Australia
| | - Natalia V. Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Natalia I. Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Sergey A. Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425 USA
| |
Collapse
|
6
|
[Transcriptome atlas of serine family amino acid metabolism-related genes in eight rat regenerating liver cell types.]. YI CHUAN = HEREDITAS 2010; 32:829-38. [PMID: 20709681 DOI: 10.3724/sp.j.1005.2010.00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To explore the transcription profiles of serine family amino acid metabolism-related genes in eight liver cell types during rat liver regeneration (LR), eight types of rat regenerating liver cells were isolated using the combination of percoll density gradient centrifugation and immunomagnetic bead methods. Then, the expression profiles of the genes associated with metabolism of serine family amino acid in rat liver regeneration were detected by Rat Genome 230 2.0 Array. The expression patterns of these genes were analyzed through the software of Cluster and Treeview. The activities of serine family amino acid metabolism were analyzed by the methods of bioinformatics and systems biology. The results showed that 27 genes were significantly expressed. Among them, the numbers of genes showing significant expression changes in hepatocytes, biliary epithelial cells, oval cells, hepatic stellate cells, sinusoidal endothelial cells, Kupffer cells, pit cells and dendritic cells were 13, 16, 11, 14, 13, 11, 12, and 14, respectively. The numbers of up-, down-, and up-/down-regulated genes in corresponding cells were 7, 6, and 0; 2, 10, and 4; 2, 8, and 1; 8, 3, and 3; 6, 5, and 2; 4, 6, and 1; 2, 10, and 0; and 6, 6, and 2. Overall, the genes in the eight types of cells were mostly down-regulated during liver regeneration, but most LR-related genes in hepatic stellate cells and sinusoidal endothelial cells were up-regulated in priming phase. It is suggested that biosynthesis of serine family amino acid was enhanced in hepatocytes, hepatic stellate cells, sinusoidal endothelial cells and Kupffer cells in the priming phase. The catabolism of them was enhanced in hepatocytes, biliary epithelial cells, pit cells and dendritic cells in progressive phase.
Collapse
|
7
|
Abstract
YgaF, a protein of previously unknown function in Escherichia coli, was shown to possess noncovalently bound flavin adenine dinucleotide and to exhibit L-2-hydroxyglutarate oxidase activity. The inability of anaerobic, reduced enzyme to reverse the reaction by reducing the product alpha-ketoglutaric acid is explained by the very high reduction potential (+19 mV) of the bound cofactor. The likely role of this enzyme in the cell is to recover alpha-ketoglutarate mistakenly reduced by other enzymes or formed during growth on propionate. On the basis of the identified function, we propose that this gene be renamed lhgO.
Collapse
|
8
|
Toogood HS, van Thiel A, Scrutton NS, Leys D. Stabilization of Non-productive Conformations Underpins Rapid Electron Transfer to Electron-transferring Flavoprotein. J Biol Chem 2005; 280:30361-6. [PMID: 15975918 DOI: 10.1074/jbc.m505562200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
Collapse
Affiliation(s)
- Helen S Toogood
- Department of Biochemistry, University of Leicester, Henry Wellcome Building, Lancaster Road, LE1 7RH, Leicester United Kingdom
| | | | | | | |
Collapse
|
9
|
Hoard-Fruchey HM, Goetzman E, Benson L, Naylor S, Vockley J. Mammalian Electron Transferring Flavoprotein·Flavoprotein Dehydrogenase Complexes Observed by Microelectrospray Ionization-Mass Spectrometry and Surface Plasmon Resonance. J Biol Chem 2004; 279:13786-91. [PMID: 14744856 DOI: 10.1074/jbc.m313914200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microelectrospray ionization-mass spectrometry was used to directly observe electron transferring flavoprotein.flavoprotein dehydrogenase interactions. When electron transferring flavoprotein and porcine dimethylglycine dehydrogenase or sarcosine dehydrogenase were incubated together in the absence of substrate, a relative molecular mass corresponding to the flavoprotein.electron transferring flavoprotein complex was observed, providing the first direct observation of these mammalian complexes. When an acyl-CoA dehydrogenase family member, human short chain acyl-CoA dehydrogenase, was incubated with dimethylglycine dehydrogenase and electron transferring flavoprotein, the microelectrospray ionization-mass spectrometry signal for the dimethylglycine dehydrogenase.electron transferring flavoprotein complex decreased, indicating that the acyl-CoA dehydrogenases have the ability to compete with the dimethylglycine dehydrogenase/sarcosine dehydrogenase family for access to electron transferring flavoprotein. Surface plasmon resonance solution competition experiments revealed affinity constants of 2.0 and 5.0 microm for the dimethylglycine dehydrogenase-electron transferring flavoprotein and short chain acyl-CoA dehydrogenase-electron transferring flavoprotein interactions, respectively, suggesting the same or closely overlapping binding motif(s) on electron transferring flavoprotein for dehydrogenase interaction.
Collapse
Affiliation(s)
- Heidi M Hoard-Fruchey
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
10
|
McGregor DO, Dellow WJ, Lever M, George PM, Robson RA, Chambers ST. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int 2001; 59:2267-72. [PMID: 11380830 DOI: 10.1046/j.1523-1755.2001.00743.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hyperhomocysteinemia is a risk factor for atherosclerosis that is common in chronic renal failure (CRF), but its cause is unknown. Homocysteine metabolism is linked to betaine-homocysteine methyl transferase (BHMT), a zinc metalloenzyme that converts glycine betaine (GB) to N,N dimethylglycine (DMG). DMG is a known feedback inhibitor of BHMT. We postulated that DMG might accumulate in CRF and contribute to hyperhomocysteinemia by inhibiting BHMT activity. METHODS Plasma and urine concentrations of GB and DMG were measured in 33 dialysis patients (15 continuous ambulatory peritoneal dialysis and 18 hemodialysis), 33 patients with CRF, and 33 age-matched controls. Concentrations of fasting plasma total homocysteine (tHcy), red cell and serum folate, vitamins B(6) and B(12), serum zinc, and routine biochemistry were also measured. Groups were compared, and determinants of plasma tHcy were identified by correlations and stepwise linear regression. RESULTS Plasma DMG increased as renal function declined and was twofold to threefold elevated in dialysis patients. Plasma GB did not differ between groups. The fractional excretion of GB (FE(GB)) was increased tenfold, and FED(MG) was doubled in CRF patients compared with controls. Plasma tHcy correlated positively with plasma DMG, the plasma DMG:GB ratio, plasma creatinine, and FE(GB) and negatively with serum folate, zinc, and plasma GB. In the multiple regression model, only plasma creatinine, plasma DMG, or the DMG:GB ratio was independent predictors of tHcy. CONCLUSIONS DMG accumulates in CRF and independently predicts plasma tHcy concentrations. These findings suggest that reduced BHMT activity is important in the pathogenesis of hyperhomocysteinemia in CRF.
Collapse
Affiliation(s)
- D O McGregor
- Department of Nephrology, Christchurch Hospital, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
11
|
Meskys R, Harris RJ, Casaite V, Basran J, Scrutton NS. Organization of the genes involved in dimethylglycine and sarcosine degradation in Arthrobacter spp.: implications for glycine betaine catabolism. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3390-8. [PMID: 11422368 DOI: 10.1046/j.1432-1327.2001.02239.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nucleotide sequences of two cloned DNA fragments containing the structural genes of heterotetrameric sarcosine oxidase (soxBDAG) and dimethylglycine dehydrogenase (dmg) from Arthrobater spp. 1-IN and Arthrobacter globiformis, respectively, have been determined. Open reading frames were identified in the soxBDAG operon corresponding to the four subunits of heterotetrameric sarcosine oxidase by comparison with the N-terminal amino-acid sequences and the subunit relative molecular masses of the purified enzyme. Alignment of the deduced sarcosine oxidase amino-acid sequence with amino-acid sequences of functionally related proteins indicated that the arthrobacterial enzyme is highly homologous to sarcosine oxidase from Corynebacterium P-1. Deletion and expression analysis, and alignment of the deduced amino-acid sequence of the dmg gene, showed that dmg encodes a novel dimethylglycine oxidase, which is related to eukaryotic dimethylglycine dehydrogenase, and contains nucleotide-binding, flavinylation and folate-binding motifs. The recombinant dimethylglycine oxidase was purified to homogeneity and characterized. The DNA located upstream and downstream of both the soxBDAG and dmg genes is predicted to encode enzymes involved in the tetrahydrofolate-dependent assimilation of methyl groups. Based on the sequence analysis reported herein, pathways are proposed for glycine betaine catabolism in Arthrobacter species, which involve the identified folate-dependent enzymes.
Collapse
Affiliation(s)
- R Meskys
- Laboratory of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Mokslininku 12, Vilnius, Lithuania.
| | | | | | | | | |
Collapse
|
12
|
Binzak BA, Wevers RA, Moolenaar SH, Lee YM, Hwu WL, Poggi-Bach J, Engelke UFH, Hoard HM, Vockley JG, Vockley J. Cloning of dimethylglycine dehydrogenase and a new human inborn error of metabolism, dimethylglycine dehydrogenase deficiency. Am J Hum Genet 2001; 68:839-47. [PMID: 11231903 PMCID: PMC1275637 DOI: 10.1086/319520] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2000] [Accepted: 01/29/2001] [Indexed: 11/03/2022] Open
Abstract
Dimethylglycine dehydrogenase (DMGDH) (E.C. number 1.5.99.2) is a mitochondrial matrix enzyme involved in the metabolism of choline, converting dimethylglycine to sarcosine. Sarcosine is then transformed to glycine by sarcosine dehydrogenase (E.C. number 1.5.99.1). Both enzymes use flavin adenine dinucleotide and folate in their reaction mechanisms. We have identified a 38-year-old man who has a lifelong condition of fishlike body odor and chronic muscle fatigue, accompanied by elevated levels of the muscle form of creatine kinase in serum. Biochemical analysis of the patient's serum and urine, using (1)H-nuclear magnetic resonance NMR spectroscopy, revealed that his levels of dimethylglycine were much higher than control values. The cDNA and the genomic DNA for human DMGDH (hDMGDH) were then cloned, and a homozygous A-->G substitution (326 A-->G) was identified in both the cDNA and genomic DNA of the patient. This mutation changes a His to an Arg (H109R). Expression analysis of the mutant cDNA indicates that this mutation inactivates the enzyme. We therefore confirm that the patient described here represents the first reported case of a new inborn error of metabolism, DMGDH deficiency.
Collapse
Affiliation(s)
- Barbara A. Binzak
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Ron A. Wevers
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Sytske H. Moolenaar
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Yu-May Lee
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Wuh-Liang Hwu
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Jo Poggi-Bach
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Udo F. H. Engelke
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Heidi M. Hoard
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Joseph G. Vockley
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| | - Jerry Vockley
- Departments of Biochemistry and Molecular Biology and Medical Genetics, Mayo Clinic and Foundation, Rochester, Minnesota; Institute of Neurology, University Hospital Nijmegen, Nijmegen, The Netherlands; Institute of Biological Chemistry, Academia Sinica, and Institute of Biochemical Science and Department of Pediatrics and Medical Genetics, College of Medicine, National Taiwan University, Taipei; Laboratoire de Biochimie 1, Hôpital Bicêtre AP-HP, Paris; and SmithKline Beecham, Philadelphia
| |
Collapse
|