1
|
Lähteenaro M, Benda D, Straka J, Nylander JAA, Bergsten J. Phylogenomic analysis of Stylops reveals the evolutionary history of a Holarctic Strepsiptera radiation parasitizing wild bees. Mol Phylogenet Evol 2024; 195:108068. [PMID: 38554985 DOI: 10.1016/j.ympev.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Holarctic Stylops is the largest genus of the enigmatic insect order Strepsiptera, twisted winged parasites. Members of Stylops are obligate endoparasites of Andrena mining bees and exhibit extreme sexual dimorphism typical of Strepsiptera. So far, molecular studies on Stylops have focused on questions on species delimitation. Here, we utilize the power of whole genome sequencing to infer the phylogeny of this morphologically challenging genus from thousands of loci. We use a species tree method, concatenated maximum likelihood analysis and Bayesian analysis with a relaxed clock model to reconstruct the phylogeny of 46 Stylops species, estimate divergence times, evaluate topological consistency across methods and infer the root position. Furthermore, the biogeographical history and coevolutionary patterns with host species are assessed. All methods recovered a well resolved topology with close to all nodes maximally supported and only a handful of minor topological variations. Based on the result, we find that included species can be divided into 12 species groups, seven of them including only Palaearctic species, three Nearctic and two were geographically mixed. We find a strongly supported root position between a clade formed by the spreta, thwaitesi and gwynanae species groups and the remaining species and that the sister group of Stylops is Eurystylops or Eurystylops + Kinzelbachus. Our results indicate that Stylops originated in the Western Palaearctic or Western Palaearctic and Nearctic in the early Neogene or late Paleogene, with four independent dispersal events to the Nearctic. Cophylogenetic analyses indicate that the diversification of Stylops has been shaped by both significant coevolution with the mining bee hosts and host-shifting. The well resolved and strongly supported phylogeny will provide a valuable phylogenetic basis for further studies into the fascinating world of Strepsipterans.
Collapse
Affiliation(s)
- Meri Lähteenaro
- Department of Zoology, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden; Department of Zoology, Faculty of Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Daniel Benda
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44, Prague 2, Czech Republic; Department of Entomology, National Museum of the Czech Republic, Cirkusová 1740, CZ-19300 Prague 9, Czech Republic.
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44, Prague 2, Czech Republic.
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, SE-106 91 Stockholm, Sweden.
| | - Johannes Bergsten
- Department of Zoology, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden; Department of Zoology, Faculty of Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Sottolano CJ, Revaitis NT, Geneva AJ, Yakoby N. Nebulous without white: annotated long-read genome assembly and CRISPR/Cas9 genome engineering in Drosophila nebulosa. G3 (BETHESDA, MD.) 2022; 12:jkac231. [PMID: 36063049 PMCID: PMC9635631 DOI: 10.1093/g3journal/jkac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The diversity among Drosophila species presents an opportunity to study the molecular mechanisms underlying the evolution of biological phenomena. A challenge to investigating these species is that, unlike the plethora of molecular and genetics tools available for D. melanogaster research, many other species do not have sequenced genomes; a requirement for employing these tools. Selecting transgenic flies through white (w) complementation has been commonly practiced in numerous Drosophila species. While tolerated, the disruption of w is associated with impaired vision, among other effects in D. melanogaster. The D. nebulosa fly has a unique mating behavior which requires vision, and is thus unable to successfully mate in dark conditions. Here, we hypothesized that the disruption of w will impede mating success. As a first step, using PacBio long-read sequencing, we assembled a high-quality annotated genome of D. nebulosa. Using these data, we employed CRISPR/Cas9 to successfully disrupt the w gene. As expected, D. nebulosa males null for w did not court females, unlike several other mutant strains of Drosophila species whose w gene has been disrupted. In the absence of mating, no females became homozygous null for w. We conclude that gene disruption via CRISPR/Cas9 genome engineering is a successful tool in D. nebulosa, and that the w gene is necessary for mating. Thus, an alternative selectable marker unrelated to vision is desirable.
Collapse
Affiliation(s)
- Christopher J Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Nicole T Revaitis
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Anthony J Geneva
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Nir Yakoby
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
- Department of Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| |
Collapse
|
3
|
Didelot X, Parkhill J. A scalable analytical approach from bacterial genomes to epidemiology. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210246. [PMID: 35989600 PMCID: PMC9393561 DOI: 10.1098/rstb.2021.0246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Recent years have seen a remarkable increase in the practicality of sequencing whole genomes from large numbers of bacterial isolates. The availability of this data has huge potential to deliver new insights into the evolution and epidemiology of bacterial pathogens, but the scalability of the analytical methodology has been lagging behind that of the sequencing technology. Here we present a step-by-step approach for such large-scale genomic epidemiology analyses, from bacterial genomes to epidemiological interpretations. A central component of this approach is the dated phylogeny, which is a phylogenetic tree with branch lengths measured in units of time. The construction of dated phylogenies from bacterial genomic data needs to account for the disruptive effect of recombination on phylogenetic relationships, and we describe how this can be achieved. Dated phylogenies can then be used to perform fine-scale or large-scale epidemiological analyses, depending on the proportion of cases for which genomes are available. A key feature of this approach is computational scalability and in particular the ability to process hundreds or thousands of genomes within a matter of hours. This is a clear advantage of the step-by-step approach described here. We discuss other advantages and disadvantages of the approach, as well as potential improvements and avenues for future research. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry CV4 7AL, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
4
|
Tabatabaee Y, Sarker K, Warnow T. Quintet Rooting: rooting species trees under the multi-species coalescent model. Bioinformatics 2022; 38:i109-i117. [PMID: 35758805 PMCID: PMC9236578 DOI: 10.1093/bioinformatics/btac224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Motivation Rooted species trees are a basic model with multiple applications throughout biology, including understanding adaptation, biodiversity, phylogeography and co-evolution. Because most species tree estimation methods produce unrooted trees, methods for rooting these trees have been developed. However, most rooting methods either rely on prior biological knowledge or assume that evolution is close to clock-like, which is not usually the case. Furthermore, most prior rooting methods do not account for biological processes that create discordance between gene trees and species trees. Results We present Quintet Rooting (QR), a method for rooting species trees based on a proof of identifiability of the rooted species tree under the multi-species coalescent model established by Allman, Degnan and Rhodes (J. Math. Biol., 2011). We show that QR is generally more accurate than other rooting methods, except under extreme levels of gene tree estimation error. Availability and implementation Quintet Rooting is available in open source form at https://github.com/ytabatabaee/Quintet-Rooting. The simulated datasets used in this study are from a prior study and are available at https://www.ideals.illinois.edu/handle/2142/55319. The biological dataset used in this study is also from a prior study and is available at http://gigadb.org/dataset/101041. Contact warnow@illinois.edu Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yasamin Tabatabaee
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kowshika Sarker
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tandy Warnow
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Roman BE, Santana DJ, Prediger C, Madi-Ravazzi L. Phylogeny of Drosophila saltans group (Diptera: Drosophilidae) based on morphological and molecular evidence. PLoS One 2022; 17:e0266710. [PMID: 35390108 PMCID: PMC8989330 DOI: 10.1371/journal.pone.0266710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/25/2022] [Indexed: 11/19/2022] Open
Abstract
Drosophila saltans group belongs to the subgenus Sophophora (family Drosophilidae), and it is subdivided into five subgroups, with 23 species. The species in this group are widely distributed in the Americas, primarily in the Neotropics. In the literature, the phylogenetic reconstruction of this group has been performed with various markers, but many inconsistencies remain. Here, we present a phylogenetic reconstruction of the saltans group with a greater number of species, 16 species, which is the most complete to date for the saltans group and includes all subgroups, in a combined analysis with morphological and molecular markers. We incorporated 48 morphological characters of male terminalia, the highest number used to date, and molecular markers based on mitochondrial genes COI and COII. Based on the results, which have recovered the five subgroups as distinct lineages, we propose a new hypothesis regarding the phylogenetic relationships among the subgroups of the saltans group. The relationships of the species within the sturtevanti and elliptica subgroups were well supported. The saltans subgroup showed several polytomies, but the relationship between the sibling species D. austrosaltans and D. saltans and their close relation with D. nigrosaltans were well supported in the molecular and total evidence analyses. The morphological analysis additionally supported the formation of the clade D. nigrosaltans—D. pseudosaltans. The observed polytomies may represent synchronous radiations or have resulted from speciation rates that have been too fast relative to the pace of substitution accumulation.
Collapse
Affiliation(s)
- Bruna Emilia Roman
- Departament of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
- * E-mail: (BER); (LMR)
| | - Diego J. Santana
- Biosciences Institute, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Carolina Prediger
- Departament of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Lilian Madi-Ravazzi
- Departament of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
- * E-mail: (BER); (LMR)
| |
Collapse
|
6
|
Another Piece of the Puzzle: Echinococcus oligarthrus Recorded in Jaguarundis (Herpailurus yagouaroundi) in Southern Brazil. J Wildl Dis 2021; 57:936-941. [PMID: 34516631 DOI: 10.7589/jwd-d-20-00208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 03/12/2021] [Indexed: 11/20/2022]
Abstract
Echinococcus oligarthrus is a tapeworm endemic to South America and widely distributed in the Amazon region. Its lifecycle is maintained by relationships between felids and their prey, mainly small sylvatic rodents, but humans can be infected occasionally. We report two female jaguarundis (Herpailurus yagouaroundi) harboring E. oligarthrus in southern Brazil. The felines were found road killed in periurban areas, and, during necropsy, the small intestine was examined. Visual inspection revealed helminths, which were submitted to microscopy and molecular examination. Morphologically, they were around 2.5 mm long, with four suckers and an armed scolex with two rows of hooks. Phylogenetic reconstruction using cytochrome c oxidase subunit I gene sequences placed samples from south Brazil in the same clade as all other E. oligarthrus samples, but as a sister group. Genetic distance gave similar results, resulting in a divergence of 0.087% between the samples described in this study and other samples. The geographic pattern of genetic diversity, as assessed by analysis of molecular variance, suggests that the divergency results from isolation by distance. This finding expands the geographic range of E. oligarthrus and brings new insights to help understand and prevent the zoonosis it causes.
Collapse
|
7
|
Spasojevic T, Broad GR, Sääksjärvi IE, Schwarz M, Ito M, Korenko S, Klopfstein S. Mind the Outgroup and Bare Branches in Total-Evidence Dating: a Case Study of Pimpliform Darwin Wasps (Hymenoptera, Ichneumonidae). Syst Biol 2021; 70:322-339. [PMID: 33057674 PMCID: PMC7875445 DOI: 10.1093/sysbio/syaa079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 01/16/2023] Open
Abstract
Taxon sampling is a central aspect of phylogenetic study design, but it has received limited attention in the context of total-evidence dating, a widely used dating approach that directly integrates molecular and morphological information from extant and fossil taxa. We here assess the impact of commonly employed outgroup sampling schemes and missing morphological data in extant taxa on age estimates in a total-evidence dating analysis under the uniform tree prior. Our study group is Pimpliformes, a highly diverse, rapidly radiating group of parasitoid wasps of the family Ichneumonidae. We analyze a data set comprising 201 extant and 79 fossil taxa, including the oldest fossils of the family from the Early Cretaceous and the first unequivocal representatives of extant subfamilies from the mid-Paleogene. Based on newly compiled molecular data from ten nuclear genes and a morphological matrix that includes 222 characters, we show that age estimates become both older and less precise with the inclusion of more distant and more poorly sampled outgroups. These outgroups not only lack morphological and temporal information but also sit on long terminal branches and considerably increase the evolutionary rate heterogeneity. In addition, we discover an artifact that might be detrimental for total-evidence dating: "bare-branch attraction," namely high attachment probabilities of certain fossils to terminal branches for which morphological data are missing. Using computer simulations, we confirm the generality of this phenomenon and show that a large phylogenetic distance to any of the extant taxa, rather than just older age, increases the risk of a fossil being misplaced due to bare-branch attraction. After restricting outgroup sampling and adding morphological data for the previously attracting, bare branches, we recover a Jurassic origin for Pimpliformes and Ichneumonidae. This first age estimate for the group not only suggests an older origin than previously thought but also that diversification of the crown group happened well before the Cretaceous-Paleogene boundary. Our case study demonstrates that in order to obtain robust age estimates, total-evidence dating studies need to be based on a thorough and balanced sampling of both extant and fossil taxa, with the aim of minimizing evolutionary rate heterogeneity and missing morphological information. [Bare-branch attraction; ichneumonids; fossils; morphological matrix; phylogeny; RoguePlots.].
Collapse
Affiliation(s)
- Tamara Spasojevic
- Abteilung Wirbellose Tiere Invertebrates, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Department of Entomology, National Museum of Natural History, Washington, DC 20560, USA
| | - Gavin R Broad
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | | | | | - Masato Ito
- Graduate School of Agricultural Science, Department of Agrobioscience, Kobe University, 657-8501 Japan
| | - Stanislav Korenko
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 21 Prague 6, Suchdol, Czech Republic
| | - Seraina Klopfstein
- Abteilung Wirbellose Tiere Invertebrates, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, 3005 Bern, Switzerland
- Institute of Ecology and Evolution, Department of Biology, University of Bern, 3012 Bern, Switzerland
- Abteilung für Biowissenschaften, Naturhistorisches Museum Basel, 4051 Basel, Switzerland
| |
Collapse
|
8
|
Hannaford NE, Heaps SE, Nye TMW, Williams TA, Embley TM. Incorporating compositional heterogeneity into Lie Markov models for phylogenetic inference. Ann Appl Stat 2020. [DOI: 10.1214/20-aoas1369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Abstract
The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplication, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy. We survey both graph-based approaches (and their various grouping strategies) and tree-based approaches, which solve the more general problem of gene/species tree reconciliation. We discuss conceptual differences among the various orthology inference methods and databases and examine the difficult issue of verifying and benchmarking orthology predictions. Finally, we review typical applications of orthologous genes, groups, and reconciled trees and conclude with thoughts on future methodological developments.
Collapse
|
10
|
Galen SC, Borner J, Martinsen ES, Schaer J, Austin CC, West CJ, Perkins SL. The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (order Haemosporida) reveal widespread taxonomic conflict. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171780. [PMID: 29892372 PMCID: PMC5990803 DOI: 10.1098/rsos.171780] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/20/2018] [Indexed: 05/29/2023]
Abstract
The evolutionary relationships among the apicomplexan blood pathogens known as the malaria parasites (order Haemosporida), some of which infect nearly 200 million humans each year, has remained a vexing phylogenetic problem due to limitations in taxon sampling, character sampling and the extreme nucleotide base composition biases that are characteristic of this clade. Previous phylogenetic work on the malaria parasites has often lacked sufficient representation of the broad taxonomic diversity within the Haemosporida or the multi-locus sequence data needed to resolve deep evolutionary relationships, rendering our understanding of haemosporidian life-history evolution and the origin of the human malaria parasites incomplete. Here we present the most comprehensive phylogenetic analysis of the malaria parasites conducted to date, using samples from a broad diversity of vertebrate hosts that includes numerous enigmatic and poorly known haemosporidian lineages in addition to genome-wide multi-locus sequence data. We find that if base composition differences were corrected for during phylogenetic analysis, we recovered a well-supported topology indicating that the evolutionary history of the malaria parasites was characterized by a complex series of transitions in life-history strategies and host usage. Notably we find that Plasmodium, the malaria parasite genus that includes the species of human medical concern, is polyphyletic with the life-history traits characteristic of this genus having evolved in a dynamic manner across the phylogeny. We find support for multiple instances of gain and loss of asexual proliferation in host blood cells and production of haemozoin pigment, two traits that have been used for taxonomic classification as well as considered to be important factors for parasite virulence and used as drug targets. Lastly, our analysis illustrates the need for a widespread reassessment of malaria parasite taxonomy.
Collapse
Affiliation(s)
- Spencer C. Galen
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA
- Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA
| | - Janus Borner
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Ellen S. Martinsen
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, PO Box 37012, MRC5503, Washington, DC 20013-7012, USA
| | - Juliane Schaer
- Department of Biology, Humboldt University, 10115, Berlin, Germany
| | - Christopher C. Austin
- Department of Biological Sciences, Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | - Susan L. Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th St., New York, NY 10024, USA
| |
Collapse
|
11
|
Cano EB, Schuster JC, Morrone JJ. Phylogenetics of Ogyges Kaup and the biogeography of Nuclear Central America (Coleoptera, Passalidae). Zookeys 2018; 737:81-111. [PMID: 29674874 PMCID: PMC5904369 DOI: 10.3897/zookeys.737.20741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/18/2018] [Indexed: 11/18/2022] Open
Abstract
A phylogenetic morphological analysis of the genus Ogyges Kaup, distributed in Nuclear Central America, from Chiapas, Mexico, to northwestern Nicaragua was undertaken. Five species of Proculejus Kaup, distributed north of the Isthmus of Tehuantepec in Mexico, were selected as outgroup. Ogyges was recovered as monophyletic with three species groups: championi, laevissimus, and crassulus. Each species group shows a distinct, generally allopatric distribution. The O. championi species group, with ten species, is distributed in the Maya block, more specifically in the mountainous system north of the Motozintla-Comaltitlán fault in Chiapas, and north of the dry valleys of the Cuilco and Motagua rivers in Guatemala. The two remaining species groups are distributed in the Chortis block. The O. laevissimus species group, including seven species, ranges mostly along the Pacific Volcanic Chain from Guatemala to El Salvador, and from southeastern Honduras to the northwestern area of Nicaragua. The O. crassulus species group, with ten species, is distributed from northeastern Guatemala (Merendón) to northern Honduras. The Isthmus of Tehuantepec in Mexico, the Motagua-Cuilco and Motozintla-Comaltitlán sutures zones in Chiapas and Guatemala, the lowland valleys of Colón and Comalí rivers between Nicaragua and Honduras (or, perhaps, the northern suture of the Siuna Terrane in Nicaragua), the Guayape fault system in Honduras, and the intricate dry valleys of Ulúa-Chamelecón-Olancho in Honduras, are hypothesized to have acted as barriers that affected the geographical distribution of Ogyges, as well as probably other montane organisms.
Collapse
Affiliation(s)
- Enio B. Cano
- Museo de Zoología "Alfonso L. Herrera", Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Apdo. postal 70-399, 04510 Mexico City, Mexico
- Universidad del Valle de Guatemala, Apartado Postal 82, 01901 Guatemala, Guatemala
- Museo de Historia Natural, Escuela de Biología, Universidad de San Carlos de Guatemala, Calle Mariscal Cruz, 1-56, zona 10, Guatemala, Guatemala
| | - Jack C. Schuster
- Universidad del Valle de Guatemala, Apartado Postal 82, 01901 Guatemala, Guatemala
| | - Juan J. Morrone
- Museo de Zoología "Alfonso L. Herrera", Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Apdo. postal 70-399, 04510 Mexico City, Mexico
| |
Collapse
|
12
|
Zanini R, Müller MJ, Vieira GC, Valiati VH, Deprá M, Valente VLDS. Combining morphology and molecular data to improve Drosophila paulistorum (Diptera, Drosophilidae) taxonomic status. Fly (Austin) 2018; 12:81-94. [PMID: 29355090 PMCID: PMC6150627 DOI: 10.1080/19336934.2018.1429859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/07/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022] Open
Abstract
The willistoni species subgroup has been the subject of several studies since the latter half of the past century and is considered a Neotropical model for evolutionary studies, given the many levels of reproductive isolation and different evolutionary stages occurring within them. Here we present for the first time a phylogenetic reconstruction combining morphological characters and molecular data obtained from 8 gene fragments (COI, COII, Cytb, Adh, Ddc, Hb, kl-3 and per). Some relationships were incongruent when comparing morphological and molecular data. Also, morphological data presented some unresolved polytomies, which could reflect the very recent divergence of the subgroup. The total evidence phylogenetic reconstruction presented well-supported relationships and summarized the results of all analyses. The diversification of the willistoni subgroup began about 7.3 Ma with the split of D. insularis while D.paulistorum complex has a much more recent diversification history, which began about 2.1 Ma and apparently has not completed the speciation process, since the average time to sister species separation is one million years, and some entities of the D. paulistorum complex diverge between 0.3 and 1 Ma. Based on the obtained data, we propose the categorization of the former "semispecies" of D. paulistorum as a subspecies and describe the subspecies D. paulistorum amazonian, D. paulistorum andeanbrazilian, D. paulistorum centroamerican, D. paulistorum interior, D. paulistorum orinocan and D. paulistorum transitional.
Collapse
Affiliation(s)
- Rebeca Zanini
- Departamento de Zoologia, Programa de Pós-Graduação em Biologia Animal (PPGBAN), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Drosophila, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Mário Josias Müller
- Laboratório de Biologia Molecular, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brazil
| | - Gilberto Cavalheiro Vieira
- Laboratório de Drosophila, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Victor Hugo Valiati
- Laboratório de Biologia Molecular, Programa de Pós-Graduação em Biologia, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brazil
| | - Maríndia Deprá
- Departamento de Zoologia, Programa de Pós-Graduação em Biologia Animal (PPGBAN), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Drosophila, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vera Lúcia da Silva Valente
- Departamento de Zoologia, Programa de Pós-Graduação em Biologia Animal (PPGBAN), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Drosophila, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Tian Y, Kubatko L. Rooting phylogenetic trees under the coalescent model using site pattern probabilities. BMC Evol Biol 2017; 17:263. [PMID: 29258427 PMCID: PMC5738147 DOI: 10.1186/s12862-017-1108-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/01/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Phylogenetic tree inference is a fundamental tool to estimate ancestor-descendant relationships among different species. In phylogenetic studies, identification of the root - the most recent common ancestor of all sampled organisms - is essential for complete understanding of the evolutionary relationships. Rooted trees benefit most downstream application of phylogenies such as species classification or study of adaptation. Often, trees can be rooted by using outgroups, which are species that are known to be more distantly related to the sampled organisms than any other species in the phylogeny. However, outgroups are not always available in evolutionary research. METHODS In this study, we develop a new method for rooting species tree under the coalescent model, by developing a series of hypothesis tests for rooting quartet phylogenies using site pattern probabilities. The power of this method is examined by simulation studies and by application to an empirical North American rattlesnake data set. RESULTS The method shows high accuracy across the simulation conditions considered, and performs well for the rattlesnake data. Thus, it provides a computationally efficient way to accurately root species-level phylogenies that incorporates the coalescent process. The method is robust to variation in substitution model, but is sensitive to the assumption of a molecular clock. CONCLUSIONS Our study establishes a computationally practical method for rooting species trees that is more efficient than traditional methods. The method will benefit numerous evolutionary studies that require rooting a phylogenetic tree without having to specify outgroups.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, 43210 OH USA
| | - Laura Kubatko
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, 43210 OH USA
- Department of Statistics, The Ohio State University, 404 Cockins Hall, 1958 Neil Avenue, Columbus, 43210 OH USA
| |
Collapse
|
14
|
Zhang Z, Guo K, Pan G, Tang J, Guo F. Improvement of phylogenetic method to analyze compositional heterogeneity. BMC SYSTEMS BIOLOGY 2017; 11:79. [PMID: 28950863 PMCID: PMC5615240 DOI: 10.1186/s12918-017-0453-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Phylogenetic analysis is a key way to understand current research in the biological processes and detect theory in evolution of natural selection. The evolutionary relationship between species is generally reflected in the form of phylogenetic trees. Many methods for constructing phylogenetic trees, are based on the optimization criteria. We extract the biological data via modeling features, and then compare these characteristics to study the biological evolution between species. Results Here, we use maximum likelihood and Bayesian inference method to establish phylogenetic trees; multi-chain Markov chain Monte Carlo sampling method can be used to select optimal phylogenetic tree, resolving local optimum problem. The correlation model of phylogenetic analysis assumes that phylogenetic trees are built on homogeneous data, however there exists a large deviation in the presence of heterogeneous data. We use conscious detection to solve compositional heterogeneity. Our method is evaluated on two sets of experimental data, a group of bacterial 16S ribosomal RNA gene data, and a group of genetic data with five homologous species. Conclusions Our method can obtain accurate phylogenetic trees on the homologous data, and also detect the compositional heterogeneity of experimental data. We provide an efficient method to enhance the accuracy of generated phylogenetic tree.
Collapse
Affiliation(s)
- Zehua Zhang
- School of Computer Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Kecheng Guo
- School of Computer Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Gaofeng Pan
- School of Computer Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China
| | - Jijun Tang
- School of Computer Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China.,Department of Computer Science and Engineering, University of South Carolina, Columbia, USA
| | - Fei Guo
- School of Computer Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, People's Republic of China.
| |
Collapse
|
15
|
Harris AJ, Chen Y, Olsen RT, Lutz S, Wen J. On merging Acer sections Rubra and Hyptiocarpa: Molecular and morphological evidence. PHYTOKEYS 2017; 86:9-42. [PMID: 29033667 PMCID: PMC5624197 DOI: 10.3897/phytokeys.86.13532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
In this study, we expanded Acer sect. Rubra Pax to include A. sect. Hyptiocarpa Fang. Traditionally, section Rubra comprises two iconic species, Acer rubrum Linnaeus (red maple) and A. saccharinum Linnaeus (silver maple), of eastern North American forests as well as the rare Japanese montane species, A. pycnanthum K. Koch. Section Hyptiocarpa consists of A. laurinum Hasskarl and A. pinnatinervium Merrill, which occur in subtropical and tropical regions of southwestern China to southeast Asia. Here, we confirm prior phylogenetic results showing the close relationship between sects. Rubra and Hyptiocarpa, and we use scanning electron microscopy to demonstrate that leaves of species within these sections have similar arrangements of cuticular waxes, which account for the silvery color of their abaxial surfaces. We describe that the sections also share labile sex expression; inflorescences that range from compound racemose thyrses, to racemes or umbels and that may have undergone evolutionary reduction; and several features of their fruits, such as seed locules without keels, basal portion of wings straight, acute attachment angle between mericarps, and production of some mericarps that are seedless and partially developed at maturity. Our expansion of sect. Rubra to include sect. Hyptiocarpa better elucidates the biogeographic and evolutionary history of these species. Additionally, we show that A. laurinum and A. pinnatinervium have intergrading morphology and are probably synonymous, but we note that further studies are required to conclude their taxonomic status.
Collapse
Affiliation(s)
- AJ Harris
- Smithsonian Institution, Department of Botany, MRC 166, Washington, D.C. 20013-7012 USA
| | - Yousheng Chen
- Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing 100093 China
| | - Richard T. Olsen
- United States National Arboretum, 3501 New York Avenue, NE, Washington, D.C. 20002- 1958 USA
| | - Sue Lutz
- Smithsonian Institution, Department of Botany, MRC 166, Washington, D.C. 20013-7012 USA
| | - Jun Wen
- Smithsonian Institution, Department of Botany, MRC 166, Washington, D.C. 20013-7012 USA
| |
Collapse
|
16
|
Mai U, Sayyari E, Mirarab S. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction. PLoS One 2017; 12:e0182238. [PMID: 28800608 PMCID: PMC5553649 DOI: 10.1371/journal.pone.0182238] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/25/2017] [Indexed: 12/29/2022] Open
Abstract
Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.
Collapse
Affiliation(s)
- Uyen Mai
- Dept of Computer Science and Engineering, University of California at San Diego, San Diego, CA, United States of America
| | - Erfan Sayyari
- Dept of Electrical and Computer Engineering, University of California at San Diego, San Diego, CA, United States of America
| | - Siavash Mirarab
- Dept of Electrical and Computer Engineering, University of California at San Diego, San Diego, CA, United States of America
| |
Collapse
|
17
|
Genetic evidence supporting the taxonomic separation of the Arabian and Northwest African subspecies of the desert hedgehog ( Paraechinus aethiopicus ). Gene 2017; 620:54-65. [DOI: 10.1016/j.gene.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 11/21/2022]
|
18
|
Uyttendaele N. On the estimation of nested Archimedean copulas: a theoretical and an experimental comparison. Comput Stat 2017. [DOI: 10.1007/s00180-017-0743-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Hirt MV, Arratia G, Chen WJ, Mayden RL, Tang KL, Wood RM, Simons AM. Effects of gene choice, base composition and rate heterogeneity on inference and estimates of divergence times in cypriniform fishes. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- M. Vincent Hirt
- University of Minnesota, Ecology, Evolution, and Behavior Graduate Program, St. Paul, MN 55108, USA
- University of Minnesota, Bell Museum of Natural History, Minneapolis, MN 55455, USA
| | - Gloria Arratia
- Biodiversity Research Center, University of Kansas, Lawrence, KS 66045, USA
| | - Wei-Jen Chen
- National Taiwan University, Institute of Oceanography, Taipei 10617, Taiwan
| | - Richard L. Mayden
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Kevin L. Tang
- Department of Biology, University of Michigan-Flint, Flint, MI 48502, USA
| | - Robert M. Wood
- Department of Biology, Saint Louis University, St. Louis, MO 63103, USA
| | - Andrew M. Simons
- University of Minnesota, Bell Museum of Natural History, Minneapolis, MN 55455, USA
- Department of Fisheries, Wildlife, and Conservation Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
20
|
Abstract
Identifying the root of a phylogenetic tree is important because incorrectly rooted phylogenetic trees may mislead evolutionary and taxonomic inferences. Many techniques for inferring the root have been proposed, but each has shortcomings that may make it inappropriate for any particular dataset. Here we outline the various ways to root phylogenetic trees, which include: outgroup, midpoint rooting, molecular clock rooting, and Bayesian molecular clock rooting. In addition, we discuss the pros and cons and also list software availability for each of the rooting methods.
Collapse
|
21
|
Williams TA, Heaps SE, Cherlin S, Nye TMW, Boys RJ, Embley TM. New substitution models for rooting phylogenetic trees. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140336. [PMID: 26323766 PMCID: PMC4571574 DOI: 10.1098/rstb.2014.0336] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
The root of a phylogenetic tree is fundamental to its biological interpretation, but standard substitution models do not provide any information on its position. Here, we describe two recently developed models that relax the usual assumptions of stationarity and reversibility, thereby facilitating root inference without the need for an outgroup. We compare the performance of these models on a classic test case for phylogenetic methods, before considering two highly topical questions in evolutionary biology: the deep structure of the tree of life and the root of the archaeal radiation. We show that all three alignments contain meaningful rooting information that can be harnessed by these new models, thus complementing and extending previous work based on outgroup rooting. In particular, our analyses exclude the root of the tree of life from the eukaryotes or Archaea, placing it on the bacterial stem or within the Bacteria. They also exclude the root of the archaeal radiation from several major clades, consistent with analyses using other rooting methods. Overall, our results demonstrate the utility of non-reversible and non-stationary models for rooting phylogenetic trees, and identify areas where further progress can be made.
Collapse
Affiliation(s)
- Tom A Williams
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sarah E Heaps
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Svetlana Cherlin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Tom M W Nye
- School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Richard J Boys
- School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
22
|
Li C, Matthes-Rosana KA, Garcia M, Naylor GJP. Phylogenetics of Chondrichthyes and the problem of rooting phylogenies with distant outgroups. Mol Phylogenet Evol 2012; 63:365-73. [PMID: 22300842 DOI: 10.1016/j.ympev.2012.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/08/2012] [Accepted: 01/13/2012] [Indexed: 11/29/2022]
Abstract
Erroneous estimates of ingroup relationships can be caused by attributes in the outgroup chosen to root the tree. Phylogenetic analyses of DNA sequences frequently yield incorrect estimates of ingroup relationships when the outgroup used to "root" the tree is highly divergent from the ingroup. This is especially the case when the outgroup has a different base composition than the ingroup. Unfortunately, in many instances, alternative less divergent outgroups are not available. In such cases, investigators must either target genes with attributes that minimize the problem (slowly evolving genes with stationary base compositions--which are often not ideal for estimating relationships among the more closely related ingroup taxa) or use inference models that are explicitly tailored to deal with an attenuated historical signal with a superimposed non-stationary base composition. In this paper we explore the problem both empirically and through simulation. For the empirical component we looked at the phylogenetic relationships among elasmobranch fishes (sharks and rays), a group whose closest living outgroup, the holocephalan Ghost fishes, are separated from the elasmobranchs by more than 100 million years of evolution. We compiled a data set for analysis comprising 10 single-copy nuclear protein-coding genes (12,096 bp) for representatives of the major lineages within elasmobranchs and holocephalans. For the simulation, we used an evolutionary model on a fixed tree topology to generate DNA sequence data sets which varied both in their distance to the outgroup, and in their base compositional difference between ingroup and outgroup. Results from both the empirical data set and the simulation, support the idea that deviation from base compositional stationarity, in conjunction with distance from the root can act in concert to compromise accuracy of estimated relationships within the ingroup. We tested several approaches to mitigate such problems. We found, that excluding genes with overall faster rates and heterogeneous base compositions, while the least sophisticated of the methods evaluated, seemed to be the most effective.
Collapse
Affiliation(s)
- Chenhong Li
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The distinction between orthologs and paralogs, genes that started diverging by speciation versus duplication, is relevant in a wide range of contexts, most notably phylogenetic tree inference and protein function annotation. In this chapter, we provide an overview of the methods used to infer orthology and paralogy. We survey both graph-based approaches (and their various grouping strategies) and tree-based approaches, which solve the more general problem of gene/species tree reconciliation. We discuss conceptual differences among the various orthology inference methods and databases, and examine the difficult issue of verifying and benchmarking orthology predictions. Finally, we review typical applications of orthologous genes, groups, and reconciled trees and conclude with thoughts on future methodological developments.
Collapse
|
24
|
Regier JC, Zwick A. Sources of signal in 62 protein-coding nuclear genes for higher-level phylogenetics of arthropods. PLoS One 2011; 6:e23408. [PMID: 21829732 PMCID: PMC3150433 DOI: 10.1371/journal.pone.0023408] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 07/15/2011] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND This study aims to investigate the strength of various sources of phylogenetic information that led to recent seemingly robust conclusions about higher-level arthropod phylogeny and to assess the role of excluding or downweighting synonymous change for arriving at those conclusions. METHODOLOGY/PRINCIPAL FINDINGS The current study analyzes DNA sequences from 68 gene segments of 62 distinct protein-coding nuclear genes for 80 species. Gene segments analyzed individually support numerous nodes recovered in combined-gene analyses, but few of the higher-level nodes of greatest current interest. However, neither is there support for conflicting alternatives to these higher-level nodes. Gene segments with higher rates of nonsynonymous change tend to be more informative overall, but those with lower rates tend to provide stronger support for deeper nodes. Higher-level nodes with bootstrap values in the 80% - 99% range for the complete data matrix are markedly more sensitive to substantial drops in their bootstrap percentages after character subsampling than those with 100% bootstrap, suggesting that these nodes are likely not to have been strongly supported with many fewer data than in the full matrix. Data set partitioning of total data by (mostly) synonymous and (mostly) nonsynonymous change improves overall node support, but the result remains much inferior to analysis of (unpartitioned) nonsynonymous change alone. Clusters of genes with similar nonsynonymous rate properties (e.g., faster vs. slower) show some distinct patterns of node support but few conflicts. Synonymous change is shown to contribute little, if any, phylogenetic signal to the support of higher-level nodes, but it does contribute nonphylogenetic signal, probably through its underlying heterogeneous nucleotide composition. Analysis of seemingly conservative indels does not prove useful. CONCLUSIONS Generating a robust molecular higher-level phylogeny of Arthropoda is currently possible with large amounts of data and an exclusive reliance on nonsynonymous change.
Collapse
Affiliation(s)
- Jerome C. Regier
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland, United States of America
- Department of Entomology, University of Maryland, College Park, Maryland, United States of America
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America
| | - Andreas Zwick
- Center for Biosystems Research, University of Maryland Biotechnology Institute, College Park, Maryland, United States of America
- Entomology, State Museum of Natural History, Stuttgart, Germany
| |
Collapse
|
25
|
Robe LJ, Cordeiro J, Loreto ELS, Valente VLS. Taxonomic boundaries, phylogenetic relationships and biogeography of the Drosophila willistoni subgroup (Diptera: Drosophilidae). Genetica 2010; 138:601-17. [DOI: 10.1007/s10709-009-9432-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
|
26
|
Phylogenetic Relationships Among Species Subgroups in the Drosophila saltans Group (Diptera: Drosophilidae):Can Morphology Solve a Molecular Conflict? Zool Res 2009. [DOI: 10.3724/sp.j.1141.2009.03225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
27
|
Sheffield NC, Song H, Cameron SL, Whiting MF. Nonstationary Evolution and Compositional Heterogeneity in Beetle Mitochondrial Phylogenomics. Syst Biol 2009; 58:381-94. [DOI: 10.1093/sysbio/syp037] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nathan C. Sheffield
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
- Program in Computational Biology & Bioinformatics, Institute for Genome Sciences and Policy, Duke University, Box 90090, Durham, NC 27708, USA
| | - Hojun Song
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Stephen L. Cameron
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Entomology, PO Box 1700, Canberra, Australian Capital Territory, 2601, Australia
| | | |
Collapse
|
28
|
Rohde C, Garcia ACL, Valiati VH, Valente VLS. Chromosomal evolution of sibling species of the Drosophila willistoni group. I. Chromosomal arm IIR (Muller's element B). Genetica 2009; 126:77-88. [PMID: 16502086 DOI: 10.1007/s10709-005-1433-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The phylogenetic relationships among nine entities of Drosophila belonging to the D. willistoni subgroup were investigated by establishing the homologous chromosomal segments of IIR chromosome, Muller's element B (equivalent to chromosome 2L of D. melanogaster). The sibling species of the D. willistoni group investigated include D. willistoni, D. tropicalis tropicalis, D. tropicalis cubana, D. equinoxialis, D. insularis and four semispecies of the D. paulistorum complex. The phylogenetic relationships were based on the existence of segments in different triads of species, which could only be produced by overlapping inversions. Polytene banding similarity maps and break points of inversions between species are presented. The implications of the chromosomal data for the phylogeny of the species and comparisons with molecular data are discussed. The aim of this study is to produce phylogenetic trees depicting accurately the sequence of natural events that have occurred in the evolution of these sibling species.
Collapse
Affiliation(s)
- Claudia Rohde
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Caixa Postal 15053, CEP 91501-970, Porto Alegre, RS, Brazil.
| | | | | | | |
Collapse
|
29
|
Che J, Hu JS, Zhou WW, Murphy RW, Papenfuss TJ, Chen MY, Rao DQ, Li PP, Zhang YP. Phylogeny of the Asian spiny frog tribe Paini (Family Dicroglossidae) sensu Dubois. Mol Phylogenet Evol 2009; 50:59-73. [DOI: 10.1016/j.ympev.2008.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 09/03/2008] [Accepted: 10/06/2008] [Indexed: 11/16/2022]
|
30
|
Phylogeography of the southern skua complex—rapid colonization of the southern hemisphere during a glacial period and reticulate evolution. Mol Phylogenet Evol 2008; 49:292-303. [DOI: 10.1016/j.ympev.2008.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/14/2008] [Indexed: 11/19/2022]
|
31
|
Murdock AG. Phylogeny of marattioid ferns (Marattiaceae): inferring a root in the absence of a closely related outgroup. AMERICAN JOURNAL OF BOTANY 2008; 95:626-641. [PMID: 21632388 DOI: 10.3732/ajb.2007308] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Closely related outgroups are optimal for rooting phylogenetic trees; however, such ideal outgroups are not always available. A phylogeny of the marattioid ferns (Marattiaceae), an ancient lineage with no close relatives, was reconstructed using nucleotide sequences of multiple chloroplast regions (rps4 + rps4-trnS spacer, trnS-trnG spacer + trnG intron, rbcL, atpB), from 88 collections, selected to cover the broadest possible range of morphologies and geographic distributions within the extant taxa. Because marattioid ferns are phylogenetically isolated from other lineages, and internal branches are relatively short, rooting was problematic. Root placement was strongly affected by long-branch attraction under maximum parsimony and by model choice under maximum likelihood. A multifaceted approach to rooting was employed to isolate the sources of bias and produce a consensus root position. In a statistical comparison of all possible root positions with three different outgroups, most root positions were not significantly less optimal than the maximum likelihood root position, including the consensus root position. This phylogeny has several important taxonomic implications for marattioid ferns: Marattia in the broad sense is paraphyletic; the Hawaiian endemic Marattia douglasii is most closely related to tropical American taxa; and Angiopteris is monophyletic only if Archangiopteris and Macroglossum are included.
Collapse
Affiliation(s)
- Andrew G Murdock
- Department of Integrative Biology, University of California, Berkeley, 1001 Valley Life Sciences Bldg., California 94720-2465 USA
| |
Collapse
|
32
|
HESS PABLON, DE MORAES RUSSO CLAUDIAA. An empirical test of the midpoint rooting method. Biol J Linn Soc Lond 2007; 92:669-674. [PMID: 32287391 PMCID: PMC7110036 DOI: 10.1111/j.1095-8312.2007.00864.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 02/12/2007] [Indexed: 11/30/2022]
Abstract
The outgroup method is widely used to root phylogenetic trees. An accurate root indication, however, strongly depends on the availability of a proper outgroup. An alternate rooting method is the midpoint rooting (MPR). In this case, the root is set at the midpoint between the two most divergent operational taxonomic units. Although the midpoint rooting algorithm has been extensively used, the efficiency of this method in retrieving the correct root remains untested. In the present study, we empirically tested the success rate of the MPR in obtaining the outgroup root for a given phylogenetic tree. This was carried out by eliminating outgroups in 50 selected data sets from 33 papers and rooting the trees with the midpoint method. We were thus able to compare the root position retrieved by each method. Data sets were separated into three categories with different root consistencies: data sets with a single outgroup taxon (54% success rate for MPR), data sets with multiple outgroup taxa that showed inconsistency in root position (82% success rate), and data sets with multiple outgroup taxa in which root position was consistent (94% success rate). Interestingly, the more consistent the outgroup root is, the more successful MPR appears to be. This is a strong indication that the MPR method is valuable, particularly for cases where a proper outgroup is unavailable.
Collapse
Affiliation(s)
- PABLO N. HESS
- Laboratório de Biodiversidade Molecular, Departamento de Genética, Instituto de Biologia, CCS, Bloco A, Av Pau Brasil 211, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ 21941-S70, Brazil
| | - CLAUDIA A. DE MORAES RUSSO
- Laboratório de Biodiversidade Molecular, Departamento de Genética, Instituto de Biologia, CCS, Bloco A, Av Pau Brasil 211, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Rio de Janeiro, RJ 21941-S70, Brazil
| |
Collapse
|
33
|
Vicario S, Moriyama EN, Powell JR. Codon usage in twelve species of Drosophila. BMC Evol Biol 2007; 7:226. [PMID: 18005411 PMCID: PMC2213667 DOI: 10.1186/1471-2148-7-226] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 11/15/2007] [Indexed: 11/25/2022] Open
Abstract
Background Codon usage bias (CUB), the uneven use of synonymous codons, is a ubiquitous observation in virtually all organisms examined. The pattern of codon usage is generally similar among closely related species, but differs significantly among distantly related organisms, e.g., bacteria, yeast, and Drosophila. Several explanations for CUB have been offered and some have been supported by observations and experiments, although a thorough understanding of the evolutionary forces (random drift, mutation bias, and selection) and their relative importance remains to be determined. The recently available complete genome DNA sequences of twelve phylogenetically defined species of Drosophila offer a hitherto unprecedented opportunity to examine these problems. We report here the patterns of codon usage in the twelve species and offer insights on possible evolutionary forces involved. Results (1) Codon usage is quite stable across 11/12 of the species: G- and especially C-ending codons are used most frequently, thus defining the preferred codons. (2) The only amino acid that changes in preferred codon is Serine with six species of the melanogaster group favoring TCC while the other species, particularly subgenus Drosophila species, favor AGC. (3) D. willistoni is an exception to these generalizations in having a shifted codon usage for seven amino acids toward A/T in the wobble position. (4) Amino acids differ in their contribution to overall CUB, Leu having the greatest and Asp the least. (5) Among two-fold degenerate amino acids, A/G ending amino acids have more selection on codon usage than T/C ending amino acids. (6) Among the different chromosome arms or elements, genes on the non-recombining element F (dot chromosome) have the least CUB, while genes on the element A (X chromosome) have the most. (7) Introns indicate that mutation bias in all species is approximately 2:1, AT:GC, the opposite of codon usage bias. (8) There is also evidence for some overall regional bias in base composition that may influence codon usage. Conclusion Overall, these results suggest that natural selection has acted on codon usage in the genus Drosophila, at least often enough to leave a footprint of selection in modern genomes. However, there is evidence in the data that random forces (drift and mutation) have also left patterns in the data, especially in genes under weak selection for codon usage for example genes in regions of low recombination. The documentation of codon usage patterns in each of these twelve genomes also aids in ongoing annotation efforts.
Collapse
Affiliation(s)
- Saverio Vicario
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520-8105, USA.
| | | | | |
Collapse
|
34
|
Gruber KF, Voss RS, Jansa SA. Base-compositional heterogeneity in the RAG1 locus among didelphid marsupials: implications for phylogenetic inference and the evolution of GC content. Syst Biol 2007; 56:83-96. [PMID: 17366139 DOI: 10.1080/10635150601182939] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Although theoretical studies have suggested that base-compositional heterogeneity can adversely affect phylogenetic reconstruction, only a few empirical examples of this phenomenon, mostly among ancient lineages (with divergence dates > 100 Mya), have been reported. In the course of our phylogenetic research on the New World marsupial family Didelphidae, we sequenced 2790 bp of the RAG1 exon from exemplar species of most extant genera. Phylogenetic analysis of these sequences recovered an anomalous node consisting of two clades previously shown to be distantly related based on analyses of other molecular data. These two clades show significantly increased GC content at RAG1 third codon positions, and the resulting convergence in base composition is strong enough to overwhelm phylogenetic signal from other genes (and morphology) in most analyses of concatenated datasets. This base-compositional convergence occurred relatively recently (over tens rather than hundreds of millions of years), and the affected gene region is still in a state of evolutionary disequilibrium. Both mutation rate and substitution rate are higher in GC-rich didelphid taxa, observations consistent with RAG1 sequences having experienced a higher rate of recombination in the convergent lineages.
Collapse
Affiliation(s)
- Karl F Gruber
- Bell Museum of Natural History and Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
35
|
van der Heijden RTJM, Snel B, van Noort V, Huynen MA. Orthology prediction at scalable resolution by phylogenetic tree analysis. BMC Bioinformatics 2007; 8:83. [PMID: 17346331 PMCID: PMC1838432 DOI: 10.1186/1471-2105-8-83] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Accepted: 03/08/2007] [Indexed: 11/26/2022] Open
Abstract
Background Orthology is one of the cornerstones of gene function prediction. Dividing the phylogenetic relations between genes into either orthologs or paralogs is however an oversimplification. Already in two-species gene-phylogenies, the complicated, non-transitive nature of phylogenetic relations results in inparalogs and outparalogs. For situations with more than two species we lack semantics to specifically describe the phylogenetic relations, let alone to exploit them. Published procedures to extract orthologous groups from phylogenetic trees do not allow identification of orthology at various levels of resolution, nor do they document the relations between the orthologous groups. Results We introduce "levels of orthology" to describe the multi-level nature of gene relations. This is implemented in a program LOFT (Levels of Orthology From Trees) that assigns hierarchical orthology numbers to genes based on a phylogenetic tree. To decide upon speciation and gene duplication events in a tree LOFT can be instructed either to perform classical species-tree reconciliation or to use the species overlap between partitions in the tree. The hierarchical orthology numbers assigned by LOFT effectively summarize the phylogenetic relations between genes. The resulting high-resolution orthologous groups are depicted in colour, facilitating visual inspection of (large) trees. A benchmark for orthology prediction, that takes into account the varying levels of orthology between genes, shows that the phylogeny-based high-resolution orthology assignments made by LOFT are reliable. Conclusion The "levels of orthology" concept offers high resolution, reliable orthology, while preserving the relations between orthologous groups. A Windows as well as a preliminary Java version of LOFT is available from the LOFT website .
Collapse
Affiliation(s)
- René TJM van der Heijden
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Berend Snel
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Vera van Noort
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Martijn A Huynen
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Abstract
Phylogenetic analysis has changed greatly in the last decade, and the most important themes in that change are reviewed here. Sequence data have become the most common source of phylogenetic information. This means that explicit models for evolutionary processes have been developed in a likelihood context, which allow more realistic data analyses. These models are becoming increasingly complex, both for nucleotides and for amino acid sequences, and so all such models need to be quantitatively assessed for each data set, to find the most appropriate one for use in any particular tree-building analysis. Bayesian analysis has been developed for tree-building and is greatly increasing in popularity. This is because a good heuristic strategy exists, which allows large data sets to be analyzed with complex evolutionary models in a practical time. Perhaps the most disappointing aspect of tree interpretation is the ongoing confusion between rooted and unrooted trees, while the effect of taxon and character sampling is often overlooked when constructing a phylogeny (especially in parasitology). The review finishes with a detailed consideration of the analysis of a multi-gene data set for several dozen taxa of Cryptosporidium (Apicomplexa), illustrating many of the theoretical and practical points highlighted in the review.
Collapse
Affiliation(s)
- David A Morrison
- Department of Parasitology (SWEPAR), National Veterinary Institute and Swedish University of Agricultural Sciences, 751 89 Uppsala, Sweden
| |
Collapse
|
37
|
Townsend T, Larson A, Louis E, Macey JR. Molecular phylogenetics of squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst Biol 2005; 53:735-57. [PMID: 15545252 DOI: 10.1080/10635150490522340] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Squamate reptiles (snakes, lizards, and amphisbaenians) serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania (anoles, iguanas, chameleons, etc.) and Scleroglossa (skinks, geckos, snakes, etc.) has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of 69 squamate species using approximately 4600 (2876 parsimony-informative) base pairs (bp) of DNA sequence data from the nuclear genes RAG-1(approximately 2750 bp) and c-mos(approximately 360 bp) and the mitochondrial ND2 region (approximately 1500 bp), sampling all major clades and most major subclades. Under our hypothesis, species previously placed in Iguania, Anguimorpha, and almost all recognized squamate families form strongly supported monophyletic groups. However, species previously placed in Scleroglossa, Varanoidea, and several other higher taxa do not form monophyletic groups. Iguania, the traditional sister group of Scleroglossa, is actually highly nested within Scleroglossa. This unconventional rooting does not seem to be due to long-branch attraction, base composition biases among taxa, or convergence caused by similar selective forces acting on nonsister taxa. Studies of functional tongue morphology and feeding mode have contrasted the similar states found in Sphenodon(the nearest outgroup to squamates) and Iguania with those of Scleroglossa, but our findings suggest that similar states in Sphenodonand Iguania result from homoplasy. Snakes, amphisbaenians, and dibamid lizards, limbless forms whose phylogenetic positions historically have been impossible to place with confidence, are not grouped together and appear to have evolved this condition independently. Amphisbaenians are the sister group of lacertids, and dibamid lizards diverged early in squamate evolutionary history. Snakes are grouped with iguanians, lacertiforms, and anguimorphs, but are not nested within anguimorphs.
Collapse
Affiliation(s)
- Ted Townsend
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| | | | | | | |
Collapse
|
38
|
Polachini de Castro J, Carareto CMA. P elements in the saltans group of Drosophila: a new evaluation of their distribution and number of genomic insertion sites. Mol Phylogenet Evol 2005; 32:383-7. [PMID: 15186822 DOI: 10.1016/j.ympev.2004.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 01/02/2004] [Indexed: 11/28/2022]
Abstract
Few are studies on P elements that have addressed the saltans group. These studies had shown that species from the cordata and elliptica subgroups were devoid of any discernible P homologous sequences, while species from the parasaltans, sturtevanti, and saltans subgroups all contain P element sequences. Our analyses showed the presence of one to 15 P element insertion sites in species of the saltans group, including Drosophila neocordata and Drosophila emarginata (cordata and elliptica subgroups, respectively). From these species, only those from the parasaltans, sturtevanti, and saltans subgroups harbor canonical P elements and, only those of the last two subgroups seem to harbor putative full-sized elements. Due to the low similarity of the sequences found in D. neocordata and D. emarginata to those earlier described, we suggest that these sequences might be rudimental P element derivatives that were present in the ancestral of the subgenus Sophophora.
Collapse
Affiliation(s)
- Juliana Polachini de Castro
- Departamento de Biologia, Universidade Estadual Paulista-UNESP, Rua Cristóvão Colombo 2265, CEP 15054-000, São José do Rio Preto-SP, Brazil
| | | |
Collapse
|
39
|
Abstract
Compositional heterogeneity among lineages can compromise phylogenetic analyses, because models in common use assume compositionally homogeneous data. Models that can accommodate compositional heterogeneity with few extra parameters are described here, and used in two examples where the true tree is known with confidence. It is shown using likelihood ratio tests that adequate modeling of compositional heterogeneity can be achieved with few composition parameters, that the data may not need to be modelled with separate composition parameters for each branch in the tree. Tree searching and placement of composition vectors on the tree are done in a Bayesian framework using Markov chain Monte Carlo (MCMC) methods. Assessment of fit of the model to the data is made in both maximum likelihood (ML) and Bayesian frameworks. In an ML framework, overall model fit is assessed using the Goldman-Cox test, and the fit of the composition implied by a (possibly heterogeneous) model to the composition of the data is assessed using a novel tree-and model-based composition fit test. In a Bayesian framework, overall model fit and composition fit are assessed using posterior predictive simulation. It is shown that when composition is not accommodated, then the model does not fit, and incorrect trees are found; but when composition is accommodated, the model then fits, and the known correct phylogenies are obtained.
Collapse
Affiliation(s)
- Peter G Foster
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom.
| |
Collapse
|
40
|
Yu L, Li QW, Ryder OA, Zhang YP. Phylogenetic relationships within mammalian order Carnivora indicated by sequences of two nuclear DNA genes. Mol Phylogenet Evol 2004; 33:694-705. [PMID: 15522797 DOI: 10.1016/j.ympev.2004.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Revised: 07/13/2004] [Indexed: 11/18/2022]
Abstract
Phylogenetic relationships among 37 living species of order Carnivora spanning a relatively broad range of divergence times and taxonomic levels were examined using nuclear sequence data from exon 1 of the IRBP gene (approximately 1.3 kb) and first intron of the TTR gene (approximately 1 kb). These data were used to analyze carnivoran phylogeny at the family and generic level as well as the interspecific relationships within recently derived Felidae. Phylogenetic results using a combined IRBP+TTR dataset strongly supported within the superfamily Califormia, the red panda as the closest lineage to procyonid-mustelid (i.e., Musteloidea) clade followed by pinnipeds (Otariidae and Phocidae), Ursidae (including the giant panda), and Canidae. Four feliform families, namely the monophyletic Herpestidae, Hyaenidae, and Felidae, as well as the paraphyletic Viverridae were consistently recovered convincingly. The utilities of these two gene segments for the phylogenetic analyses were extensively explored and both were found to be fairly informative for higher-group associations within the order Carnivora, but not for those of low level divergence at the species level. Therefore, there is a need to find additional genetic markers with more rapid mutation rates that would be diagnostic at deciphering relatively recent relationships within the Carnivora.
Collapse
Affiliation(s)
- Li Yu
- Laboratory of Molecular Biology of Domestic Animals, and Cellular and Molecular Evolution, Kunming Institute of Zoology, Kunming 650223, China
| | | | | | | |
Collapse
|
41
|
Tarrio R, Rodríguez-Trelles F, Ayala FJ. A new Drosophila spliceosomal intron position is common in plants. Proc Natl Acad Sci U S A 2003; 100:6580-3. [PMID: 12750476 PMCID: PMC164489 DOI: 10.1073/pnas.0731952100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 25-year-old debate about the origin of introns between proponents of "introns early" and "introns late" has yielded significant advances, yet important questions remain to be ascertained. One question concerns the density of introns in the last common ancestor of the three multicellular kingdoms. Approaches to this issue thus far have relied on counts of the numbers of identical intron positions across present-day taxa on the assumption that the introns at those sites are orthologous. However, dismissing parallel intron gain for those sites may be unwarranted, because various factors can potentially constrain the site of intron insertion. Demonstrating parallel intron gain is severely handicapped, because intron sequences often evolve exceedingly fast and intron phylogenetic distributions are usually ambiguous, such that alternative loss and gain scenarios cannot be clearly distinguished. We have identified an intron position that was gained independently in animals and plants in the xanthine dehydrogenase gene. The extremely disjointed phylogenetic distribution of the intron argues strongly for separate gain rather than recurrent loss. If the observed phylogenetic pattern had resulted from recurrent loss, all observational support previously gathered for the introns-late theory of intron origins based on the phylogenetic distribution of introns would be invalidated.
Collapse
Affiliation(s)
- Rosa Tarrio
- Department of Ecology and Evolutionary Biology, University of California, Irvine 92697-2525, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Michael J. Sanderson
- Section of Evolution and Ecology, University of California, Davis, California 95616;
| | - H. Bradley Shaffer
- Section of Evolution and Ecology, University of California, Davis, California 95616;
| |
Collapse
|
43
|
O'Grady PM, Kidwell MG. Phylogeny of the subgenus sophophora (Diptera: drosophilidae) based on combined analysis of nuclear and mitochondrial sequences. Mol Phylogenet Evol 2002; 22:442-53. [PMID: 11884169 DOI: 10.1006/mpev.2001.1053] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequences from the nuclear (nu) alcohol dehydrogenase gene, the nu 28S ribosomal RNA locus, and the mitochondrial cytochrome oxidase II gene were used both individually and in combined analyses to infer the phylogeny of the subgenus Sophophora (Diptera: Drosophilidae). We used several optimality criteria, including maximum likelihood, maximum parsimony, and minimum evolution, to analyze these partitions to test the monophyly of the subgenus Sophophora and its four largest species groups, melanogaster, obscura, saltans, and willistoni. Our results suggest that the melanogaster and obscura species groups are each monophyletic and form a closely related clade. The Neotropical clade, containing the saltans and willistoni species groups, is also recovered, as previous studies have suggested. While the saltans species group is strongly supported as monophyletic, the results of several analyses indicate that the willistoni species group may be paraphyletic with respect to the saltans species group.
Collapse
Affiliation(s)
- P M O'Grady
- Department of Invertebrate Zoology, American Museum of Natural History, New York, New York, 10024, USA
| | | |
Collapse
|
44
|
Tarrío R, Rodríguez-Trelles F, Ayala FJ. Shared nucleotide composition biases among species and their impact on phylogenetic reconstructions of the Drosophilidae. Mol Biol Evol 2001; 18:1464-73. [PMID: 11470837 DOI: 10.1093/oxfordjournals.molbev.a003932] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Compositional changes are a major feature of genome evolution. Overlooking nucleotide composition differences among sequences can seriously mislead phylogenetic reconstructions. Large compositional variation exists among the members of the family Drosophilidae. Until now, however, base composition differences have been largely neglected in the formulations of the nucleotide substitution process used to reconstruct the phylogeny of this important group of species. The present study adopts a maximum-likelihood framework of phylogenetic inference in order to analyze five nuclear gene regions and shows that (1) the pattern of compositional variation in the Drosophilidae does not match the phylogeny of the species; (2) accounting for the heterogeneous GC content with Galtier and Gouy's nucleotide substitution model leads to a tree that differs in significant aspects from the tree inferred when the nucleotide composition differences are ignored, even though both phylogenetic hypotheses attain strong nodal support in the bootstrap analyses; and (3) the LogDet distance correction cannot completely overcome the distorting effects of the compositional variation that exists among the species of the Drosophilidae. Our analyses confidently place the Chymomyza genus as an outgroup closer than the genus Scaptodrosophila to the Drosophila genus and conclusively support the monophyly of the Sophophora subgenus.
Collapse
Affiliation(s)
- R Tarrío
- Department of Ecology and Evolutionary Biology, University of California at Irvine, 92697-2525, USA
| | | | | |
Collapse
|
45
|
Kumar S, Gadagkar SR. Disparity index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics 2001; 158:1321-7. [PMID: 11454778 PMCID: PMC1461708 DOI: 10.1093/genetics/158.3.1321] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A common assumption in comparative sequence analysis is that the sequences have evolved with the same pattern of nucleotide substitution (homogeneity of the evolutionary process). Violation of this assumption is known to adversely impact the accuracy of phylogenetic inference and tests of evolutionary hypotheses. Here we propose a disparity index, ID, which measures the observed difference in evolutionary patterns for a pair of sequences. On the basis of this index, we have developed a Monte Carlo procedure to test the homogeneity of the observed patterns. This test does not require a priori knowledge of the pattern of substitutions, extent of rate heterogeneity among sites, or the evolutionary relationship among sequences. Computer simulations show that the ID-test is more powerful than the commonly used chi2-test under a variety of biologically realistic models of sequence evolution. An application of this test in an analysis of 3789 pairs of orthologous human and mouse protein-coding genes reveals that the observed evolutionary patterns in neutral sites are not homogeneous in 41% of the genes, apparently due to shifts in G + C content. Thus, the proposed test can be used as a diagnostic tool to identify genes and lineages that have evolved with substantially different evolutionary processes as reflected in the observed patterns of change. Identification of such genes and lineages is an important early step in comparative genomics and molecular phylogenetic studies to discover evolutionary processes that have shaped organismal genomes.
Collapse
Affiliation(s)
- S Kumar
- Department of Biology, Arizona State University, Tempe, Arizona 85287-1501, USA.
| | | |
Collapse
|