1
|
Pavan E, Peruzzo P, Cattarossi S, Bergamin N, Bordugo A, Sechi A, Scarpa M, Biasizzo J, Colucci F, Dardis A. Deficiency of Glucocerebrosidase Activity beyond Gaucher Disease: PSAP and LIMP-2 Dysfunctions. Int J Mol Sci 2024; 25:6615. [PMID: 38928321 PMCID: PMC11204053 DOI: 10.3390/ijms25126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glucocerebrosidase (GCase) is a lysosomal enzyme that catalyzes the breakdown of glucosylceramide in the presence of its activator saposin C (SapC). SapC arises from the proteolytical cleavage of prosaposin (encoded by PSAP gene), which gives rise to four saposins. GCase is targeted to the lysosomes by LIMP-2, encoded by SCARB2 gene. GCase deficiency causes Gaucher Disease (GD), which is mainly due to biallelic pathogenetic variants in the GCase-encoding gene, GBA1. However, impairment of GCase activity can be rarely caused by SapC or LIMP-2 deficiencies. We report a new case of LIMP-2 deficiency and a new case of SapC deficiency (missing all four saposins, PSAP deficiency), and measured common biomarkers of GD and GCase activity. Glucosylsphingosine and chitotriosidase activity in plasma were increased in GCase deficiencies caused by PSAP and GBA1 mutations, whereas SCARB2-linked deficiency showed only Glucosylsphingosine elevation. GCase activity was reduced in fibroblasts and leukocytes: the decrease was sharper in GBA1- and SCARB2-mutant fibroblasts than PSAP-mutant ones; LIMP-2-deficient leukocytes displayed higher residual GCase activity than GBA1-mutant ones. Finally, we demonstrated that GCase mainly undergoes proteasomal degradation in LIMP-2-deficient fibroblasts and lysosomal degradation in PSAP-deficient fibroblasts. Thus, we analyzed the differential biochemical profile of GCase deficiencies due to the ultra-rare PSAP and SCARB2 biallelic pathogenic variants in comparison with the profile observed in GBA1-linked GCase deficiency.
Collapse
Affiliation(s)
- Eleonora Pavan
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Paolo Peruzzo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Silvia Cattarossi
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Natascha Bergamin
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Andrea Bordugo
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Annalisa Sechi
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| | - Jessica Biasizzo
- Clinical Pathology Division, Department of Laboratory Medicine, University Hospital Friuli Centrale ASUFC, 33100 Udine, Italy;
| | - Fabiana Colucci
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, University Hospital of Udine, 33100 Udine, Italy; (E.P.); (P.P.); (S.C.); (N.B.); (A.B.); (A.S.)
| |
Collapse
|
2
|
Toffoli M, Smith L, Schapira AHV. The biochemical basis of interactions between Glucocerebrosidase and alpha-synuclein in GBA1 mutation carriers. J Neurochem 2020; 154:11-24. [PMID: 31965564 DOI: 10.1111/jnc.14968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
The discovery of genes involved in familial as well as sporadic forms of Parkinson disease (PD) constitutes an important milestone in understanding this disorder's pathophysiology and potential treatment. Among these genes, GBA1 is one of the most common and well-studied, but it is still unclear how mutations in GBA1 translate into an increased risk for developing PD. In this review, we provide an overview of the biochemical and structural relationship between GBA1 and PD to help understand the recent advances in the development of PD therapies intended to target this pathway.
Collapse
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Laura Smith
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, UK
| |
Collapse
|
3
|
Smith L, Mullin S, Schapira AHV. Insights into the structural biology of Gaucher disease. Exp Neurol 2017; 298:180-190. [PMID: 28923368 DOI: 10.1016/j.expneurol.2017.09.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 01/08/2023]
Abstract
Gaucher disease, the most common lysosomal storage disorder, is caused by mutations in the gene encoding the acid-β-glucosidase lysosomal hydrolase enzyme that cleaves glucocerebroside into glucose and ceramide. Reduced enzyme activity and impaired structural stability arise due to >300 known disease-causing mutations. Several of these mutations have also been associated with an increased risk of Parkinson disease (PD). Since the discovery of the acid-β-glucosidase X-ray structure, there have been major advances in our understanding of the structural properties of the protein. Analysis of specific residues has provided insight into their functional and structural importance and provided insight into the pathogenesis of Gaucher disease and the contribution to PD. Disease-causing mutations are positioned throughout the acid-β-glucosidase structure, with many located far from the active site and thus retaining some enzymatic activity however, thus far no clear relationship between mutation location and disease severity has been established. Here, we review the crystal structure of acid-β-glucosidase, while highlighting important structural aspects of the protein in detail. This review discusses the structural stability of acid-β-glucosidase, which can be altered by pH and glycosylation, and explores the relationship between known Gaucher disease and PD mutations, structural stability and disease severity.
Collapse
Affiliation(s)
- Laura Smith
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Stephen Mullin
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London, NW3 2PF, UK.
| |
Collapse
|
4
|
Liou B, Haffey WD, Greis KD, Grabowski GA. The LIMP-2/SCARB2 binding motif on acid β-glucosidase: basic and applied implications for Gaucher disease and associated neurodegenerative diseases. J Biol Chem 2014; 289:30063-74. [PMID: 25202012 PMCID: PMC4208013 DOI: 10.1074/jbc.m114.593616] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
The acid β-glucosidase (glucocerbrosidase (GCase)) binding sequence to LIMP-2 (lysosomal integral membrane protein 2), the receptor for intracellular GCase trafficking to the lysosome, has been identified. Heterologous expression of deletion constructs, the available GCase crystal structures, and binding and co-localization of identified peptides or mutant GCases were used to identify and characterize a highly conserved 11-amino acid sequence, DSPIIVDITKD, within human GCase. The binding to LIMP-2 is not dependent upon a single amino acid, but the interactions of GCase with LIMP-2 are heavily influenced by Asp(399) and the di-isoleucines, Ile(402) and Ile(403). A single alanine substitution at any of these decreases GCase binding to LIMP-2 and alters its pH-dependent binding as well as diminishing the trafficking of GCase to the lysosome and significantly increasing GCase secretion. Enterovirus 71 also binds to LIMP-2 (also known as SCARB2) on the external surface of the plasma membrane. However, the LIMP-2/SCARB2 binding sequences for enterovirus 71 and GCase are not similar, indicating that LIMP-2/SCARB2 may have multiple or overlapping binding sites with differing specificities. These findings have therapeutic implications for the production of GCase and the distribution of this enzyme that is delivered to various organs.
Collapse
Affiliation(s)
- Benjamin Liou
- From the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229 and
| | - Wendy D Haffey
- the Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati Medical Center, Cincinnati, Ohio 45229
| | - Kenneth D Greis
- the Department of Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati Medical Center, Cincinnati, Ohio 45229
| | - Gregory A Grabowski
- From the Division of Human Genetics, Cincinnati Children's Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229 and
| |
Collapse
|
5
|
Sun Y, Zhang W, Xu YH, Quinn B, Dasgupta N, Liou B, Setchell KDR, Grabowski GA. Substrate compositional variation with tissue/region and Gba1 mutations in mouse models--implications for Gaucher disease. PLoS One 2013; 8:e57560. [PMID: 23520473 PMCID: PMC3592923 DOI: 10.1371/journal.pone.0057560] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 01/25/2013] [Indexed: 01/26/2023] Open
Abstract
Gaucher disease results from GBA1 mutations that lead to defective acid β-glucosidase (GCase) mediated cleavage of glucosylceramide (GC) and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*). Gba1 heteroallelism for D409V and null alleles (9V/null) led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C*) with V394L homozygosity (4L;C*) showed major GC18∶0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C*) led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - You-Hai Xu
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Brian Quinn
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Nupur Dasgupta
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Benjamin Liou
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Kenneth D. R. Setchell
- Division of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Gregory A. Grabowski
- Division of Human Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Generation of a Chinese hamster ovary cell line producing recombinant human glucocerebrosidase. J Biomed Biotechnol 2012; 2012:875383. [PMID: 23091360 PMCID: PMC3471063 DOI: 10.1155/2012/875383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/30/2012] [Accepted: 07/19/2012] [Indexed: 01/11/2023] Open
Abstract
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84 million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr−) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (~64 and 59 kDa) and secreted (63–69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditional methods of screening high-producing recombinant cells may represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.
Collapse
|
7
|
Sun Y, Liou B, Xu YH, Quinn B, Zhang W, Hamler R, Setchell KDR, Grabowski GA. Ex vivo and in vivo effects of isofagomine on acid β-glucosidase variants and substrate levels in Gaucher disease. J Biol Chem 2011; 287:4275-87. [PMID: 22167193 DOI: 10.1074/jbc.m111.280016] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Isofagomine (IFG) is an acid β-glucosidase (GCase) active site inhibitor that acts as a pharmacological chaperone. The effect of IFG on GCase function was investigated in GCase mutant fibroblasts and mouse models. IFG inhibits GCase with K(i) ∼30 nM for wild-type and mutant enzymes (N370S and V394L). Fibroblasts treated with IFG at μM concentrations showed enhancement of WT and mutant GCase activities and protein levels. Administration of IFG (30 mg/kg/day) to the mice homozygous for GCase mutations (V394L, D409H, or D409V) led to increased GCase activity in visceral tissues and brain extracts. IFG effects on GCase stability and substrate levels were evaluated in a mouse model (hG/4L/PS-NA) that has doxycycline-controlled human WT GCase (hGCase) expression driven by a liver-specific promoter and is also homozygous for the IFG-responsive V394L GCase. Both human and mouse GCase activity and protein levels were increased in IFG-treated mice. The liver-secreted hGCase in serum was stabilized, and its effect on the lung and spleen involvement was enhanced by IFG treatment. In 8-week IFG-treated mice, the accumulated glucosylceramide and glucosylsphingosine were reduced by 75 and 33%, respectively. Decreases of storage cells were correlated with >50% reductions in substrate levels. These results indicate that IFG stabilizes GCase in tissues and serum and can reduce visceral substrates in vivo.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Novo JB, Oliveira MLS, Magalhães GS, Morganti L, Raw I, Ho PL. Generation of polyclonal antibodies against recombinant human glucocerebrosidase produced in Escherichia coli. Mol Biotechnol 2011; 46:279-86. [PMID: 20574770 DOI: 10.1007/s12033-010-9303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher's disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.
Collapse
Affiliation(s)
- Juliana Branco Novo
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, 05503-900, Brazil.
| | | | | | | | | | | |
Collapse
|
9
|
Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 2010; 51:1643-75. [PMID: 20211931 DOI: 10.1194/jlr.r003996] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
10
|
Maegawa GHB, Tropak MB, Buttner JD, Rigat BA, Fuller M, Pandit D, Tang L, Kornhaber GJ, Hamuro Y, Clarke JTR, Mahuran DJ. Identification and characterization of ambroxol as an enzyme enhancement agent for Gaucher disease. J Biol Chem 2009; 284:23502-16. [PMID: 19578116 PMCID: PMC2749124 DOI: 10.1074/jbc.m109.012393] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/23/2009] [Indexed: 12/25/2022] Open
Abstract
Gaucher disease (GD), the most prevalent lysosomal storage disease, is caused by a deficiency of glucocerebrosidase (GCase). The identification of small molecules acting as agents for enzyme enhancement therapy is an attractive approach for treating different forms of GD. A thermal denaturation assay utilizing wild type GCase was developed to screen a library of 1,040 Food and Drug Administration-approved drugs. Ambroxol (ABX), a drug used to treat airway mucus hypersecretion and hyaline membrane disease in newborns, was identified and found to be a pH-dependent, mixed-type inhibitor of GCase. Its inhibitory activity was maximal at neutral pH, found in the endoplasmic reticulum, and undetectable at the acidic pH of lysosomes. The pH dependence of ABX to bind and stabilize the enzyme was confirmed by monitoring the rate of hydrogen/deuterium exchange at increasing guanidine hydrochloride concentrations. ABX treatment significantly increased N370S and F213I mutant GCase activity and protein levels in GD fibroblasts. These increases were primarily confined to the lysosome-enriched fraction of treated cells, a finding confirmed by confocal immunofluorescence microscopy. Additionally, enhancement of GCase activity and a reduction in glucosylceramide storage was verified in ABX-treated GD lymphoblasts (N370S/N370S). Hydrogen/deuterium exchange mass spectrometry revealed that upon binding of ABX, amino acid segments 243-249, 310-312, and 386-400 near the active site of GCase are stabilized. Consistent with its mixed-type inhibition of GCase, modeling studies indicated that ABX interacts with both active and non-active site residues. Thus, ABX has the biochemical characteristics of a safe and effective enzyme enhancement therapy agent for the treatment of patients with the most common GD genotypes.
Collapse
Affiliation(s)
- Gustavo H. B. Maegawa
- From the Division of Clinical and Metabolic Genetics, Department of Paediatrics, and
- Genetic and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- the Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Michael B. Tropak
- Genetic and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Justin D. Buttner
- Genetic and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Brigitte A. Rigat
- Genetic and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Maria Fuller
- the Lysosomal Diseases Research Unit, SA Pathology at Women's and Children's Hospital, and Department of Pediatrics, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Liangiie Tang
- ExSar Corporation, Monmouth Junction, New Jersey 08852, and
| | | | | | - Joe T. R. Clarke
- From the Division of Clinical and Metabolic Genetics, Department of Paediatrics, and
- Genetic and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- the Institute of Medical Sciences, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Don J. Mahuran
- Genetic and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
- the Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| |
Collapse
|
11
|
Identification and characterization of mature β-hexosaminidases associated with human placenta lysosomal membrane. Biosci Rep 2008; 28:229-37. [DOI: 10.1042/bsr20080075] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hex (β-hexosaminidase) is a soluble glycohydrolase involved in glycoconjugate degradation in lysosomes, however its localization has also been described in the cytosol and PM (plasma membrane). We previously demonstrated that Hex associated with human fibroblast PM as the mature form, which is functionally active towards GM2 ganglioside. In the present study, Hex was analysed in a lysosomal membrane-enriched fraction obtained by purification from highly purified human placenta lysosomes. These results demonstrate the presence of mature Hex associated with the lysosomal membrane and displaying, as observed for the PM-associated form, an acidic optimum pH. When subjected to sodium carbonate extraction, the enzyme behaved as a peripheral membrane protein, whereas Triton X-114 phase separation confirmed its partially hydrophilic nature, characteristics which are shared with the PM-associated form of Hex. Moreover, two-dimensional electrophoresis indicated a slight difference in the pI of β-subunits in the membrane and the soluble forms of the lysosomal Hex. These results reveal a new aspect of Hex biology and suggest that a fully processed membrane-associated form of Hex is translocated from the lysosomal membrane to the PM by an as yet unknown mechanism. We present a testable hypothesis that, at the cell surface, Hex changes the composition of glycoconjugates that are known to be involved in intercellular communication and signalling.
Collapse
|
12
|
Reczek D, Schwake M, Schröder J, Hughes H, Blanz J, Jin X, Brondyk W, Van Patten S, Edmunds T, Saftig P. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase. Cell 2007; 131:770-83. [PMID: 18022370 DOI: 10.1016/j.cell.2007.10.018] [Citation(s) in RCA: 411] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/05/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
beta-glucocerebrosidase, the enzyme defective in Gaucher disease, is targeted to the lysosome independently of the mannose-6-phosphate receptor. Affinity-chromatography experiments revealed that the lysosomal integral membrane protein LIMP-2 is a specific binding partner of beta-glucocerebrosidase. This interaction involves a coiled-coil domain within the lumenal domain. beta-glucocerebrosidase activity and protein levels were severely decreased in LIMP-2-deficient mouse tissues. Analysis of fibroblasts and macrophages isolated from these mice indicated that the majority of beta-glucocerebrosidase was secreted. Missorting of beta-glucocerebrosidase was also evident in vivo, as protein and activity levels were significantly higher in sera from LIMP-2-deficient mice compared to wild-type. Reconstitution of LIMP-2 in LIMP-2-deficient fibroblasts led to a rescue of beta-glucocerebrosidase levels and distribution. LIMP-2 expression also led to lysosomal transport of a beta-glucocerebrosidase endoplasmic reticulum retention mutant. These data support a role for LIMP-2 as the mannose-6-phosphate-independent trafficking receptor for beta-glucocerebrosidase.
Collapse
Affiliation(s)
- David Reczek
- Genzyme Corporation, 1 Mountain Road, Framingham, MA 01701, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Grabowski GA. Delivery of lysosomal enzymes for therapeutic use: glucocerebrosidase as an example. Expert Opin Drug Deliv 2006; 3:771-82. [PMID: 17076599 DOI: 10.1517/17425247.3.6.771] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enzyme therapies for lysosomal storage diseases have developed over the past decade into the standard-of-care for affected patients. Such therapy for Gaucher disease has been the prototype, using natural source or recombinant forms of human acid beta-glucosidase (GCase). In Gaucher disease, macrophages are the repository for the pathological lipid and the target for delivery of GCase. The macrophage mannose receptor provides a Trojan horse for intracellular delivery of intravenously administered GCase (man-GCase) with mannosyl-terminated oligosaccharide chains. Passage through several hostile compartments (e.g., plasma) leads to inefficient delivery of man-GCase to macrophage lysosomes. However, regular infusions of man-GCase re-establishes health in affected patients. Similar results are being obtained in several other lysosomal storage diseases. Evolving gene and chaperone approaches provide alternative treatment strategies.
Collapse
Affiliation(s)
- Gregory A Grabowski
- The Division and Programme in Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| |
Collapse
|
14
|
Sun Y, Quinn B, Xu YH, Leonova T, Witte DP, Grabowski GA. Conditional expression of human acid β-glucosidase improves the visceral phenotype in a Gaucher disease mouse model. J Lipid Res 2006; 47:2161-70. [PMID: 16861620 DOI: 10.1194/jlr.m600239-jlr200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reversibility and regression of histological and biochemical findings in a mouse model of Gaucher disease (4L/PS-NA) was evaluated using a liver-enriched activator protein promoter control of a tetracycline-controlled transcriptional activation-responsive human acid beta-glucosidase (hGCase) transgenic system. 4L/PS-NA has the acid beta-glucosidase (GCase) V394L/V394L (4L) point mutation combined with hypomorphic ( approximately 6% wild-type) expression of the mouse prosaposin transgene (PS-NA). The hGCase/4L/PS-NA had exclusive liver expression of hGCase controlled by doxycycline (DOX). In the absence of DOX, hGCase was secreted from liver at levels of approximately 120 microg/ml serum with only approximately 8% of full activity, following exposure to pH 7.4 in serum. The hGCase activity and protein were detected in cells of the liver (massive), lung, and spleen, but not the brain. The visceral tissue storage cells and glucosylceramide (GC) accumulation in hGCase/4L/PS-NA were decreased from that in 4L/PS-NA mice. Turning off hGCase expression with dietary DOX led to reaccumulation of storage cells and of GC in liver, lung, and spleen, and macrophage activation in those tissues. This study demonstrates that conditionally expressed hGCase supplemented the existing mutant mouse GCase to control visceral substrate accumulation in vivo.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Children's Hospital Research Foundation and University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
15
|
Liou B, Kazimierczuk A, Zhang M, Scott CR, Hegde RS, Grabowski GA. Analyses of variant acid beta-glucosidases: effects of Gaucher disease mutations. J Biol Chem 2005; 281:4242-53. [PMID: 16293621 DOI: 10.1074/jbc.m511110200] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acid beta-glucosidase (GCase) is a 497-amino acid, membrane-associated lysosomal exo-beta-glucosidase whose defective activity leads to the Gaucher disease phenotypes. To move toward a structure/function map for disease mutations, 52 selected single amino acid substitutions were introduced into GCase, expressed in an insect cell system, purified, and characterized for basic kinetic, stability, and activator response properties. The variant GCases from Gaucher disease patients and selected variant GCases from the mouse had decreased relative k(cat) and differential effects on active site binding and/or attachment of mechanism-based covalent (conduritol B epoxide) or reversible (deoxynojirimycin derivatives) inhibitors. A defect in negatively charged phospholipid activation was present in the majority of variant GCases but was increased in two, N370S and V394L. Deficits in saposin C enhancement of k(cat) were present in variant GCases involving residues 48-122, whereas approximately 2-fold increases were obtained with the L264I GCase. About 50% of variant GCases each had wild-type or increased sensitivity to in vitro cathepsin D digestion. Mapping of these properties onto the crystal structures of GCase indicated wide dispersion of functional properties that can affect catalytic function and stability. Site-directed mutagenesis of cysteine residues showed that the disulfide bonds, Cys(4)-Cys(16) and Cys(18)-Cys(23), and a free Cys(342) were essential for activity; the free Cys(126) and Cys(248) were not. Relative k(cat) was highly sensitive to a His substitution at Arg(496) but not at Arg(495). These studies and high phylogenetic conservation indicate localized and general structural effects of Gaucher disease mutations that were not obvious from the nature of the amino acid substitution, including those predicted to be nondisruptive (e.g. Val --> Leu). These results provide initial studies for the engineering of variant GCases and, potentially, molecular chaperones for therapeutic use.
Collapse
Affiliation(s)
- Benjamin Liou
- Division and Program in Human Genetics, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
16
|
Reggi S, Marchetti S, Patti T, De Amicis F, Cariati R, Bembi B, Fogher C. Recombinant human acid beta-glucosidase stored in tobacco seed is stable, active and taken up by human fibroblasts. PLANT MOLECULAR BIOLOGY 2005; 57:101-13. [PMID: 15821871 DOI: 10.1007/s11103-004-6832-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 11/26/2004] [Indexed: 05/24/2023]
Abstract
Gaucher disease, the most common genetic lysosomal disorder, is caused by the lack of functional acid beta-glucosidase (GCase) and is currently treated at a very high cost by enzyme replacement therapy. In an attempt to provide a safe and cost-effective production system, human placental GCase was produced and purified from transgenic tobacco seeds. Plant-derived recombinant GCase was found to be enzymatically active, uptaken by human fibroblasts and free of immunogenic xylose and fucose residues. This report demonstrates the potential of plant bioreactors in the large-scale production of injectable proteins required for lifelong therapy.
Collapse
Affiliation(s)
- Serena Reggi
- Plantechno srl, Via Staffolo 60, Vicomoscano, 26040 Cremona, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
Grabowski GA, Hopkin RJ. Enzyme therapy for lysosomal storage disease: principles, practice, and prospects. Annu Rev Genomics Hum Genet 2003; 4:403-36. [PMID: 14527307 DOI: 10.1146/annurev.genom.4.070802.110415] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past three decades, enzyme therapy for lysosomal storage diseases has moved from an academic pursuit to direct delivery of effective clinical care for affected patients and families. This success is based on understanding the complexities of lysosomal biogenesis, lysosomal hydrolase sorting and hydrolytic requirements, and the target sites of pathology of these diseases. This article reviews these concepts and their application to the treatment of affected patients with Gaucher disease, Fabry disease, and mucopolysaccharidosis I. The principles, progress, and practice in these diseases provide prototypes for expansion of enzyme therapy to a growing set of these diseases.
Collapse
Affiliation(s)
- Gregory A Grabowski
- The Division and Program in Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, Ohio, 45229-3039, USA.
| | | |
Collapse
|
18
|
Sun Y, Qi X, Grabowski GA. Saposin C is required for normal resistance of acid beta-glucosidase to proteolytic degradation. J Biol Chem 2003; 278:31918-23. [PMID: 12813057 DOI: 10.1074/jbc.m302752200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saposins (A, B, C, and D) are small sphingolipid activator proteins that are derived by proteolytic processing of a common precursor, prosaposin. In the lysosomal sphingolipid degradation pathway, acid beta-glucosidase (GCase) requires saposin C for optimal in vitro and in vivo hydrolysis of glucocerebroside. The deficiency of prosaposin/saposins (PS-/-) in humans and mice leads to a decrease of GCase activity in selected tissues. Concordant decreases (>50%) of GCase protein and in vitro activity were detected in extracts of cultured fibroblasts and hepatocytes from PS-/- mice and human prosaposin-deficient fibroblasts. GCase RNA in the PS-/- cells was at wild-type levels. Compared with that in wild-type cells (t(1/2) >24 h), the GCase protein in the PS-/- cells had a faster disappearance rate (t(1/2) approximately 1 h in mouse and approximately 8 h in human) as determined by metabolic labeling and immunoprecipitation with anti-GCase antibodies. Treatment of PS-/- cells with leupeptin, an inhibitor of cysteine proteases, led to significant increases (approximately 2-fold) in GCase protein and in vitro activity. Loading saposin C to human PS-/- fibroblasts resulted in an enhancement of GCase protein and in vitro activity. Saposin D loading had no effect. These data indicate that saposin C is required for GCase resistance to proteolytic degradation in the cell. Thus, diminished in vivo GCase activity would be greater than expected only from the lack of GCase activation by saposin C. These results indicate a new property for saposin C, an anti-proteolytic protective function toward GCase.
Collapse
Affiliation(s)
- Ying Sun
- Division and Program in Human Genetics, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA
| | | | | |
Collapse
|
19
|
Taute A, Wätzig K, Simons B, Lohaus C, Meyer H, Hasilik A. Presence of detergent-resistant microdomains in lysosomal membranes. Biochem Biophys Res Commun 2002; 298:5-9. [PMID: 12379211 DOI: 10.1016/s0006-291x(02)02387-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the association of acetyl-CoA:alpha-glucosaminide N-acetyltransferase, a lysosomal enzyme participating in the degradation of heparan sulfate with other components of the lysosomal membrane. We prepared lysosomal membranes from human placenta and treated them with zwitterionic and non-ionic detergents. Membrane proteins were solubilized either in the presence of CHAPS at room temperature or of Triton X-100 at 4 degrees C. The CHAPS-containing extract was subjected to gel filtration in a column with the nominal size exclusion of 0.6 MDa. Under these conditions the enzyme fractionated near the void volume. To examine the association of the enzyme with detergent-resistant lipid microdomains, the extract that had been prepared with Triton X-100 was subjected to flotation in a density gradient medium. After centrifugation, a major portion of the activity of the acetyltransferase was found at the top of the gradient along with the bulk of alkaline phosphatase. Alkaline phosphatase is a glycosylphosphatidylinositol-anchored protein; possibly a contaminant in the lysosomal fraction originating from the plasma membrane and adventitiously an internal control for the flotation in the gradient. In contrast, acetyltransferase is a genuine lysosomal protein that obligatorily spans the membrane since it transfers acetyl residues from acetyl-CoA in cytosol to glucosaminyl residues in heparan sulfate fragments in the lysosomal matrix. To our knowledge this is the first report on association of a lysosomal membrane protein with detergent-resistant membrane microdomains or rafts.
Collapse
Affiliation(s)
- Antje Taute
- Institut für Physiologische Chemie, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 1, 35033, Marburg, Germany
| | | | | | | | | | | |
Collapse
|